1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
|
# PiGx RNAseq Pipeline.
#
# Copyright © 2017, 2018 Bora Uyar <bora.uyar@mdc-berlin.de>
# Copyright © 2017, 2018 Jonathan Ronen <yablee@gmail.com>
# Copyright © 2017, 2018 Ricardo Wurmus <ricardo.wurmus@mdc-berlin.de>
#
# This file is part of the PiGx RNAseq Pipeline.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
Snakefile for pigx rnaseq pipeline
"""
import os
import yaml
import csv
import inspect
include: os.path.join(config['locations']['pkglibexecdir'], 'scripts/validate_input.py')
validate_config(config)
GENOME_FASTA = config['locations']['genome-fasta']
CDNA_FASTA = config['locations']['cdna-fasta']
READS_DIR = config['locations']['reads-dir']
OUTPUT_DIR = config['locations']['output-dir']
ORGANISM = config['organism']
if os.getenv("PIGX_UNINSTALLED"):
LOGO = os.path.join(config['locations']['pkgdatadir'], "images/Logo_PiGx.png")
else:
LOGO = os.path.join(config['locations']['pkgdatadir'], "Logo_PiGx.png")
SCRIPTS_DIR = os.path.join(config['locations']['pkglibexecdir'], 'scripts/')
TRIMMED_READS_DIR = os.path.join(OUTPUT_DIR, 'trimmed_reads')
LOG_DIR = os.path.join(OUTPUT_DIR, 'logs')
FASTQC_DIR = os.path.join(OUTPUT_DIR, 'fastqc')
MULTIQC_DIR = os.path.join(OUTPUT_DIR, 'multiqc')
MAPPED_READS_DIR = os.path.join(OUTPUT_DIR, 'mapped_reads')
BIGWIG_DIR = os.path.join(OUTPUT_DIR, 'bigwig_files')
COUNTS_DIR = os.path.join(OUTPUT_DIR, 'feature_counts')
SALMON_DIR = os.path.join(OUTPUT_DIR, 'salmon_output')
def toolArgs(name):
if 'args' in config['tools'][name]:
return config['tools'][name]['args']
else:
return ""
def tool(name):
cmd = config['tools'][name]['executable']
return cmd + " " + toolArgs(name)
FASTQC_EXEC = tool('fastqc')
MULTIQC_EXEC = tool('multiqc')
STAR_EXEC_MAP = tool('star_map')
STAR_EXEC_INDEX = tool('star_index')
SALMON_EXEC = tool('salmon')
TRIM_GALORE_EXEC = tool('trim-galore')
SAMTOOLS_EXEC = tool('samtools')
HTSEQ_COUNT_EXEC = tool('htseq-count')
GUNZIP_EXEC = tool('gunzip')
RSCRIPT_EXEC = tool('Rscript')
SED_EXEC = tool('sed')
STAR_INDEX_THREADS = config['execution']['rules']['star_index']['threads']
SALMON_INDEX_THREADS = config['execution']['rules']['salmon_index']['threads']
STAR_MAP_THREADS = config['execution']['rules']['star_map']['threads']
SALMON_QUANT_THREADS = config['execution']['rules']['salmon_quant']['threads']
GTF_FILE = config['locations']['gtf-file']
SAMPLE_SHEET_FILE = config['locations']['sample-sheet']
DE_ANALYSIS_LIST = config.get('DEanalyses', {})
## Load sample sheet
with open(SAMPLE_SHEET_FILE, 'r') as fp:
rows = [row for row in csv.reader(fp, delimiter=',')]
header = rows[0]; rows = rows[1:]
SAMPLE_SHEET = [dict(zip(header, row)) for row in rows]
# Convenience function to access fields of sample sheet columns that
# match the predicate. The predicate may be a string.
def lookup(column, predicate, fields=[]):
if inspect.isfunction(predicate):
records = [line for line in SAMPLE_SHEET if predicate(line[column])]
else:
records = [line for line in SAMPLE_SHEET if line[column]==predicate]
return [record[field] for record in records for field in fields]
SAMPLES = [line['name'] for line in SAMPLE_SHEET]
targets = {
# rule to print all rule descriptions
'help': {
'description': "Print all rules and their descriptions.",
'files': []
},
'final-report': {
'description': "Produce a comprehensive report. This is the default target.",
'files':
[os.path.join(OUTPUT_DIR, 'star_index', "SAindex"),
os.path.join(OUTPUT_DIR, 'salmon_index', "pos.bin"),
os.path.join(MULTIQC_DIR, 'multiqc_report.html')] +
[os.path.join(COUNTS_DIR, "raw_counts", "counts_from_SALMON.transcripts.tsv"),
os.path.join(COUNTS_DIR, "raw_counts", "counts_from_SALMON.genes.tsv"),
os.path.join(COUNTS_DIR, "normalized", "TPM_counts_from_SALMON.transcripts.tsv"),
os.path.join(COUNTS_DIR, "normalized", "TPM_counts_from_SALMON.genes.tsv"),
os.path.join(COUNTS_DIR, "raw_counts", "counts_from_star.tsv"),
os.path.join(COUNTS_DIR, "normalized", "deseq_normalized_counts.tsv",
os.path.join(COUNTS_DIR, "normalized", "deseq_size_factors.txt"))] +
expand(os.path.join(BIGWIG_DIR, '{sample}.forward.bigwig'), sample = SAMPLES) +
expand(os.path.join(BIGWIG_DIR, '{sample}.reverse.bigwig'), sample = SAMPLES) +
expand(os.path.join(OUTPUT_DIR, "report", '{analysis}.star.deseq.report.html'), analysis = DE_ANALYSIS_LIST.keys()) +
expand(os.path.join(OUTPUT_DIR, "report", '{analysis}.salmon.transcripts.deseq.report.html'), analysis = DE_ANALYSIS_LIST.keys()) +
expand(os.path.join(OUTPUT_DIR, "report", '{analysis}.salmon.genes.deseq.report.html'), analysis = DE_ANALYSIS_LIST.keys())
},
'deseq_report_star': {
'description': "Produce one HTML report for each analysis based on STAR results.",
'files':
expand(os.path.join(OUTPUT_DIR, "report", '{analysis}.star.deseq.report.html'), analysis = DE_ANALYSIS_LIST.keys())
},
'deseq_report_salmon_transcripts': {
'description': "Produce one HTML report for each analysis based on SALMON results at transcript level.",
'files':
expand(os.path.join(OUTPUT_DIR, "report", '{analysis}.salmon.transcripts.deseq.report.html'), analysis = DE_ANALYSIS_LIST.keys())
},
'deseq_report_salmon_genes': {
'description': "Produce one HTML report for each analysis based on SALMON results at gene level.",
'files':
expand(os.path.join(OUTPUT_DIR, "report", '{analysis}.salmon.genes.deseq.report.html'), analysis = DE_ANALYSIS_LIST.keys())
},
'star_map' : {
'description': "Produce a STAR mapping results in BAM file format.",
'files':
expand(os.path.join(MAPPED_READS_DIR, '{sample}_Aligned.sortedByCoord.out.bam'), sample = SAMPLES)
},
'star_counts': {
'description': "Get count matrix from STAR mapping results using summarizeOverlaps.",
'files':
[os.path.join(COUNTS_DIR, "raw_counts", "counts_from_star.tsv")]
},
'genome_coverage': {
'description': "Compute genome coverage values from BAM files - save in bigwig format",
'files':
expand(os.path.join(BIGWIG_DIR, '{sample}.forward.bigwig'), sample = SAMPLES) +
expand(os.path.join(BIGWIG_DIR, '{sample}.reverse.bigwig'), sample = SAMPLES)
},
'fastqc': {
'description': "post-mapping quality control by FASTQC.",
'files':
expand(os.path.join(FASTQC_DIR, '{sample}_Aligned.sortedByCoord.out_fastqc.zip'), sample = SAMPLES)
},
'salmon_index' : {
'description': "Create SALMON index file.",
'files':
[os.path.join(OUTPUT_DIR, 'salmon_index', "pos.bin")]
},
'salmon_quant' : {
'description': "Calculate read counts per transcript using SALMON.",
'files':
expand(os.path.join(SALMON_DIR, "{sample}", "quant.sf"), sample = SAMPLES) +
expand(os.path.join(SALMON_DIR, "{sample}", "quant.genes.sf"), sample = SAMPLES)
},
'salmon_counts': {
'description': "Get count matrix from SALMON quant.",
'files':
[os.path.join(COUNTS_DIR, "raw_counts", "counts_from_SALMON.transcripts.tsv"),
os.path.join(COUNTS_DIR, "raw_counts", "counts_from_SALMON.genes.tsv"),
os.path.join(COUNTS_DIR, "normalized", "TPM_counts_from_SALMON.transcripts.tsv"),
os.path.join(COUNTS_DIR, "normalized", "TPM_counts_from_SALMON.genes.tsv")]
},
'multiqc': {
'description': "Get multiQC report based on STAR alignments and fastQC reports.",
'files':
[os.path.join(MULTIQC_DIR, 'multiqc_report.html')]
}
}
# Selected output files from the above set.
selected_targets = config['execution']['target'] or ['final-report']
# FIXME: the list of files must be flattened twice(!). We should make
# sure that the targets really just return simple lists.
from itertools import chain
OUTPUT_FILES = list(chain.from_iterable([targets[name]['files'] for name in selected_targets]))
rule all:
input: OUTPUT_FILES
rule help:
run:
for key in sorted(targets.keys()):
print('{}:\n {}'.format(key, targets[key]['description']))
# Record any existing output files, so that we can detect if they have
# changed.
expected_files = {}
onstart:
if OUTPUT_FILES:
for name in OUTPUT_FILES:
if os.path.exists(name):
expected_files[name] = os.path.getmtime(name)
# Print generated target files.
onsuccess:
if OUTPUT_FILES:
# check if any existing files have been modified
generated = []
for name in OUTPUT_FILES:
if name not in expected_files or os.path.getmtime(name) != expected_files[name]:
generated.append(name)
if generated:
print("The following files have been generated:")
for name in generated:
print(" - {}".format(name))
rule translate_sample_sheet_for_report:
input: SAMPLE_SHEET_FILE
output: os.path.join(os.getcwd(), "colData.tsv")
shell: "{RSCRIPT_EXEC} {SCRIPTS_DIR}/translate_sample_sheet_for_report.R {input}"
# determine if the sample library is single end or paired end
def isSingleEnd(args):
sample = args[0]
files = lookup('name', sample, ['reads', 'reads2'])
count = sum(1 for f in files if f)
if count == 2:
return False
elif count == 1:
return True
def trim_galore_input(args):
sample = args[0]
return [os.path.join(READS_DIR, f) for f in lookup('name', sample, ['reads', 'reads2']) if f]
rule trim_galore_pe:
input: trim_galore_input
output:
r1=os.path.join(TRIMMED_READS_DIR, "{sample}_R1.fastq.gz"),
r2=os.path.join(TRIMMED_READS_DIR, "{sample}_R2.fastq.gz")
params:
tmp1=lambda wildcards, output: os.path.join(TRIMMED_READS_DIR, lookup('name', wildcards[0], ['reads'])[0]).replace('.fastq.gz','_val_1.fq.gz'),
tmp2=lambda wildcards, output: os.path.join(TRIMMED_READS_DIR, lookup('name', wildcards[0], ['reads2'])[0]).replace('.fastq.gz','_val_2.fq.gz')
log: os.path.join(LOG_DIR, 'trim_galore_{sample}.log')
shell: "{TRIM_GALORE_EXEC} -o {TRIMMED_READS_DIR} --paired {input[0]} {input[1]} >> {log} 2>&1 && sleep 10 && mv {params.tmp1} {output.r1} && mv {params.tmp2} {output.r2}"
rule trim_galore_se:
input: trim_galore_input
output: os.path.join(TRIMMED_READS_DIR, "{sample}_R.fastq.gz"),
params: tmp=lambda wildcards, output: os.path.join(TRIMMED_READS_DIR, lookup('name', wildcards[0], ['reads'])[0]).replace('.fastq.gz','_trimmed.fq.gz'),
log: os.path.join(LOG_DIR, 'trim_galore_{sample}.log')
shell: "{TRIM_GALORE_EXEC} -o {TRIMMED_READS_DIR} {input[0]} >> {log} 2>&1 && sleep 10 && mv {params.tmp} {output}"
rule star_index:
input: GENOME_FASTA
output:
star_index_file = os.path.join(OUTPUT_DIR, 'star_index', "SAindex")
params:
star_index_dir = os.path.join(OUTPUT_DIR, 'star_index')
log: os.path.join(LOG_DIR, 'star_index.log')
shell: "{STAR_EXEC_INDEX} --runMode genomeGenerate --runThreadN {STAR_INDEX_THREADS} --genomeDir {params.star_index_dir} --genomeFastaFiles {input} --sjdbGTFfile {GTF_FILE} >> {log} 2>&1"
def map_input(args):
sample = args[0]
reads_files = [os.path.join(READS_DIR, f) for f in lookup('name', sample, ['reads', 'reads2']) if f]
if len(reads_files) > 1:
return [os.path.join(TRIMMED_READS_DIR, "{sample}_R1.fastq.gz".format(sample=sample)), os.path.join(TRIMMED_READS_DIR, "{sample}_R2.fastq.gz".format(sample=sample))]
elif len(reads_files) == 1:
return [os.path.join(TRIMMED_READS_DIR, "{sample}_R.fastq.gz".format(sample=sample))]
rule star_map:
input:
# This rule really depends on the whole directory (see
# params.index_dir), but we can't register it as an input/output
# in its own right since Snakemake 5.
index_file = rules.star_index.output.star_index_file,
reads = map_input
output:
os.path.join(MAPPED_READS_DIR, '{sample}_Aligned.out.bam')
params:
index_dir = rules.star_index.params.star_index_dir,
output_prefix=os.path.join(MAPPED_READS_DIR, '{sample}_')
log: os.path.join(LOG_DIR, 'star_map_{sample}.log')
shell: "{STAR_EXEC_MAP} --runThreadN {STAR_MAP_THREADS} --genomeDir {params.index_dir} --readFilesIn {input.reads} --readFilesCommand '{GUNZIP_EXEC} -c' --outSAMtype BAM Unsorted --outFileNamePrefix {params.output_prefix} >> {log} 2>&1"
rule sort_bam:
input: os.path.join(MAPPED_READS_DIR, '{sample}_Aligned.out.bam')
output: os.path.join(MAPPED_READS_DIR, '{sample}_Aligned.sortedByCoord.out.bam')
log: os.path.join(LOG_DIR, 'samtools_sort_{sample}.log')
shell: "{SAMTOOLS_EXEC} sort -o {output} {input} >> {log} 2>&1"
rule index_bam:
input: os.path.join(MAPPED_READS_DIR, '{sample}_Aligned.sortedByCoord.out.bam')
output: os.path.join(MAPPED_READS_DIR, '{sample}_Aligned.sortedByCoord.out.bam.bai')
log: os.path.join(LOG_DIR, 'samtools_index_{sample}.log')
shell: "{SAMTOOLS_EXEC} index {input} {output} >> {log} 2>&1"
rule fastqc:
input: os.path.join(MAPPED_READS_DIR, '{sample}_Aligned.sortedByCoord.out.bam')
output: os.path.join(FASTQC_DIR, '{sample}_Aligned.sortedByCoord.out_fastqc.zip')
log: os.path.join(LOG_DIR, 'fastqc_{sample}.log')
shell: "{FASTQC_EXEC} -o {FASTQC_DIR} -f bam {input} >> {log} 2>&1"
rule salmon_index:
input:
CDNA_FASTA
output:
salmon_index_file = os.path.join(OUTPUT_DIR, 'salmon_index', "pos.bin")
params:
salmon_index_dir = os.path.join(OUTPUT_DIR, 'salmon_index')
log: os.path.join(LOG_DIR, 'salmon_index.log')
shell: "{SALMON_EXEC} index -t {input} -i {params.salmon_index_dir} -p {SALMON_INDEX_THREADS} >> {log} 2>&1"
rule salmon_quant:
input:
# This rule really depends on the whole directory (see
# params.index_dir), but we can't register it as an input/output
# in its own right since Snakemake 5.
index_file = rules.salmon_index.output.salmon_index_file,
reads = map_input
output:
os.path.join(SALMON_DIR, "{sample}", "quant.sf"),
os.path.join(SALMON_DIR, "{sample}", "quant.genes.sf")
params:
index_dir = rules.salmon_index.params.salmon_index_dir,
outfolder = os.path.join(SALMON_DIR, "{sample}")
log: os.path.join(LOG_DIR, 'salmon_quant_{sample}.log')
run:
if(len(input.reads) == 1):
COMMAND = "{SALMON_EXEC} quant -i {params.index_dir} -l A -p {SALMON_QUANT_THREADS} -r {input.reads} -o {params.outfolder} --seqBias --gcBias -g {GTF_FILE} >> {log} 2>&1"
elif(len(input.reads) == 2):
COMMAND = "{SALMON_EXEC} quant -i {params.index_dir} -l A -p {SALMON_QUANT_THREADS} -1 {input.reads[0]} -2 {input.reads[1]} -o {params.outfolder} --seqBias --gcBias -g {GTF_FILE} >> {log} 2>&1"
shell(COMMAND)
rule counts_from_SALMON:
input:
quantFiles = expand(os.path.join(SALMON_DIR, "{sample}", "quant.sf"), sample=SAMPLES),
quantGenesFiles = expand(os.path.join(SALMON_DIR, "{sample}", "quant.genes.sf"), sample=SAMPLES),
colDataFile = rules.translate_sample_sheet_for_report.output
output:
os.path.join(COUNTS_DIR, "raw_counts", "counts_from_SALMON.transcripts.tsv"),
os.path.join(COUNTS_DIR, "raw_counts", "counts_from_SALMON.genes.tsv"),
os.path.join(COUNTS_DIR, "normalized", "TPM_counts_from_SALMON.transcripts.tsv"),
os.path.join(COUNTS_DIR, "normalized", "TPM_counts_from_SALMON.genes.tsv")
log: os.path.join(LOG_DIR, 'salmon_import_counts.log')
shell: "{RSCRIPT_EXEC} {SCRIPTS_DIR}/counts_matrix_from_SALMON.R {SALMON_DIR} {COUNTS_DIR} {input.colDataFile} >> {log} 2>&1"
rule genomeCoverage:
input:
size_factors_file=os.path.join(COUNTS_DIR, "normalized", "deseq_size_factors.txt"),
bam=os.path.join(MAPPED_READS_DIR, '{sample}_Aligned.sortedByCoord.out.bam'),
bai=os.path.join(MAPPED_READS_DIR, '{sample}_Aligned.sortedByCoord.out.bam.bai')
output:
os.path.join(BIGWIG_DIR, '{sample}.forward.bigwig'),
os.path.join(BIGWIG_DIR, '{sample}.reverse.bigwig')
log: os.path.join(LOG_DIR, 'genomeCoverage_{sample}.log')
shell: "{RSCRIPT_EXEC} {SCRIPTS_DIR}/export_bigwig.R {input.bam} {wildcards.sample} {input.size_factors_file} {BIGWIG_DIR} >> {log} 2>&1"
rule multiqc:
input:
salmon_output=expand(os.path.join(SALMON_DIR, "{sample}", "quant.sf"), sample = SAMPLES),
star_output=expand(os.path.join(MAPPED_READS_DIR, '{sample}_Aligned.sortedByCoord.out.bam'), sample=SAMPLES),
fastqc_output=expand(os.path.join(FASTQC_DIR, '{sample}_Aligned.sortedByCoord.out_fastqc.zip'), sample=SAMPLES),
output: os.path.join(MULTIQC_DIR, 'multiqc_report.html')
log: os.path.join(LOG_DIR, 'multiqc.log')
shell: "{MULTIQC_EXEC} -o {MULTIQC_DIR} {OUTPUT_DIR} >> {log} 2>&1"
rule count_reads:
input:
bam = os.path.join(MAPPED_READS_DIR, "{sample}_Aligned.sortedByCoord.out.bam"),
bai = os.path.join(MAPPED_READS_DIR, "{sample}_Aligned.sortedByCoord.out.bam.bai")
output:
os.path.join(MAPPED_READS_DIR, "{sample}.read_counts.csv")
log: os.path.join(LOG_DIR, "{sample}.count_reads.log")
params:
single_end = isSingleEnd,
mode = config['counting']['counting_mode'],
nonunique = config['counting']['count_nonunique'],
strandedness = config['counting']['strandedness'],
feature = config['counting']['feature'],
group_by = config['counting']['group_feature_by'],
yield_size = config['counting']['yield_size']
shell:
"{RSCRIPT_EXEC} {SCRIPTS_DIR}/count_reads.R {wildcards.sample} {input.bam} {GTF_FILE} \
{params.single_end} {params.mode} {params.nonunique} {params.strandedness} \
{params.feature} {params.group_by} {params.yield_size} >> {log} 2>&1"
rule collate_read_counts:
input:
expand(os.path.join(MAPPED_READS_DIR, "{sample}.read_counts.csv"), sample = SAMPLES)
output:
os.path.join(COUNTS_DIR, "raw_counts", "counts_from_star.tsv")
log: os.path.join(LOG_DIR, "collate_read_counts.log")
params:
out_file = os.path.join(COUNTS_DIR, "raw_counts", "counts_from_star.tsv"),
script = os.path.join(SCRIPTS_DIR, "collate_read_counts.R")
shell:
"{RSCRIPT_EXEC} {params.script} {MAPPED_READS_DIR} {params.out_file} >> {log} 2>&1"
rule htseq_count:
input: expand(os.path.join(MAPPED_READS_DIR, "{sample}_Aligned.sortedByCoord.out.bam"), sample = SAMPLES)
output:
stats_file = os.path.join(COUNTS_DIR, "raw_counts", "htseq_stats.txt"),
counts_file = os.path.join(COUNTS_DIR, "raw_counts", "counts_from_star_htseq-count.txt")
log: os.path.join(LOG_DIR, "htseq-count.log")
params:
tmp_file = os.path.join(COUNTS_DIR, "raw_counts", "htseq_out.txt")
shell:
"""
echo {SAMPLES} | {SED_EXEC} 's/ /\t/g' > {params.tmp_file}
{HTSEQ_COUNT_EXEC} {input} {GTF_FILE} 1>> {params.tmp_file} 2>> {log};
## move feature count stats (e.g. __no_feature etc) to another file
echo {SAMPLES} > {output.stats_file}; tail -n 5 {params.tmp_file} >> {output.stats_file};
## only keep feature counts in the counts table (remove stats)
head -n -5 {params.tmp_file} > {output.counts_file};
# remove temp file
rm {params.tmp_file}
"""
# create a normalized counts table including all samples
# using the median-of-ratios normalization procedure of
# deseq2
rule norm_counts_deseq:
input:
counts_file = os.path.join(COUNTS_DIR, "raw_counts", "counts_from_star.tsv"),
colDataFile = rules.translate_sample_sheet_for_report.output
output:
size_factors = os.path.join(COUNTS_DIR, "normalized", "deseq_size_factors.txt"),
norm_counts = os.path.join(COUNTS_DIR, "normalized", "deseq_normalized_counts.tsv")
log:
os.path.join(LOG_DIR, "norm_counts_deseq.log")
params:
script=os.path.join(SCRIPTS_DIR, "norm_counts_deseq.R"),
outdir=os.path.join(COUNTS_DIR, "normalized")
shell:
"{RSCRIPT_EXEC} {params.script} {input.counts_file} {input.colDataFile} {params.outdir} >> {log} 2>&1"
rule report1:
input:
counts=os.path.join(COUNTS_DIR, "raw_counts", "counts_from_star.tsv"),
coldata=str(rules.translate_sample_sheet_for_report.output),
params:
outdir=os.path.join(OUTPUT_DIR, "report"),
reportR=os.path.join(SCRIPTS_DIR, "runDeseqReport.R"),
reportRmd=os.path.join(SCRIPTS_DIR, "deseqReport.Rmd"),
case = lambda wildcards: DE_ANALYSIS_LIST[wildcards.analysis]['case_sample_groups'],
control = lambda wildcards: DE_ANALYSIS_LIST[wildcards.analysis]['control_sample_groups'],
covariates = lambda wildcards: DE_ANALYSIS_LIST[wildcards.analysis]['covariates'],
logo = LOGO
log: os.path.join(LOG_DIR, "{analysis}.report.star.log")
output:
os.path.join(OUTPUT_DIR, "report", '{analysis}.star.deseq.report.html')
shell:
"{RSCRIPT_EXEC} {params.reportR} --logo={params.logo} --prefix='{wildcards.analysis}.star' --reportFile={params.reportRmd} --countDataFile={input.counts} --colDataFile={input.coldata} --gtfFile={GTF_FILE} --caseSampleGroups='{params.case}' --controlSampleGroups='{params.control}' --covariates='{params.covariates}' --workdir={params.outdir} --organism='{ORGANISM}' >> {log} 2>&1"
rule report2:
input:
counts=os.path.join(COUNTS_DIR, "raw_counts", "counts_from_SALMON.transcripts.tsv"),
coldata=str(rules.translate_sample_sheet_for_report.output)
params:
outdir=os.path.join(OUTPUT_DIR, "report"),
reportR=os.path.join(SCRIPTS_DIR, "runDeseqReport.R"),
reportRmd=os.path.join(SCRIPTS_DIR, "deseqReport.Rmd"),
case = lambda wildcards: DE_ANALYSIS_LIST[wildcards.analysis]['case_sample_groups'],
control = lambda wildcards: DE_ANALYSIS_LIST[wildcards.analysis]['control_sample_groups'],
covariates = lambda wildcards: DE_ANALYSIS_LIST[wildcards.analysis]['covariates'],
logo = os.path.join(config['locations']['pkgdatadir'], "images/Logo_PiGx.png") if os.getenv("PIGX_UNINSTALLED") else os.path.join(config['locations']['pkgdatadir'], "Logo_PiGx.png")
log: os.path.join(LOG_DIR, "{analysis}.report.salmon.transcripts.log")
output:
os.path.join(OUTPUT_DIR, "report", '{analysis}.salmon.transcripts.deseq.report.html')
shell: "{RSCRIPT_EXEC} {params.reportR} --logo={params.logo} --prefix='{wildcards.analysis}.salmon.transcripts' --reportFile={params.reportRmd} --countDataFile={input.counts} --colDataFile={input.coldata} --gtfFile={GTF_FILE} --caseSampleGroups='{params.case}' --controlSampleGroups='{params.control}' --covariates='{params.covariates}' --workdir={params.outdir} --organism='{ORGANISM}' >> {log} 2>&1"
rule report3:
input:
counts=os.path.join(COUNTS_DIR, "raw_counts", "counts_from_SALMON.genes.tsv"),
coldata=str(rules.translate_sample_sheet_for_report.output)
params:
outdir=os.path.join(OUTPUT_DIR, "report"),
reportR=os.path.join(SCRIPTS_DIR, "runDeseqReport.R"),
reportRmd=os.path.join(SCRIPTS_DIR, "deseqReport.Rmd"),
case = lambda wildcards: DE_ANALYSIS_LIST[wildcards.analysis]['case_sample_groups'],
control = lambda wildcards: DE_ANALYSIS_LIST[wildcards.analysis]['control_sample_groups'],
covariates = lambda wildcards: DE_ANALYSIS_LIST[wildcards.analysis]['covariates'],
logo = os.path.join(config['locations']['pkgdatadir'], "images/Logo_PiGx.png") if os.getenv("PIGX_UNINSTALLED") else os.path.join(config['locations']['pkgdatadir'], "Logo_PiGx.png")
log: os.path.join(LOG_DIR, "{analysis}.report.salmon.genes.log")
output:
os.path.join(OUTPUT_DIR, "report", '{analysis}.salmon.genes.deseq.report.html')
shell: "{RSCRIPT_EXEC} {params.reportR} --logo={params.logo} --prefix='{wildcards.analysis}.salmon.genes' --reportFile={params.reportRmd} --countDataFile={input.counts} --colDataFile={input.coldata} --gtfFile={GTF_FILE} --caseSampleGroups='{params.case}' --controlSampleGroups='{params.control}' --covariates='{params.covariates}' --workdir={params.outdir} --organism='{ORGANISM}' --selfContained=FALSE >> {log} 2>&1"
|