1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
#include "pilercr.h"
enum REVSTATE
{
REVSTATE_Unknown = 0,
REVSTATE_Normal = 1,
REVSTATE_Reversed = 2
};
struct NeighborData
{
int NodeIndex;
bool Rev;
};
typedef std::list<NeighborData> NeighborList;
typedef NeighborList::iterator PtrNeighborList;
struct NodeData
{
REVSTATE Rev;
int Index;
NeighborList *Neighbors;
NodeData *Next;
NodeData *Prev;
NodeData **List;
};
static NodeData *Nodes;
static CompData *MakeFam(NodeData *Nodes)
{
CompData *Fam = new CompData;
for (const NodeData *Node = Nodes; Node; Node = Node->Next)
{
CompMemberData CompMember;
CompMember.PileIndex = Node->Index;
switch (Node->Rev)
{
case REVSTATE_Unknown:
Quit("REVSTATE_Unknown");
case REVSTATE_Normal:
CompMember.Rev = false;
break;
case REVSTATE_Reversed:
CompMember.Rev = true;
break;
}
Fam->push_back(CompMember);
}
return Fam;
}
static void AddNodeToList(NodeData *Node, NodeData **List)
{
NodeData *Head = *List;
Node->Next = Head;
Node->Prev = 0;
if (Head != 0)
Head->Prev = Node;
Node->List = List;
*List = Node;
}
static void DeleteNodeFromList(NodeData *Node, NodeData **List)
{
assert(Node->List == List);
NodeData *Head = *List;
if (Node->Next != 0)
Node->Next->Prev = Node->Prev;
if (Node->Prev != 0)
Node->Prev->Next = Node->Next;
else
*List = Node->Next;
Node->List = 0;
}
static NodeData *ListHead(NodeData **List)
{
return *List;
}
static void MoveBetweenLists(NodeData *Node, NodeData **FromList, NodeData **ToList)
{
DeleteNodeFromList(Node, FromList);
AddNodeToList(Node, ToList);
}
static bool ListIsEmpty(NodeData **List)
{
return 0 == *List;
}
static bool NodeIsInList(NodeData *Node, NodeData **List)
{
return Node->List == List;
}
static void LogList(NodeData **List)
{
for (const NodeData *Node = *List; Node; Node = Node->Next)
Log(" %d", Node->Index);
Log("\n");
}
static int GetMaxIndex(EdgeList &Edges)
{
int MaxIndex = -1;
for (PtrEdgeList p = Edges.begin(); p != Edges.end(); ++p)
{
EdgeData &Edge = *p;
if (Edge.Node1 > MaxIndex)
MaxIndex = Edge.Node1;
if (Edge.Node2 > MaxIndex)
MaxIndex = Edge.Node2;
}
return MaxIndex;
}
static REVSTATE RevState(REVSTATE Rev1, bool Rev2)
{
switch (Rev1)
{
case REVSTATE_Normal:
if (Rev2)
return REVSTATE_Reversed;
return REVSTATE_Normal;
case REVSTATE_Reversed:
if (Rev2)
return REVSTATE_Normal;
return REVSTATE_Reversed;
}
assert(false);
return REVSTATE_Unknown;
}
int GetConnComps(EdgeList &Edges, CompList &Fams, int MinComponentSize)
{
Fams.clear();
if (0 == Edges.size())
return 0;
int NodeCount = GetMaxIndex(Edges) + 1;
Nodes = new NodeData[NodeCount];
for (int i = 0; i < NodeCount; ++i)
{
Nodes[i].Neighbors = new NeighborList;
Nodes[i].Rev = REVSTATE_Unknown;
Nodes[i].Index = i;
}
NodeData *NotVisitedList = 0;
NodeData *PendingList = 0;
NodeData *CurrentList = 0;
for (PtrEdgeList p = Edges.begin(); p != Edges.end(); ++p)
{
EdgeData &Edge = *p;
int From = Edge.Node1;
int To = Edge.Node2;
assert(From >= 0 && From < NodeCount);
assert(To >= 0 && From < NodeCount);
NeighborData NTo;
NTo.NodeIndex = To;
NTo.Rev = Edge.Rev;
Nodes[From].Neighbors->push_back(NTo);
NeighborData NFrom;
NFrom.NodeIndex = From;
NFrom.Rev = Edge.Rev;
Nodes[To].Neighbors->push_back(NFrom);
}
for (int i = 0; i < NodeCount; ++i)
AddNodeToList(&Nodes[i], &NotVisitedList);
int FamCount = 0;
while (!ListIsEmpty(&NotVisitedList))
{
int ClassSize = 0;
NodeData *Node = ListHead(&NotVisitedList);
// This node becomes the first in the family
// By convention, the first member defines reversal or lack thereof.
Node->Rev = REVSTATE_Normal;
assert(ListIsEmpty(&PendingList));
MoveBetweenLists(Node, &NotVisitedList, &PendingList);
while (!ListIsEmpty(&PendingList))
{
Node = ListHead(&PendingList);
assert(REVSTATE_Normal == Node->Rev || REVSTATE_Reversed == Node->Rev);
NeighborList *Neighbors = Node->Neighbors;
for (PtrNeighborList p = Neighbors->begin(); p != Neighbors->end(); ++p)
{
NeighborData &Neighbor = *p;
int NeighborIndex = Neighbor.NodeIndex;
NodeData *NeighborNode = &(Nodes[NeighborIndex]);
if (NodeIsInList(NeighborNode, &NotVisitedList))
{
NeighborNode->Rev = RevState(Node->Rev, Neighbor.Rev);
MoveBetweenLists(NeighborNode, &NotVisitedList, &PendingList);
}
}
++ClassSize;
MoveBetweenLists(Node, &PendingList, &CurrentList);
}
if (ClassSize >= MinComponentSize)
{
CompData *Fam = MakeFam(CurrentList);
Fams.push_back(Fam);
++FamCount;
}
CurrentList = 0;
}
return FamCount;
}
|