1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
|
<chapter title="Operators">
<p>To make it easier to write Pike, and to make the code somewhat shorter,
some functions can be called with just one or two characters in the code.
These functions are called <b>operators</b> and we have already seen how
they work in plenty of examples. In this chapter I will describe in detail
what they do. The operators are divided into categories depending on their
function, but beware that some operators have meanings that go way beyond
the scope of the category they are in.</p>
<section title="Arithmetic operators">
<p>The arithmetic operators are the simplest ones, since they work just like
you remember from math in school. The arithmetic operators are:</p>
<matrix>
<r><c><b>Function</b></c>
<c><b>Syntax</b></c>
<c><b>Identifier</b></c>
<c><b>Returns</b></c></r>
<r><c>Addition</c>
<c><expr>a + b</expr></c>
<c><expr>`+</expr></c>
<c>the sum of a and b</c></r>
<r><c>Subtraction</c>
<c><expr>a - b</expr></c>
<c><expr>`-</expr></c>
<c>b subtracted from a</c></r>
<r><c>Negation</c>
<c><expr>- a</expr></c>
<c><expr>`-</expr></c>
<c>minus a</c></r>
<r><c>Multiplication</c>
<c><expr>a * b</expr></c>
<c><expr>`*</expr></c>
<c>a multiplied by b</c></r>
<r><c>Division</c>
<c><expr>a / b</expr></c>
<c><expr>`/</expr></c>
<c>a divided by b</c></r>
<r><c>Modulo</c>
<c><expr>a % b</expr></c>
<c><expr>`%</expr></c>
<c>the remainder of a division between a and b</c></r>
</matrix>
<p>The third column, "Identifier" is the name of the function that actually
evaluates the operation. For instance, <expr>a + b</expr> can also be written
as <expr>`+(a, b)</expr>. I will show you how useful this can be at the end
of this chapter.</p>
<p>When applied to integers or floats these operators do exactly what they
are supposed to do. The only operator in the list not known from basic
math is the <b>modulo</b> operator. The modulo operator returns the
remainder from an integer division. It is the same as calculating
<expr>a - floor(a / b) * b</expr>. <expr>floor</expr> rounds the value down to
closest lower integer value. Note that the call to <expr>floor</expr> isn't
needed when operating on integers, since dividing two integers will return
the result as an integer and it is always rounded down. For instance,
<expr>8 / 3</expr> would return <expr>2</expr>.</p>
<p>If all arguments to the operator are integers, the
result will also be an integer. If one is a float and the other is
an integer, the result will be a float. If both arguments are float,
the result will of course be a float.</p>
<p>However, there are more types in Pike than integers and floats. Here is
the complete list of combinations of types you can use with these operators:</p>
<matrix>
<r><c><b>Operation</b></c>
<c><b>Returned type</b></c>
<c><b>Returned value</b></c></r>
<r><c><code>int + int</code></c>
<c>int</c>
<c>the sum of the two values</c></r>
<r><c><code>float + int
int + float
float + float</code></c>
<c>float</c>
<c>the sum of the two values</c></r>
<r><c><code>string + string
int + string
float + string
string + int
string + float</code></c>
<c>string</c>
<c>In this case, any int or float is first converted to a string. Then
the two strings are concatenated and the resulting string is returned.</c></r>
<r><c><code>array + array</code></c>
<c>array</c>
<c>The two arrays are concatenated into a new array and that new
array is returned.</c></r>
<r><c><code>mapping + mapping</code></c>
<c>mapping</c>
<c>A mapping with all the index-value pairs from both mappings is
returned. If an index is present in both mappings the index-value pair
from the right mapping will be used.</c></r>
<r><c><code>multiset + multiset</code></c>
<c>multiset</c>
<c>A multiset with all the indices from both multisets is returned.</c></r>
<r><c><code>int - int</code></c>
<c>int</c>
<c>The right value subtracted from the left.</c></r>
<r><c><code>float - int
int - float
float - float</code></c>
<c>float</c>
<c>The right value subtracted from the left.</c></r>
<r><c><code>string - string</code></c>
<c>string</c>
<c>A copy of the left string with all occurrences of the right string
removed.</c></r>
<r><c><code>array - array</code></c>
<c>array</c>
<c>A copy of the left array with all elements present in the right array
removed. Example: <expr>({2,1,4,5,3,6,7}) - ({3,5,1})</expr> will return
<expr>({2,4,6,7})</expr>.</c></r>
<r><c><code>mapping - mapping</code></c>
<c>mapping</c>
<c>A new mapping with all index-value pairs from the left mapping, except
those indices that are also present in the right mapping.</c></r>
<r><c><code>multiset - multiset</code></c>
<c>multiset</c>
<c>A copy of the left multiset without any index present in the left
multiset.</c></r>
<r><c><code>- int</code></c>
<c>int</c>
<c>Same as <expr>0 - int</expr>.</c></r>
<r><c><code>- float</code></c>
<c>float</c>
<c>Same as <expr>0 - float</expr>.</c></r>
<r><c><code>int * int</code></c>
<c>int</c>
<c>the product of the two values</c></r>
<r><c><code>float * int
int * float
float * float</code></c>
<c>float</c>
<c>the product of the two values</c></r>
<r><c><code>array(string) * string</code></c>
<c>string</c>
<c>All the strings in the array are concatenated with the string on the
right in between each string. Example: <expr>({"foo","bar"})*"-"</expr>
will return <expr>"foo-bar"</expr>.</c></r>
<r><c><code>array(array) * array</code></c>
<c>array</c>
<c>All the arrays in the left array are concatenated with the array on
the right in between each array. Example: <expr>({ ({"foo"}) ,({"bar"})})*({"-"})</expr>
will return <expr>({ "foo","-","bar" })</expr>.</c></r>
<r><c><code>string * int</code></c>
<c>string</c>
<c>This operation will concatenate the string N times. Example:
<expr>"foo"*3</expr> will return <expr>"foofoofoo"</expr>.</c></r>
<r><c><code>string * float</code></c>
<c>string</c>
<c>This operation will concatenate the string X times. Example:
<expr>"foo"*2.5</expr> will return <expr>"foofoofo"</expr>.</c></r>
<r><c><code>array * int</code></c>
<c>string</c>
<c>This operation will concatenate the array N times. Example:
<expr>({"foo"})*3</expr> will return <expr>({"foo","foo","foo"})</expr>.</c></r>
<r><c><code>array * float</code></c>
<c>string</c>
<c>This operation will concatenate the array X times. Example:
<expr>({1,2,3})*2.5</expr> will return <expr>({1,2,3,1,2,3,1,2})</expr>.</c>
</r>
<r><c><code>int / int</code></c>
<c>int</c>
<c>The right integer divided by the left integer rounded towards
minus infinity.</c></r>
<r><c><code>float / int
int / float
float / float</code></c>
<c>float</c>
<c>The right value divided by the left value.</c></r>
<r><c><code>string / string</code></c>
<c>array(string)</c>
<c>In symmetry with the multiplication operator, the division operator
can split a string into pieces. The right string will be split at every
occurrence of the right string and an array containing the results will
be returned. Example: <expr>"foo-bar"/"-"</expr> will return
<expr>({"foo","bar"})</expr></c></r>
<r><c><code>string / int</code></c>
<c>array(string)</c>
<c>This will split the string into pieces. The size of the pieces is
given by the integer. Only complete pieces will be included in the result,
the 'reminder' is discarded. Example: <expr>"foo-bar"/2</expr> will
return <expr>({"fo","o-","ba"})</expr></c></r>
<r><c><code>string / float</code></c>
<c>array(string)</c>
<c>This is similar to dividing a string with an integer, but it allows
fraction-sized segments and the reminder will always be included.
Example: <expr>"foo-bar"/2.5</expr> will return
<expr>({"fo","o-b","ar"})</expr></c></r>
<r><c><code>array / int</code></c>
<c>array(array)</c>
<c>This is similar to dividing a string with an integer, but splits an
array. Example: <expr>({1,2,3,4,5,6,7})/2</expr> will return
<expr>({({1,2}),({3,4}),({5,6})})</expr></c></r>
<r><c><code>array / float</code></c>
<c>array(array)</c>
<c>You should be able to predict what this does by now. :) Example:
<expr>({1,2,3,4,5,6,7,8})/2.5</expr> will return
<expr>({({1,2}),({3,4,5}),({6,7}),({8})})</expr></c></r>
<r><c><code>int % int</code></c>
<c>int</c>
<c>The remainder of a division. If <expr>a</expr> and <expr>b</expr>
are integers, <expr>a%b</expr> is the same as <expr>a-(a/b)*b</expr></c></r>
<r><c><code>float % float
int % float
float % int</code></c>
<c>float</c>
<c>The remainder of a division. If <expr>a</expr> and <expr>b</expr>
are floats, <expr>a%b</expr> is the same as <expr>a-floor(a/b)*b</expr></c></r>
<r><c><code>string % int</code></c>
<c>string</c>
<c>The remainder of a string division. Example: <expr>"foo-bar"%2</expr>
will return <expr>"r"</expr></c></r>
<r><c><code>array % int</code></c>
<c>string</c>
<c>The remainder of an array division. Example: <expr>({1,2,3,4,5,6,7})%2</expr>
will return <expr>({7})</expr></c></r>
</matrix>
</section>
<section title="Comparison operators">
<p>The arithmetic operators would be hard to use for anything interesting
without the ability to compare the results to each other.
For this purpose there are six comparison operators:</p>
<matrix>
<r><c><b>Function</b></c>
<c><b>Syntax</b></c>
<c><b>Identifier</b></c>
<c><b>Returns</b></c></r>
<r><c>Same</c>
<c><expr>a == b</expr></c>
<c><expr>`==</expr></c>
<c>1 if a is the same value as b, 0 otherwise</c></r>
<r><c>Not same</c>
<c><expr>a != b</expr></c>
<c><expr>`!=</expr></c>
<c>0 if a is the same value as b, 1 otherwise</c></r>
<r><c>Greater than</c>
<c><expr>a > b</expr></c>
<c><expr>`> </expr></c>
<c>1 if a is greater than b, 0 otherwise</c></r>
<r><c>Greater than or equal to</c>
<c><expr>a >= b</expr></c>
<c><expr>`>=</expr></c>
<c>1 if a is greater to or equal to b, 0 otherwise</c></r>
<r><c>Lesser than</c>
<c><expr>a < b</expr></c>
<c><expr>`< </expr></c>
<c>1 if a is lesser than b, 0 otherwise</c></r>
<r><c>Lesser than or equal to</c>
<c><expr>a <= b</expr></c>
<c><expr>`<=</expr></c>
<c>1 if a is lesser than or equal to b, 0 otherwise</c></r>
</matrix>
<p>The <expr>==</expr> and <expr>!=</expr> operators can be used on any type. For two
values to be <b>same</b> they must be the same type. Therefore 1 and 1.0 are
not <b>same</b>. Also, for two values of <b>pointer types</b> to be the same
the two values must be pointers to the same object. It is not enough that
the two objects are of the same size and contain the same data.</p>
<p>The other operators in the table above can only be used with integers, floats
and strings. If you compare an integer with a float, the int will be promoted
to a float before the comparison. When comparing strings, lexical order is
used and the values of the environment variables <tt>LC_CTYPE</tt> and
<tt>LC_LANG</tt> are respected.</p>
</section>
<section title="Logical operators">
<p>Logical operators are operators that operate with truth values. In Pike any value
except zero is considered <b>true</b>. Logical operators are a very basic part
of Pike. They can also decide which arguments to evaluate and which not to
evaluate. Because of this the logical operators do not have any identifiers and
can not be called as normal functions. There are four logical operators:</p>
<matrix>
<r><c><b>Function</b></c>
<c><b>Syntax</b></c>
<c><b>Returns</b></c></r>
<r><c>And</c>
<c><expr>a && b</expr></c>
<c>If a is false, a is returned and b is not evaluated. Otherwise, b is
returned.</c></r>
<r><c>Or</c>
<c><expr>a || b</expr></c>
<c>If a is true, a is returned and b is not evaluated. Otherwise, b is
returned.</c></r>
<r><c>Not</c>
<c><expr>! a</expr></c>
<c>Returns 0 if a is true, 1 otherwise.</c></r>
<r><c>If-else</c>
<c><expr>a ? b : c</expr></c>
<c>If a is true, b is returned and c is not evaluated. Otherwise c is
returned and b is not evaluated.</c></r>
</matrix>
</section>
<section title="Bitwise/set operators">
<p>These operators are used to manipulate bits as members in sets.
They can also manipulate arrays, multisets and mappings as sets.</p>
<matrix>
<r><c><b>Function</b></c>
<c><b>Syntax</b></c>
<c><b>Identifier</b></c>
<c><b>Returns</b></c></r>
<r><c>Shift left</c>
<c><expr>a << b</expr></c>
<c><expr>`<<</expr></c>
<c>Multiplies a by 2, b times.</c></r>
<r><c>Shift right</c>
<c><expr>a >> b</expr></c>
<c><expr>`>></expr></c>
<c>Divides a by 2, b times.</c></r>
<r><c>Inverse (not)</c>
<c><expr>~ a</expr></c>
<c><expr>`~</expr></c>
<c>Returns -1-a.</c></r>
<r><c>Intersection (and)</c>
<c><expr>a & b</expr></c>
<c><expr>`&</expr></c>
<c>All elements present in both a and b.</c></r>
<r><c>Union (or)</c>
<c><expr>a | b</expr></c>
<c><expr>`|</expr></c>
<c>All elements present in a or b.</c></r>
<r><c>Symmetric difference (xor)</c>
<c><expr>a ^ b</expr></c>
<c><expr>`^</expr></c>
<c>All elements present in a or b, but not present in both.</c></r>
</matrix>
<p>The first three operators can only be used with integers and should be
pretty obvious.</p>
<p>The other three, intersection, union and symmetric difference, can be used with
integers, arrays, multisets and mappings. When used with integers, these
operators considers each bit in the integer a separate element. If you do
not know about how bits in integers work I suggest you go look it up in some other
programming book or just don't use these operators on integers.</p>
<p>When intersection, union or symmetric difference is used on an array each element
in the array is considered by itself. So intersecting two arrays will result
in an array with all elements that are present in both arrays. Example:
<expr>({7,6,4,3,2,1}) & ({1, 23, 5, 4, 7})</expr> will return
<expr>({7,4,1})</expr>. The order of the elements in the returned array will
always be taken from the left array. Elements in multisets are treated
the same as elements in arrays. When doing a set operation on a mapping
however, only the indices are considered. The values are just copied with
the indices. If a particular index is present in both the right and left
argument to a set operator, the one from the right side will be used.
Example: <expr>([1:2]) | ([1:3])</expr> will return <expr>([1:3])</expr>.</p>
</section>
<section title="Indexing">
<p>The index and range operators are used to retrieve information from a
complex data type.</p>
<matrix>
<r><c><b>Function</b></c>
<c><b>Syntax</b></c>
<c><b>Identifier</b></c>
<c><b>Returns</b></c></r>
<r><c>Index</c>
<c><expr>a [ b ]</expr></c>
<c><expr>`[]</expr></c>
<c>Returns the index b from a.</c></r>
<r><c>Lookup</c>
<c><expr>a -><i>identifier</i></expr></c>
<c><expr>`-></expr></c>
<c>Looks up the identifier. Same as a["<i>identifier</i>"].</c></r>
<r><c>Assign index</c>
<c><expr>a [ b ] = c</expr></c>
<c><expr>`[]=;</expr></c>
<c>Sets the index b in a to c.</c></r>
<r><c>Assign index</c>
<c><expr>a -><i>identifier</i> = c</expr></c>
<c><expr>`->=</expr></c>
<c>Sets the index "<i>identifier</i>" in a to c.</c></r>
<r><c>Range</c>
<c><expr>a [ b .. c ]</expr></c>
<c><expr>`[..]</expr></c>
<c>Returns a slice of a starting at the index b and ending at c.</c></r>
<r><c>Range</c>
<c><expr>a [ .. c ]</expr></c>
<c><expr>`[..]</expr></c>
<c>Returns a slice of a starting at the beginning of a and ending at c.</c></r>
<r><c>Range</c>
<c><expr>a [ b .. ]</expr></c>
<c><expr>`[..]</expr></c>
<c>Returns a slice of a from the index b to the end of a.</c></r>
</matrix>
<p>The index operator can be written in two different ways. It can be
written as <expr>ob [ <i>index</i> ]</expr> or
<expr>ob-><i>identifier</i></expr>. However, the latter syntax is
equal to <expr>ob [ "<i>identifier</i>" ]</expr>.</p>
<p>You can only
index strings, arrays, mapping, multisets and objects, and some of these
can only be indexed on certain things as shown in this list:</p>
<matrix>
<r><c><b>Operation</b></c>
<c><b>Returns</b></c></r>
<r><c><code>string[int]</code></c>
<c>Returns the ascii value of the Nth character in the string.</c></r>
<r><c><code>array[int]</code></c>
<c>Return the element in the array corresponding to the integer.</c></r>
<r><c><code>array[int]=mixed</code></c>
<c>Sets the element in the array to the mixed value.</c></r>
<r><c><code>mapping[mixed]
mapping->identifier</code></c>
<c>Returns the value associated with the index, 0 if it is not found.</c></r>
<r><c><code>mapping[mixed]=mixed
mapping->identifier=mixed</code></c>
<c>Associate the second mixed value with the first mixed value.</c></r>
<r><c><code>multiset[mixed]
multiset->identifier</code></c>
<c>Returns 1 if the index (the value between the brackets) is present
in the multiset, 0 otherwise.</c></r>
<r><c><code>multiset[mixed]=mixed
multiset->identifier=mixed</code></c>
<c>If the mixed value is <b>true</b> the index is added to the
multiset. Otherwise the index is removed from the multiset.</c></r>
<r><c><code>object[string]
object->identifier</code></c>
<c>Returns the value of the named identifier in the object.</c></r>
<r><c><code>object[string]=mixed
object->identifier=mixed</code></c>
<c>Set the given identifier in the object to the mixed value. Only
works if the identifier references a variable in the object.</c></r>
<r><c><code>program[string]
program->identifier</code></c>
<c>Returns the value of the named constant identifier in the program.</c></r>
<r><c><code>string[int..int]</code></c>
<c>Returns a piece of the string.</c></r>
<r><c><code>array[int..int]</code></c>
<c>Returns a slice of the array.</c></r>
</matrix>
<p>When indexing an <expr>array</expr> or <expr>string</expr> it is sometimes convenient
to access index from the end instead of from the beginning. This function
can be performed by using a negative index. Thus <expr> arr[-i] </expr> is the
same as <expr>arr[sizeof(arr)-i]</expr>. Note however that this behavior does
not apply to the range operator. Instead the range operator clamps it's
arguments to a suitable range. This means that
<expr><i>a</i>[<i>b</i>..<i>c</i>]</expr> will be treated as follows:</p>
<ul>
<li> If <i>b</i> is less than zero, the range will begin at the start
of the array as if <i>b</i> had been zero.</li>
<li> If <i>b</i> is greater or equal to sizeof(<i>a</i>) an empty array/string
will be returned.</li>
<li> If <i>c</i> is less than <i>b</i>, an empty array/string will be
returned.</li>
<li> If <i>c</i> is greater or equal to sizeof(<i>a</i>) the range will
continue to the end of the array/string.</li>
<li> No errors are generated in any of the above cases.</li>
</ul>
</section>
<!-- FIXME: tell more about indexing and ranges -->
<section title="The assignment operators">
<p>There is really only one assignment operator, but it can be combined with
lots of other operators to make the code shorter. An assignment looks
like this:
<code>
variable = expression;
</code>
The <i>variable</i> can be a local variable, a global variable or an index
in an array, object, multiset or mapping. This will of course set the
value stored in <i>variable</i> to <i>expression</i>. Note that the above
is also an expression which returns the value of the <i>expression</i>.
This can be used in some interesting ways:
<code>
variable1 = variable2 = 1; // Assign 1 to both variables
variable1 =(variable2 = 1); // Same as above
// Write the value of the expression, if any
if(variable = expression)
write(variable);
</code>
Using assignments like this can however be confusing to novice users, or users
who come from a Pascal or Basic background. Especially the if statement
can be mistaken for <tt>if(<i>variable</i> == <i>expression</i>)</tt> which
would mean something completely different. As I mentioned earlier, the
assignment operator can be combined with another operator to form operators
that modify the contents of a variable instead of just assigning it.
Here is a list of all the combinations:</p>
<matrix>
<r><c><b>Syntax</b></c> <c><b>Same as</b></c> <c><b>Function</b></c></r>
<r><c><expr><i>variable</i> += <i>expression</i></expr></c><c> <i>variable</i> = <i>variable</i> + <i>expression</i></c><c>Add <i>expression</i> to <i>variable</i></c></r>
<r><c><expr><i>variable</i> -= <i>expression</i></expr></c><c> <i>variable</i> = <i>variable</i> - <i>expression</i></c><c>Subtract <i>expression</i> from <i>variable</i></c></r>
<r><c><expr><i>variable</i> *= <i>expression</i></expr></c><c> <i>variable</i> = <i>variable</i> * <i>expression</i></c><c>Multiply <i>variable</i> with <i>expression</i></c></r>
<r><c><expr><i>variable</i> /= <i>expression</i></expr></c><c> <i>variable</i> = <i>variable</i> / <i>expression</i></c><c>Divide <i>variable</i> by <i>expression</i></c></r>
<r><c><expr><i>variable</i> %= <i>expression</i></expr></c><c> <i>variable</i> = <i>variable</i> % <i>expression</i></c><c>Modulo <i>variable</i> by <i>expression</i></c></r>
<r><c><expr><i>variable</i> <<= <i>expression</i></expr></c><c> <i>variable</i> = <i>variable</i> << <i>expression</i></c><c>Shift <i>variable</i> <i>expression</i> bits left</c></r>
<r><c><expr><i>variable</i> >>= <i>expression</i></expr></c><c> <i>variable</i> = <i>variable</i> >> <i>expression</i></c><c>Shift <i>variable</i> <i>expression</i> bits right</c></r>
<r><c><expr><i>variable</i> |= <i>expression</i></expr></c><c> <i>variable</i> = <i>variable</i> | <i>expression</i></c><c>Or <i>variable</i> with <i>expression</i></c></r>
<r><c><expr><i>variable</i> &= <i>expression</i></expr></c><c> <i>variable</i> = <i>variable</i> & <i>expression</i></c><c>And <i>variable</i> with <i>expression</i></c></r>
<r><c><expr><i>variable</i> ^= <i>expression</i></expr></c><c> <i>variable</i> = <i>variable</i> ^ <i>expression</i></c><c>Xor <i>variable</i> with <i>expression</i></c></r>
</matrix>
<p>In all of the above expressions <i>variable</i> can actually be any of type
of assignable values. Assignable values are also known as <b>lvalues</b> and
here is a list of <b>lvalues</b>:</p>
<matrix>
<r><c><b>Lvalue type</b></c><c><b>Syntax</b></c><c><b>Valid assignment type</b></c></r>
<r><c> a local or global variable </c><c> <i>identifier</i> </c> <c>same as variable</c></r>
<r><c> an element in an array </c><c> <i>array</i> [ <i>int</i> ]</c><c>any type</c></r>
<r><c> elements in elements in an array </c><c> <i>array</i> [ <i>string</i> ]</c><c>any type This is like map(arr, `[]=,string_indexing_element, assignment_element)</c></r>
<r><c> an element in an string </c><c> <i>string</i> [ <i>int</i> ]</c><c>integer</c></r>
<r><c> an element in a mapping </c><c> <i>mapping</i>[<i>mixed</i>] or <i>mapping</i>-><i>identifier</i> </c><c>any type</c></r>
<r><c> an element in a multiset </c><c> <i>multiset</i>[<i>mixed</i>] or <i>multiset</i>-><i>identifier</i> </c><c>true / false</c></r>
<r><c> a variable in an object </c><c> <i>object</i>[<i>string</i>] or <i>object</i>-><i>identifier</i> </c> <c>same type as named variable</c></r>
<r><c> a list of lvalues </c><c> [ <i>lvalue</i>, <i>lvalue</i> ] </c><c> an array, first value in the array will be assigned to the first lvalue in the list, second value in the array to the second value in the list etc. </c></r>
</matrix>
</section>
<section title="The rest of the operators">
<p>Now there are only a couple of operators left. I have grouped them together
in this section, not because they are not important, but because they do
not fit in any particular categories.</p>
<matrix>
<r><c><b>Function</b></c> <c><b>Syntax</b></c> <c><b>Identifier</b></c><c><b>Returns</b></c></r>
<r><c>Calling</c><c><tt>a ( <i>args</i> )</tt></c><c><tt>`()</tt></c><c>Calls the function a.</c></r>
<r><c>splice</c> <c><tt>@ <i>a</i></tt></c> <c>none</c> <c>Sends each element in the array a as an individual argument to a function call.</c></r>
<r><c>Increment</c> <c><tt>++ a</tt></c> <c>none</c> <c>Increments a and returns the new value of a.</c></r>
<r><c>Decrement</c> <c><tt>-- a</tt></c> <c>none</c> <c>Decrements a and returns the new value of a.</c></r>
<r><c>Post increment</c><c><tt>a ++</tt></c> <c>none</c> <c>Increments a and returns the old value of a.</c></r>
<r><c>Post decrement</c><c><tt>a --</tt></c> <c>none</c> <c>Decrements a and returns the old value of a.</c></r>
<r><c>casting</c> <c><tt>(<i>type</i>) a</tt></c><c>none</c> <c>Tries to convert a into a value of the specified type.</c></r>
<r><c>Null</c> <c><tt>a, b</tt></c> <c>none</c> <c>Evaluates a and b, then returns b.</c></r>
</matrix>
<p>The most important of these operators is the calling operator. It is used
to call functions. The operator itself is just a set of parenthesis placed
after the expression that returns the function. Any arguments to the function
should be placed between the parenthesis, separated by commas. We have
already seen many examples of this operator, although you might not have
realized it was an operator at the time. The function call operator can
do more than just calling functions though; if the 'function' is in fact
an array, the operator will loop over the array and call each element in
the array and returns an array with the results.</p>
<!-- In fact, <tt>({ foo, bar, gazonk }) (1, 2, 3)</tt> is the same as <tt>map(({ foo, bar, gazonk }), call_function, 1, 2, 3)</tt>. -->
<p>If on the other hand, the 'function' is a program, the operator will
clone an object from the program and call create() in the new object
with the arguments given. In fact, the function <tt>clone</tt> is
implemented like this:
<code>
object clone(mixed p, mixed ... args) { ( (program)p )(@args); }
</code>
On the subject of function calls, the splice operator should also be mentioned.
The splice operator is an at sign in front of an expression. The expression
should always be an array. The splice operator sends each of the elements
in the array as a separate argument to the function call. The splice operator
can only be used in an argument list for a function call.</p>
<p>Then there are the increment and decrement operators. The increment and
decrement operators are somewhat limited: they can only be used on
integers. They provide a short and fast way to add or subtract one
to an integer. If the operator is written before the variable
(<tt>++<i>a</i></tt>) the returned value will be what the variable
is after the operator has added/subtracted one to it. If the operator
is after the variable (<tt><i>a</i>++</tt>) it will instead return the
value of the variable before it was incremented/decremented.</p>
<p>Casting is used to convert one type to another, not all casts are
possible. Here is a list of all casts that actually _do_ anything:</p>
<matrix>
<r><c><b>casting from</b></c><c><b>to</b></c><c><b>operation</b></c></r>
<r><c>int</c><c>string</c><c>Convert the int to ASCII representation</c></r>
<r><c>float</c><c>string</c><c>Convert the float to ASCII representation</c></r>
<r><c>string</c><c>int</c><c>Convert decimal, octal or hexadecimal number to an int. Note that this will only work with decimal numbers in future versions.</c></r>
<r><c>string</c><c>float</c><c>Convert ASCII number to a float.</c></r>
<r><c>string</c><c>program</c><c>String is a filename, compile the file and return the program. Results are cached.</c></r>
<r><c>string</c><c>object</c><c>This first casts the string to a program, (see above) and then clones the result. Results are cached.</c></r>
<r><c>object</c><c><i>type</i></c><c>This calls the function 'cast' with a string containing the type as an argument.</c></r>
<r><c>string</c><c>array</c><c>Same as doing <expr>values(<i>string</i>)</expr></c></r>
<r><c>array(int)</c><c>string</c><c>This does the inverse of the operation above. Ie. it constructs a string from an array of integers.</c></r>
<r><c>array</c><c>array(<i>type</i>)</c><c>This recursively casts all values in the array to <i>type</i>.</c></r>
<r><c>mapping</c><c>array</c><c>Same as <expr>Array.transpose(({indices(<i>mapping</i>),values(<i>mapping</i>))</expr>. Example: <expr>(array)([1:2,3:4])</expr> will return <expr>({ ({1,2}), ({3,4}) })</expr> </c></r>
<r><c>multiset</c><c>array</c><c>Same as doing <expr>indices(<i>multiset</i>)</expr>.</c></r>
<r><c>int</c><c>float</c><c>Returns a float with the same value as the integer.</c></r>
<r><c>float</c><c>int</c><c>Returns the integer closest to the float.</c></r>
<r><c>function</c><c>object</c><c>Same as <expr>function_object(<i>function</i>)</expr>.</c></r>
</matrix>
<p>You can also use the cast operator to tell the compiler things.
If <tt>a</tt> is a variable of type mixed containing an int, then the
expression <tt>(int)a</tt> can be used instead of <tt>a</tt> and that will
tell the compiler that the type of that expression is <tt>int</tt>.</p>
<p>Last, and in some respect least, is the comma operator. It doesn't do
much. In fact, it simply evaluates the two arguments and then returns
the right hand one. This operator is mostly useful to produce smaller code,
or to make defines that can be used in expressions.</p>
</section>
<section title="Operator precedence">
<p>When evaluating an expression, you can always use parenthesis to tell
the compiler in which order to evaluate things. Normally, the compiler
will evaluate things from left to right, but it will evaluate operators
with higher priority before those with lower. The following table shows
the relative priority of all the operators in descending order:</p>
<matrix>
<r><c><expr>(a) a() a[b] a->b a[b..c] ({}) ([]) (<>)</expr></c></r>
<r><c><expr>!a ~a (type)a ++a --a</expr></c></r>
<r><c><expr>a++ a--</expr></c></r>
<r><c><expr>a*b a/b a%b</expr></c></r>
<r><c><expr>a+b a-b</expr></c></r>
<r><c><expr>a>>b a<<b</expr></c></r>
<r><c><expr>a>b a>=b a<b a<=b</expr></c></r>
<r><c><expr>a==b a!=b</expr></c></r>
<r><c><expr>a&b</expr></c></r>
<r><c><expr>a^b</expr></c></r>
<r><c><expr>a|b</expr></c></r>
<r><c><expr>&&</expr></c></r>
<r><c><expr>||</expr></c></r>
<r><c><expr>a?b:c</expr></c></r>
<r><c><expr>=</expr></c></r>
<r><c><expr>@a</expr></c></r>
<r><c><expr>,</expr></c></r>
</matrix>
<p>Examples:</p>
<matrix>
<r><c><b>The expression</b></c><c><b>is evaluated in this order:</b></c></r>
<r><c><expr> 1+2*2 </expr></c><c><expr> 1+(2*2) </expr></c></r>
<r><c><expr> 1+2*2*4 </expr></c><c><expr> 1+((2*2)*4) </expr></c></r>
<r><c><expr> (1+2)*2*4 </expr></c><c><expr> ((1+2)*2)*4 </expr></c></r>
<r><c><expr> 1+4,c=2|3+5 </expr></c><c><expr> (1+4),(c=((2|3)+5)) </expr></c></r>
<r><c><expr> 1+5 & 4 == 3 </expr></c><c><expr> (1+(5 & 4)) == 3 </expr></c></r>
<r><c><expr> c=1,99 </expr></c><c><expr> (c=1),99 </expr></c></r>
<r><c><expr> !a++ + ~--a()</expr></c><c><expr> (!(a++)) + (~((--a)())) </expr></c></r>
</matrix>
</section>
<section title="Operator functions">
<p>As mentioned earlier <tt>a + b</tt> can just as well be written as
<tt>`+(a, b)</tt>. Together with the function <tt>map</tt> which
calls a function for every index in an array and the splice operator
this can be used to create some very very fast and compact code. Let's
look at some examples:</p>
<dl>
<dt> <tt>map(arr, `-)</tt></dt>
<dd> This will return an array with each element negated.</dd>
<dt> <tt>map(text/"\n",`/," ")</tt></dt>
<dd> This will divide a text into lines, each line will then be mapped
through <tt>`/</tt> and divided into an array of words.</dd>
<dt> <tt>`+(0, @arr)</tt></dt>
<dd> This will add all the integers in the array <tt>arr</tt> together.</dd>
<dt> <tt>int abs(int a) { return ( a>0 ? `+ : `-)(a); }</tt></dt>
<dd> This is a rather absurd but working function which will return the
absolute value of a.</dd>
</dl>
</section>
</chapter>
|