1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
|
---
title: "PiGx-RNAseq - DESeq2 Report"
author: "BIMSB Bioinformatics Platform"
date: '`r format(as.POSIXct(if ("" != Sys.getenv("SOURCE_DATE_EPOCH")) { as.numeric(Sys.getenv("SOURCE_DATE_EPOCH")) } else { Sys.time() }, origin="1970-01-01"), "%Y-%m-%d %H:%M:%S")`'
params:
countDataFile: ''
colDataFile: ''
gtfFile: ''
caseSampleGroups: ''
controlSampleGroups: ''
covariates: ''
prefix: ''
workdir: '.'
organism: ''
logo: ''
---
<style>
#logo
{
position: relative;
}
#logo img {
/*position: relative;*/
top: 25px;
/*right: 0px;*/
left: 50px;
position: fixed;
width: 125px;
}
body
{
position: absolute;
top: 150px;
}
</style>
<div id="logo" align="top">
```{r echo=FALSE}
knitr::include_graphics(params$logo)
```
</div>
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE, message = FALSE, warning = FALSE)
knitr::opts_knit$set(root.dir = params$workdir)
library(ggplot2)
library(ggrepel)
library(DESeq2)
library(DT)
library(pheatmap)
library(corrplot)
library(reshape2)
library(plotly)
library(scales)
library(crosstalk)
library(gProfileR)
library(rtracklayer)
library(SummarizedExperiment)
```
# Description
PiGx RNAseq performs differential expression analysis using _DESeq2_, and produces this report. The report includes tables and figures summarizing similarities and differences between comparison groups as specified in the settings file. In addition to the differential expression analysis, there are plots and statistics for quality control of the experiment in general with an emphasis on the reproducibility of the sequencing results among the biological replicates.
This report was generated with PiGx RNAseq version @VERSION@.
# Input Settings
```{r printInputSettings}
countDataFile <- params$countDataFile
colDataFile <- params$colDataFile
gtfFile <- params$gtfFile
caseSampleGroups <- params$caseSampleGroups
controlSampleGroups <- params$controlSampleGroups
covariates <- params$covariates
prefix <- params$prefix
workdir <- params$workdir
organism <- gsub('\\s*', '', params$organism)
#whether to do GO analysis or not
runGO <- TRUE
#if organism is not provided, it is not possible to do GO analysis
if(organism == '') {
runGO <- FALSE
}
#create a folder to save high quality images generated by the report script
imagesDir <- file.path(workdir, paste0(prefix, '_images'))
if(! dir.exists(imagesDir)) {
dir.create(path = imagesDir)
}
inputParameterDesc <- c('Count Data File',
'Experiment Data File',
'GTF File',
'Case sample groups',
'Control sample groups',
'Covariates to control for',
'Prefix for output files',
'Working directory',
'Analyzed organism'
)
inputParameterValues <- c(countDataFile,
colDataFile,
gtfFile,
caseSampleGroups,
controlSampleGroups,
covariates,
prefix,
workdir,
organism)
inputSettings <- data.frame(parameters = inputParameterDesc,
values = inputParameterValues,
stringsAsFactors = FALSE)
DT::datatable(data = inputSettings,
extensions = 'FixedColumns',
options = list(fixedColumns = TRUE,
scrollX = TRUE,
pageLength = 9,
dom = 't'))
```
```{r prepare_inputs_import_GTF}
gtfData <- rtracklayer::import.gff(con = gtfFile, format = 'gtf')
caseSamples <- gsub(' ', '', unlist(strsplit(x = caseSampleGroups, split = ',')))
controlSamples <- gsub(' ', '', unlist(strsplit(x = controlSampleGroups, split = ',')))
covariates <- gsub(' ', '', unlist(strsplit(x = covariates, split = ',')))
#read colData and countData files
colData = read.table(colDataFile, header=T, row.names = 1, sep='\t', stringsAsFactors = T, check.names = FALSE)
countData = read.table(countDataFile, header=TRUE, row.names=1, sep='\t', stringsAsFactors = T, check.names = FALSE)
#subset colData and countData - only keep case and control samples
colData <- colData[colData$group %in% c(caseSamples, controlSamples),]
countData <- subset(countData, select = rownames(colData))
#split samples as case/control for deseq
colData$AnalysisGroup <- 'Control'
colData[colData$group %in% caseSamples,]$AnalysisGroup <- 'Case'
```
```{r run_deseq2}
mapIdsToNames <- function(ids, gtfData) {
#first figure out if the given ids are transcript or gene ids
transcripts <- gtfData[gtfData$type == 'transcript']
df <- unique(data.frame('transcript_id' = transcripts$transcript_id,
'gene_id' = transcripts$gene_id,
'gene_name' = transcripts$gene_name, stringsAsFactors = FALSE))
m <- apply(head(df[,1:2], 1000), 2, function(x) sum(x %in% ids))
#then map the ids to gene names
if(m['transcript_id'] > m['gene_id']){
return(df[match(ids, df$transcript_id),]$gene_name)
} else {
return(df[match(ids, df$gene_id),]$gene_name)
}
}
if(length(covariates) > 0){
designFormula <- paste("~", paste(covariates, collapse = ' + '), "+ AnalysisGroup")
} else {
designFormula <- "~ AnalysisGroup"
}
message("design formula:", designFormula)
dds <- DESeq2::DESeqDataSetFromMatrix(countData = countData, colData = colData, design = stats::as.formula(designFormula))
dds <- dds[ rowSums(counts(dds)) > 1, ]
dds <- DESeq2::DESeq(dds)
norm.counts = DESeq2::counts(dds, normalized = TRUE)
DEtable = DESeq2::results(dds, contrast = c("AnalysisGroup", 'Case', 'Control'))
DEtable <- DEtable[order(DEtable$padj),]
DE <- as.data.frame(DEtable)
DE$geneName <- mapIdsToNames(rownames(DE), gtfData)
DEnormalizedCountsFile <- file.path(workdir, paste0(prefix, '.normalized_counts.tsv'))
write.table(x = norm.counts,
file = DEnormalizedCountsFile,
quote = FALSE, sep = '\t')
DEresultsFile <- file.path(workdir, paste0(prefix, '.deseq_results.tsv'))
write.table(x = DE,
file = DEresultsFile,
quote = FALSE, sep = '\t')
```
# Differential Expression Analysis
Differential expression (DE) analysis was done using the [DESeq2](https://bioconductor.org/packages/release/bioc/html/DESeq2.html) R package. First, read counts are transformed using a _variance stabilizing transformation_, and then the expression values of each gene is compared between the control and sample groups using a negative binomial distribution as a model.
## Differential Expression Results Table (top 1000)
This is the table of top 1000 differentially expressed genes comparing cases to controls (as specified in the input settings listed above). The table is first filtered by absolute log2foldChange > 1 and sorted by adjusted P value after multiple testing correction (`padj`). The `baseMean` refers to expression level in the controls, and the log fold change column denotes the expression in the cases, as compared to the control.
The full table of DESeq2 results and normalized counts tables can be found at:
- **DESeq2 results table**:
`r DEresultsFile`
- **DESeq2 normalized counts table**:
`r DEnormalizedCountsFile`
```{r write_DEtable}
DEsubset <- DE[!is.na(DE$padj) & abs(DE$log2FoldChange) > 1,]
max <- 1000
if(nrow(DEsubset) < max) {
max <- nrow(DEsubset)
}
DEsubset <- DEsubset[1:max,]
DT::datatable(DEsubset,
extensions = c('Buttons', 'FixedColumns', 'Scroller'),
options = list(fixedColumns = TRUE,
scrollY = 400,
scrollX = TRUE,
scroller = TRUE,
dom = 'Bfrtip',
buttons = c('colvis', 'copy', 'print', 'csv','excel', 'pdf'),
columnDefs = list(
list(targets = c(3,4,5), visible = FALSE)
)),
filter = 'bottom'
)
```
# Diagnostic Plots
This section holds a number of plots meant for a quick diagnostic and/or sanity check of the analysis.
## Number of reads assigned to genes
This plot shows the number of reads, in each sample, that are assigned to genes/transcripts. Outlier samples may be faulty and should be examined.
```{r plot_readcounts}
readCounts <- as.data.frame(colSums(countData))
readCounts$group <- colData[rownames(readCounts),]$group
readCounts$sample <- rownames(readCounts)
colnames(readCounts)[1] <- 'readCounts'
quantiles <- quantile(readCounts$readCounts, c(1:20)/20)[c(1,5,15,19)]
p <- ggplot(readCounts, aes(x = sample, y = readCounts)) + geom_bar(aes(fill = group), stat = 'identity') +
geom_hline(yintercept = as.numeric(quantiles), color = 'red') +
geom_label_repel(data = data.frame(x = 0, y = as.numeric(quantiles)), aes(x = x, y = y, label = names(quantiles))) + theme(legend.position = 'bottom') + scale_y_continuous(labels = scales::comma) + coord_flip()
print(p)
#save image to folder
pdf(file = file.path(imagesDir, 'readcounts.pdf'))
print(p)
invisible(dev.off())
```
## p-value histogram
The P value distribution from the DE analysis. The expected shape depends on the expected difference / similarity between the controls and samples.
```{r plot_pvalhistogram}
p <- ggplot(data = DE, aes(x = pvalue)) + geom_histogram(bins = 100)
print(p)
#save image to folder
pdf(file = file.path(imagesDir, 'pvalue_histogram.pdf'))
print(p)
invisible(dev.off())
```
## MA plot
The MA plot gives an overview of the comparison between the two groups in the experiment. The log2 fold change for each gene is plotted on the y axis, against the average expression of that gene on the x axis.
```{r plot_MA}
DESeq2::plotMA(DEtable, main=paste("MA plot"))
#save image to folder
pdf(file = file.path(imagesDir, 'MA_plot.pdf'))
DESeq2::plotMA(DEtable, main=paste("MA plot"))
invisible(dev.off())
```
```{r computePCAplots}
plotGroups <- c(covariates, 'AnalysisGroup', 'group')
pcaPlots <- lapply(plotGroups, function(g) {
pca <- stats::prcomp(t(norm.counts), center = TRUE)
pcaSummary <- summary(pca)
df <- merge(as.data.frame(pca$x), colData, by = 'row.names')
ggplot(df, aes(x = PC1, y = PC2)) +
geom_point(aes_string(color = g)) +
geom_label_repel(aes(label = Row.names), size = 3) +
labs(x = paste0('PC1 (',round(pcaSummary$importance[2, 'PC1'] * 100, 1),'%)'),
y = paste0('PC2 (',round(pcaSummary$importance[2, 'PC2'] * 100, 1),'%)')) +
theme_bw()
})
#save image to folder
pdf(file = file.path(imagesDir, 'pcaPlots.pdf'))
for(p in pcaPlots){
print(p)
}
invisible(dev.off())
```
## PCA plots {.tabset}
The 2-dimensional principal component analysis plot shows which samples group together when plotted in a reduced dimension. The 2D PCA reduced dimension conserves as much of the variance in the dataset as is possible for any 2D embedding of the data. It provides a useful birds-eye view of the data and an intuition as to which factors may drive the differences between samples or groups.
```{r plotPCA, results='asis', echo = FALSE}
for (i in 1:length(pcaPlots)) {
cat("### ",plotGroups[i],"\n")
print(pcaPlots[[i]])
cat('\n\n')
}
```
## Correlation Plot
The pairwise correlation plot provides a more detailed view of which samples are more similar or different.
```{r plot_corr}
M <- stats::cor(norm.counts)
corrplot::corrplot(corr = M, order = 'hclust', method = 'square', type = 'lower', tl.srt = 45, addCoef.col = 'white')
#save image to folder
pdf(file = file.path(imagesDir, 'correlationPlot.pdf'))
corrplot::corrplot(corr = M, order = 'hclust', method = 'square', type = 'lower', tl.srt = 45, addCoef.col = 'white')
invisible(dev.off())
```
## Heatmaps
### Top 100 most highly variable genes
The heatmap below summarizes the experiment, and the apparent relationship between samples, based on the 100 highest variance genes. Each column is a sample, and each row is a gene. Both rows and columns are clustered using euclidean distance and complete linkage.
```{r plot_heatmap}
select <- na.omit(names(sort(apply(X = norm.counts, MARGIN = 1, FUN = var),decreasing = T))[1:100])
df <- as.data.frame(colData[,c("group","AnalysisGroup")])
pheatmap::pheatmap(norm.counts[select,],
cluster_rows=TRUE,
scale = 'row',
show_rownames=FALSE,
cluster_cols=TRUE,
annotation_col=df,
main = 'Heatmap of the Normalized Expression Values of \n Top 100 Genes with highest variance across samples')
#save image to folder
pheatmap::pheatmap(norm.counts[select,],
cluster_rows=TRUE,
scale = 'row',
show_rownames=FALSE,
cluster_cols=TRUE,
annotation_col=df,
filename = file.path(imagesDir, 'heatmap.pdf'),
main = 'Heatmap of the Normalized Expression Values of \n Top 100 Genes with highest variance across samples')
```
# Exploratory Plots and Tables
## Summary of up/down regulated genes - volcano plot
This volcano plot summarizes the differential expression landscape in the comparison between the two groups.
```{r plot_summary_volcano}
p <- ggplot(DE, aes(x = log2FoldChange, y = -log10(pvalue))) + geom_point(aes(color = padj < 0.1))
print(p)
#save image to folder
pdf(file = file.path(imagesDir, 'volcanoPlot.pdf'))
print(p)
invisible(dev.off())
```
## Summary of up/down regulated genes - bar plots
These bar plots summarizes the number of significantly upregulated/downregulated number of genes based on
different adjusted p-value (selected adjusted p-values are 0.001, 0.01, 0.05, and 0.1 - see facet headers) and log2 fold change thresholds (on the x-axis) used to define the significance levels.
```{r plot_summary_barplots}
filterUP <- function(df, log2fc = 1, p = 0.1) {nrow(df[df$log2FoldChange >= log2fc & !is.na(df$padj) & df$padj <= p,])}
filterDOWN <- function(df, log2fc = 1, p = 0.1) {nrow(df[df$log2FoldChange < -log2fc & !is.na(df$padj) & df$padj <= p,])}
pVals <- c(0.001, 0.01, 0.05, 0.1)
fcVals <- c(0:(max(DE$log2FoldChange)+1))
summary <- do.call(rbind, lapply(pVals, function(p) {
do.call(rbind, lapply(fcVals, function(f){
up <- filterUP(DE, f, p)
down <- filterDOWN(DE, f, p)
return(data.frame("log2FoldChange" = f, "padj" = p,
"upRegulated" = up, "downRegulated" = down))
}))
}))
mdata <- melt(summary, id.vars = c('log2FoldChange', 'padj'))
p <- ggplot(mdata, aes(x = log2FoldChange, y = value)) + geom_bar(aes(fill = variable), stat = 'identity', position = 'dodge') + facet_grid(~ padj) + theme(legend.position = 'bottom', legend.title = element_blank()) + labs(title = 'Number of differentially up/down regulated genes', subtitle = 'based on different p-value and log2foldChange cut-off values')
print(p)
#save image to folder
pdf(file = file.path(imagesDir, 'up_down_regulated_genes_summary.pdf'))
print(p)
invisible(dev.off())
```
## Interactive box plots of genes with significant differential expression
This interactive plot lets you see genes' position in the volcano plot, as well as their expression levels in the cases and the controls (in the box plot on the left side). Use the search box to find genes of interest. Notice that only top 1000 genes that have an adjusted p-value less than 0.1 and absolute log2 fold change value of greater than 1 are plotted.
```{r plot_interactive_boxplots}
select <- rownames(DEsubset)
if(length(select) > 1) {
expressionLevels <- reshape2::melt(norm.counts[select,])
colnames(expressionLevels) <- c('geneId', 'sampleName', 'expressionLevel')
expressionLevels$group <- colData[expressionLevels$sampleName,]$group
expressionLevels$AnalysisGroup <- colData[expressionLevels$sampleName,]$AnalysisGroup
matchIds <- match(expressionLevels$geneId, rownames(DE))
expressionLevels$padj <- DE[matchIds,]$padj
expressionLevels$log2FoldChange <- DE[matchIds,]$log2FoldChange
sd <- SharedData$new(expressionLevels, ~geneId)
lineplot <- plot_ly(sd, x = ~sampleName, y = ~expressionLevel) %>%
group_by(geneId) %>%
add_lines(text = ~geneId, hoverinfo = "text", color = ~AnalysisGroup)
volcanoPlot <- plot_ly(sd, x = ~log2FoldChange, y = ~-log10(padj)) %>%
add_markers(text = ~geneId, hoverinfo = "text")
subplot(
plot_ly(sd, y = ~expressionLevel, color = ~AnalysisGroup) %>%
add_boxplot(),
volcanoPlot
) %>% highlight(on = 'plotly_click', off = 'plotly_doubleclick', selectize = TRUE)
} else {
cat("Couldn't detect at least two genes satisfying the p-value and fold change thresholds\n")
}
```
```{r results='asis'}
if(runGO == FALSE) {
cat("Warning:Skipping GO analysis because `organism` option is not set in settings.yaml file\n")
} else if (curl::has_internet() == FALSE){
#gProfiler tool needs internet access to work. So, go analysis module is conditional
runGO <- FALSE
cat("Warning:Skipping GO analysis as there is no internet connection to query https://biit.cs.ut.ee/gprofiler/\n")
}
```
```{r goAnalysisTitle, eval = runGO, results='asis'}
cat("# GO Term Enrichment Analysis\n")
cat("\n The following table list GO terms for differentially expressed genes. GO term analysis was carried out using [g:Profiler](https://cran.r-project.org/web/packages/gProfileR/) R package. Differentially expressed genes are defined as those genes with adjusted p-value of less than 0.1.")
```
```{r goAnalysis, eval = runGO}
#filter genes for differential expression
DEgenes <- rownames(DE[!is.na(DE$padj) & DE$padj < 0.1,])
#search for enriched GO terms within the GO and pathway domains
goResults <- gProfileR::gprofiler(query = DEgenes,
organism = organism,
hier_filtering = "none",
significant = TRUE,
src_filter = c('GO', 'KEGG', 'REAC', 'CORUM'))
#order by p-value
goResults <- goResults[order(goResults$p.value),]
#save full GO term table to disk
goResultsFile <- file.path(workdir, paste0(prefix, '.GOterms.tsv'))
write.table(x = goResults,
file = goResultsFile,
quote = FALSE, sep = '\t')
#only display top GO terms in the HTML report.
max <- ifelse(nrow(goResults) > 1000, 1000, nrow(goResults))
DT::datatable(goResults[1:max,],
extensions = c('Buttons', 'FixedColumns', 'Scroller'),
options = list(fixedColumns = TRUE,
scrollY = 400,
scrollX = TRUE,
scroller = TRUE,
dom = 'Bfrtip',
buttons = c('colvis', 'copy', 'print', 'csv','excel', 'pdf'),
columnDefs = list(
list(targets = c(0,1,2,5,9,11,13,14), visible = FALSE)
)
),
filter = 'bottom'
)
```
# Session Information
```{r sessionInfo}
sessionInfo()
```
|