1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
|
/*
* Copyright © 2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file clipping-transforms.c
*
* This test verifies that clip planes are transformed using the
* correct matrices, at the correct times.
*
* The transformations affecting clipping in fixed functionality mode
* (with no vertex shader) are described in the OpenGL 2.1 spec,
* section 2.12 ("Clipping"):
*
* "A client-defined clip plane is specified with
*
* void ClipPlane( enum p, double eqn[4] );
*
* ... eqn is an array of four double-precision floating-point
* values. These are the coefficients of a plane equation in
* object coordinates: p1 , p2 , p3 , and p4 (in that order). The
* inverse of the current model-view matrix is applied to these
* coefficients, at the time they are specified, yielding
*
* (p1' p2' p3' p4') = (p1 p2 p3 p4) M^-1
*
* (where M is the current model-view matrix; the resulting plane
* equation is undefined if M is singular and may be inaccurate if
* M is poorly-conditioned) to obtain the plane equation
* coefficients in eye coordinates. All points with eye
* coordinates (xe ye ze we)^T that satisfy
*
* (p1' p2' p3' p4') (xe ye ze we)^T >= 0
*
* lie in the half-space defined by the plane; points that do not
* satisfy this condition do not lie in the half-space."
*
* Thus, the clip planes should be modified by the value of the
* model-view matrix at the time clip planes are specified; the value
* of the model-view transformation at drawing time should have no
* effect on which part of the scene is clipped.
*
* The projection matrix, on the other hand, should be the opposite:
* its value at the time clip planes are specified should have no
* effect, but its value at drawing time should determine where on the
* screen clipping takes place (since clipping is performed on eye
* coordinates, before the perspective matrix is applied).
*
* The transformations affecting clipping when a vertex shader is
* present can be inferred from the text that follows:
*
* "When a vertex shader is active, the vector (xe ye ze we)^T is
* no longer computed. Instead, the value of the gl_ClipVertex
* built-in variable is used in its place."
*
* So, as before, the model-view matrix affects clip planes at the
* time they are specified, but not at draw time. However, the
* projection matrix no longer necessarily has an effect; instead, the
* place on the screen where clipping takes place is determined by the
* relationship between the values of gl_Position and gl_ClipVertex
* that are output by the vertex shader.
*
* It's also possible that the vertex shader might not store a value
* in gl_ClipVertex at all; what happens in this case is less clear.
* According to the GL 2.1 spec (from the same section):
*
* "If gl ClipVertex is not written by the vertex shader, its
* value is undefined, which implies that the results of clipping
* to any client-defined clip planes are also undefined."
*
* The GL 3.0 spec says the same thing, and the GLSL 1.10 and 1.20
* specs have compatible language (from section 7.1: Vertex Shader
* Special Variables):
*
* "If gl_PointSize or gl_ClipVertex are not written to, their
* values are undefined."
*
* However, the GLSL 1.30 spec says:
*
* "If a linked set of shaders forming the vertex stage contains
* no static write to gl_ClipVertex or gl_ClipDistance, but the
* application has requested clipping against user clip planes
* through the API, then the coordinate written to gl_Position is
* used for comparison against the user clip planes."
*
* So, if GLSL 1.30 is to be believed, if the vertex shader does not
* write to gl_Position, then the place on the screen where clipping
* takes place is determined exclusively by the plane equation (p1'
* p2' p3' p4'). No further transformation is applied.
*
* Note that strictly speaking, this doesn't contradict any of the
* other specs, since a conformant implementation may do anything it
* desires when behavior is "undefined", including clipping based on
* gl_Position. Since this behavior is only specified in GLSL 1.30,
* we include a "#version 130" directive in the shader when testing
* it.
*
*
* The test operates by constructing four clip plane equations which
* are only satisfied by points within a small square region near (1,
* 0). Setting all matrices to the identity matrix, and setting
* gl_Position == gl_ClipVertex == gl_Vertex, it draws a large square,
* large enough to cover the entire window, and then probes the
* resulting image to determine where pixels were actually drawn; due
* to clipping, they should be drawn only near (1, 0).
*
* Then it performs a 20 degree rotation in each of the following ways
* in turn, leaving all other transformations as the identity
* transformation:
* - Using the model-view matrix at the time clip planes are specified
* - Using the projection matrix at the time clip planes are specified
* - Using the model-view matrix at the time of drawing
* - Using the projection matrix at the time of drawing
* - Using the vertex shader to rotate gl_Position with respect to gl_Vertex
* - Using the vertex shader to rotate gl_ClipVertex with respect to gl_Vertex
*
* In each case it probes the resulting image to determine where
* pixels were actually drawn, and compares the result to the expected
* behavior from the spec.
*
*
* The test may be run in one of four modes, chosen with a single
* command line argument:
* - "fixed": test using fixed functionality (no vertex shader)
* - "arb": test using GL_ARB_vertex_program extension (see below)
* - "pos": test using a vertex shader that sets gl_Position only
* - "pos_clipvert": test using a vertex shader that sets gl_Position first,
* then gl_ClipVertex
* - "clipvert_pos": test using a vertex shader that sets gl_ClipVertex first,
* then gl_Position
*
* The reason for distinguishing between "pos_clipvert" and
* "clipvert_pos" is that in the present Mesa implementation, the
* variables gl_Position and gl_ClipVertex are aliases of each other,
* so the order in which values are stored into these two variables
* may affect shader behavior.
*
* Note: "arb" mode tests using an ARB vertex program, as defined in
* the GL_ARB_vertex_program extension. From the extension spec:
*
* "User-defined clipping is not supported in standard vertex
* program mode. User-defined clipping support will be provided
* for programs that use the "position invariant" option, where
* all vertex transformation operations are performed by the
* fixed-function pipeline."
*
* The strong implication seems to be that for ARB vertex programs
* that use the "position invariant" option, clipping should behave as
* it does in fixed function mode.
*/
#include "piglit-util-gl.h"
PIGLIT_GL_TEST_CONFIG_BEGIN
config.supports_gl_compat_version = 10;
config.window_visual = PIGLIT_GL_VISUAL_RGB | PIGLIT_GL_VISUAL_DOUBLE;
PIGLIT_GL_TEST_CONFIG_END
GLint position_angle_loc;
GLint clipVertex_angle_loc;
bool use_ff = false;
bool use_arb = false;
bool use_glsl = false;
bool use_clip_vertex = false;
bool use_glsl_130 = false;
/**
* GLSL code used to set gl_Position and/or gl_ClipVertex in the
* vertex shader.
*/
char *setters;
void
setup_glsl_programs()
{
GLuint prog;
char vert[4096];
char frag[4096];
char *version_directive;
if (use_glsl_130) {
version_directive = "#version 130";
} else {
version_directive = "";
}
sprintf(vert,
"%s\n"
"uniform float position_angle;\n"
"uniform float clipVertex_angle;\n"
"mat4 rotate(float angle)\n"
"{\n"
" angle = radians(angle);\n"
" return mat4( cos(angle), sin(angle), 0.0, 0.0,\n"
" -sin(angle), cos(angle), 0.0, 0.0,\n"
" 0.0, 0.0, 1.0, 0.0,\n"
" 0.0, 0.0, 0.0, 1.0);\n"
"}\n"
"void main()\n"
"{\n"
"%s\n"
"}",
version_directive, setters);
sprintf(frag,
"%s\n"
"void main()\n"
"{\n"
" gl_FragColor = vec4(1.0);\n"
"}",
version_directive);
prog = piglit_build_simple_program(vert, frag);
glUseProgram(prog);
position_angle_loc = glGetUniformLocation(prog, "position_angle");
if (use_clip_vertex) {
clipVertex_angle_loc =
glGetUniformLocation(prog, "clipVertex_angle");
}
}
void
setup_arb_program()
{
char vert[] =
"!!ARBvp1.0\n"
"OPTION ARB_position_invariant;\n"
"MOV result.color, { 1.0, 1.0, 1.0, 1.0 };"
"END";
GLuint vert_prog;
glGenProgramsARB(1, &vert_prog);
glBindProgramARB(GL_VERTEX_PROGRAM_ARB, vert_prog);
glProgramStringARB(GL_VERTEX_PROGRAM_ARB, GL_PROGRAM_FORMAT_ASCII_ARB,
strlen(vert), vert);
glEnable(GL_VERTEX_PROGRAM_ARB);
}
void
print_usage_and_exit(char *prog_name)
{
printf("Usage: %s <mode>\n"
" where <mode> is one of:\n"
" fixed\n"
" arb\n"
" pos\n"
" pos_clipvert\n"
" clipvert_pos\n", prog_name);
exit(1);
}
void
piglit_init(int argc, char **argv)
{
if (argc != 2)
print_usage_and_exit(argv[0]);
if (strcmp(argv[1], "fixed") == 0) {
use_ff = true;
} else if (strcmp(argv[1], "arb") == 0) {
use_arb = true;
} else if (strcmp(argv[1], "pos") == 0) {
use_glsl = true;
setters = " gl_Position = rotate(position_angle) * gl_Vertex;\n";
use_glsl_130 = true;
} else if (strcmp(argv[1], "pos_clipvert") == 0) {
use_glsl = true;
setters =
" gl_Position = rotate(position_angle) * gl_Vertex;\n"
" gl_ClipVertex = rotate(clipVertex_angle) * gl_Vertex;\n";
use_clip_vertex = true;
} else if (strcmp(argv[1], "clipvert_pos") == 0) {
use_glsl = true;
setters =
" gl_ClipVertex = rotate(clipVertex_angle) * gl_Vertex;\n"
" gl_Position = rotate(position_angle) * gl_Vertex;\n";
use_clip_vertex = true;
} else {
print_usage_and_exit(argv[0]);
}
if (use_arb) {
piglit_require_extension("GL_ARB_vertex_program");
setup_arb_program();
} else if (use_glsl) {
piglit_require_GLSL();
piglit_require_GLSL_version(use_glsl_130 ? 130 : 110);
setup_glsl_programs();
}
}
void
setup_clip_plane(int plane, float p1, float p2, float p3, float p4)
{
double eqn[4] = { p1, p2, p3, p4 };
glClipPlane(GL_CLIP_PLANE0 + plane, eqn);
}
bool
measure_effects(char *desc, int mc, int pc, int md, int pd, int expected)
{
float size = 0.1;
float dist = 1.0 - size/2;
int angle;
printf("Measuring %s: ", desc);
glClear(GL_COLOR_BUFFER_BIT);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glRotatef(mc, 0, 0, 1);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glRotatef(pc, 0, 0, 1);
setup_clip_plane(0, 1.0, 0.0, 0.0, size-1.0); /* x > 1.0-size */
setup_clip_plane(1, -1.0, 0.0, 0.0, 1.0); /* x < 1.0 */
setup_clip_plane(2, 0.0, 1.0, 0.0, size/2); /* y > -size/2 */
setup_clip_plane(3, 0.0, -1.0, 0.0, size/2); /* y < size/2 */
glEnable(GL_CLIP_PLANE0);
glEnable(GL_CLIP_PLANE1);
glEnable(GL_CLIP_PLANE2);
glEnable(GL_CLIP_PLANE3);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glRotatef(md, 0, 0, 1);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glRotatef(pd, 0, 0, 1);
piglit_draw_rect(-2, -2, 4, 4);
for (angle = -180; angle < 180; angle += 10) {
float angle_rad = angle * M_PI / 180.0;
float xf = dist * cos(angle_rad);
float yf = dist * sin(angle_rad);
int x = (int) (0.5 + piglit_width * (xf + 1.0)/2.0);
int y = (int) (0.5 + piglit_width * (yf + 1.0)/2.0);
float found_color[4];
glReadPixels(x, y, 1, 1, GL_RGBA, GL_FLOAT, found_color);
if (found_color[0] > 0.5) {
if (angle == expected) {
printf("OK (angle=%d)\n", angle);
return true;
} else {
printf("FAIL (angle=%d, expected=%d)\n", angle,
expected);
return false;
}
}
}
printf("FAIL (test rect not found, expected=%d)\n", expected);
return false;
}
enum piglit_result
piglit_display()
{
bool pass = true;
if (use_glsl) {
glUniform1f(position_angle_loc, 0.0);
glUniform1f(clipVertex_angle_loc, 0.0);
}
/* Base behavior: no rotations, so the clipping planes should
* show up on screen at the coordinates where they were
* defined
*/
pass = measure_effects("base behavior", 0, 0, 0, 0, 0) && pass;
/* A 20 degree rotation in the model-view matrix at the time
* clip planes are specified should result in a 20 degree
* rotation of where clipping takes effect.
*/
pass = measure_effects(
"effect of 20deg ModelView rotation while setting clip plane",
20, 0, 0, 0, 20) && pass;
/* A 20 degree rotation in the projection matrix at the time
* clip planes are specified should have no effect.
*/
pass = measure_effects(
"effect of 20deg Projection rotation while setting clip plane",
0, 20, 0, 0, 0) && pass;
/* A 20 degree rotation in the model-view matrix at the time
* of drawing should have no effect.
*/
pass = measure_effects(
"effect of 20deg ModelView rotation while drawing",
0, 0, 20, 0, 0) && pass;
/* When using fixed functionality or an ARB position invariant
* program, a 20 degree rotation in the projection matrix at
* the time of drawing should result in a 20 degree rotation
* of where clipping takes effect when using fixed
* functionality. When using a vertex shader, it should have
* no effect.
*/
pass = measure_effects(
"effect of 20deg Projection rotation while drawing",
0, 0, 0, 20, use_ff || use_arb ? 20 : 0) && pass;
if (use_glsl) {
/* When a vertex shader sets gl_Position to be 20
* degrees rotated compared to gl_Vertex, and sets
* gl_ClipVertex to be equal to gl_Vertex, this should
* result in a 20 degree rotation of where clipping
* takes effect, because it causes gl_Position to be
* rotated 20 degrees with respect to gl_ClipVertex.
* However, when a vertex shader sets gl_Position and
* does not set gl_ClipVertex, there should be no
* effect, because the shader should behave as though
* it set gl_ClipVertex equal to gl_Position.
*/
glUniform1f(position_angle_loc, 20.0);
pass = measure_effects(
"effect of 20deg rotation on gl_Position",
0, 0, 0, 0, use_clip_vertex ? 20 : 0) && pass;
glUniform1f(position_angle_loc, 0.0);
}
if (use_clip_vertex) {
/* When a vertex shader sets gl_Position to be equal
* to gl_Vertex, and sets gl_ClipVertex to be 20
* degrees rotated compared to gl_Vertex, this should
* result in a negative 20 degree rotation of where
* clipping takes effect, because it causes
* gl_Position to be rotated negative 20 degrees with
* respect to gl_ClipVertex.
*/
glUniform1f(clipVertex_angle_loc, 20.0);
pass = measure_effects(
"effect of 20deg rotation on gl_ClipVertex",
0, 0, 0, 0, -20) && pass;
glUniform1f(clipVertex_angle_loc, 0.0);
}
piglit_present_results();
return pass ? PIGLIT_PASS : PIGLIT_FAIL;
}
|