1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
from __future__ import annotations
import math
import pytest
from PIL import Image, ImageTransform
from .helper import assert_image_equal, assert_image_similar, hopper
TYPE_CHECKING = False
if TYPE_CHECKING:
from collections.abc import Callable
class TestImageTransform:
def test_sanity(self) -> None:
im = hopper()
for transform in (
ImageTransform.AffineTransform((1, 0, 0, 0, 1, 0)),
ImageTransform.PerspectiveTransform((1, 0, 0, 0, 1, 0, 0, 0)),
ImageTransform.ExtentTransform((0, 0) + im.size),
ImageTransform.QuadTransform(
(0, 0, 0, im.height, im.width, im.height, im.width, 0)
),
ImageTransform.MeshTransform(
[
(
(0, 0) + im.size,
(0, 0, 0, im.height, im.width, im.height, im.width, 0),
)
]
),
):
assert_image_equal(im, im.transform(im.size, transform))
def test_info(self) -> None:
comment = b"File written by Adobe Photoshop\xa8 4.0"
with Image.open("Tests/images/hopper.gif") as im:
assert im.info["comment"] == comment
transform = ImageTransform.ExtentTransform((0, 0, 0, 0))
new_im = im.transform((100, 100), transform)
assert new_im.info["comment"] == comment
def test_palette(self) -> None:
with Image.open("Tests/images/hopper.gif") as im:
transformed = im.transform(
im.size, Image.Transform.AFFINE, [1, 0, 0, 0, 1, 0]
)
assert im.palette is not None
assert transformed.palette is not None
assert im.palette.palette == transformed.palette.palette
def test_extent(self) -> None:
im = hopper("RGB")
(w, h) = im.size
transformed = im.transform(
im.size,
Image.Transform.EXTENT,
(0, 0, w // 2, h // 2), # ul -> lr
Image.Resampling.BILINEAR,
)
scaled = im.resize((w * 2, h * 2), Image.Resampling.BILINEAR).crop((0, 0, w, h))
# undone -- precision?
assert_image_similar(transformed, scaled, 23)
def test_quad(self) -> None:
# one simple quad transform, equivalent to scale & crop upper left quad
im = hopper("RGB")
(w, h) = im.size
transformed = im.transform(
im.size,
Image.Transform.QUAD,
(0, 0, 0, h // 2, w // 2, h // 2, w // 2, 0), # ul -> ccw around quad
Image.Resampling.BILINEAR,
)
scaled = im.transform(
(w, h),
Image.Transform.AFFINE,
(0.5, 0, 0, 0, 0.5, 0),
Image.Resampling.BILINEAR,
)
assert_image_equal(transformed, scaled)
@pytest.mark.parametrize(
"mode, expected_pixel",
(
("RGB", (255, 0, 0)),
("RGBA", (255, 0, 0, 255)),
("LA", (76, 0)),
),
)
def test_fill(self, mode: str, expected_pixel: tuple[int, ...]) -> None:
im = hopper(mode)
(w, h) = im.size
transformed = im.transform(
im.size,
Image.Transform.EXTENT,
(0, 0, w * 2, h * 2),
Image.Resampling.BILINEAR,
fillcolor="red",
)
assert transformed.getpixel((w - 1, h - 1)) == expected_pixel
def test_mesh(self) -> None:
# this should be a checkerboard of halfsized hoppers in ul, lr
im = hopper("RGBA")
(w, h) = im.size
transformed = im.transform(
im.size,
Image.Transform.MESH,
(
(
(0, 0, w // 2, h // 2), # box
(0, 0, 0, h, w, h, w, 0), # ul -> ccw around quad
),
(
(w // 2, h // 2, w, h), # box
(0, 0, 0, h, w, h, w, 0), # ul -> ccw around quad
),
),
Image.Resampling.BILINEAR,
)
scaled = im.transform(
(w // 2, h // 2),
Image.Transform.AFFINE,
(2, 0, 0, 0, 2, 0),
Image.Resampling.BILINEAR,
)
checker = Image.new("RGBA", im.size)
checker.paste(scaled, (0, 0))
checker.paste(scaled, (w // 2, h // 2))
assert_image_equal(transformed, checker)
# now, check to see that the extra area is (0, 0, 0, 0)
blank = Image.new("RGBA", (w // 2, h // 2), (0, 0, 0, 0))
assert_image_equal(blank, transformed.crop((w // 2, 0, w, h // 2)))
assert_image_equal(blank, transformed.crop((0, h // 2, w // 2, h)))
def _test_alpha_premult(
self, op: Callable[[Image.Image, tuple[int, int]], Image.Image]
) -> None:
# create image with half white, half black,
# with the black half transparent.
# do op,
# there should be no darkness in the white section.
im = Image.new("RGBA", (10, 10), (0, 0, 0, 0))
im2 = Image.new("RGBA", (5, 10), (255, 255, 255, 255))
im.paste(im2, (0, 0))
im = op(im, (40, 10))
im_background = Image.new("RGB", (40, 10), (255, 255, 255))
im_background.paste(im, (0, 0), im)
hist = im_background.histogram()
assert 40 * 10 == hist[-1]
def test_alpha_premult_resize(self) -> None:
def op(im: Image.Image, sz: tuple[int, int]) -> Image.Image:
return im.resize(sz, Image.Resampling.BILINEAR)
self._test_alpha_premult(op)
def test_alpha_premult_transform(self) -> None:
def op(im: Image.Image, sz: tuple[int, int]) -> Image.Image:
(w, h) = im.size
return im.transform(
sz, Image.Transform.EXTENT, (0, 0, w, h), Image.Resampling.BILINEAR
)
self._test_alpha_premult(op)
def _test_nearest(
self, op: Callable[[Image.Image, tuple[int, int]], Image.Image], mode: str
) -> None:
# create white image with half transparent,
# do op,
# the image should remain white with half transparent
transparent, opaque = {
"RGBA": ((255, 255, 255, 0), (255, 255, 255, 255)),
"LA": ((255, 0), (255, 255)),
}[mode]
im = Image.new(mode, (10, 10), transparent)
im2 = Image.new(mode, (5, 10), opaque)
im.paste(im2, (0, 0))
im = op(im, (40, 10))
colors = im.getcolors()
assert colors is not None
assert sorted(colors) == sorted(
(
(20 * 10, opaque),
(20 * 10, transparent),
)
)
@pytest.mark.parametrize("mode", ("RGBA", "LA"))
def test_nearest_resize(self, mode: str) -> None:
def op(im: Image.Image, sz: tuple[int, int]) -> Image.Image:
return im.resize(sz, Image.Resampling.NEAREST)
self._test_nearest(op, mode)
@pytest.mark.parametrize("mode", ("RGBA", "LA"))
def test_nearest_transform(self, mode: str) -> None:
def op(im: Image.Image, sz: tuple[int, int]) -> Image.Image:
(w, h) = im.size
return im.transform(
sz, Image.Transform.EXTENT, (0, 0, w, h), Image.Resampling.NEAREST
)
self._test_nearest(op, mode)
def test_blank_fill(self) -> None:
# attempting to hit
# https://github.com/python-pillow/Pillow/issues/254 reported
#
# issue is that transforms with transparent overflow area
# contained junk from previous images, especially on systems with
# constrained memory. So, attempt to fill up memory with a
# pattern, free it, and then run the mesh test again. Using a 1Mp
# image with 4 bands, for 4 megs of data allocated, x 64. OMM (64
# bit 12.04 VM with 512 megs available, this fails with Pillow <
# a0eaf06cc5f62a6fb6de556989ac1014ff3348ea
#
# Running by default, but I'd totally understand not doing it in
# the future
pattern: list[Image.Image] | None = [
Image.new("RGBA", (1024, 1024), (a, a, a, a)) for a in range(1, 65)
]
# Yeah. Watch some JIT optimize this out.
pattern = None # noqa: F841
self.test_mesh()
def test_missing_method_data(self) -> None:
with hopper() as im:
with pytest.raises(ValueError):
im.transform((100, 100), None) # type: ignore[arg-type]
@pytest.mark.parametrize("resample", (Image.Resampling.BOX, "unknown"))
def test_unknown_resampling_filter(self, resample: Image.Resampling | str) -> None:
with hopper() as im:
(w, h) = im.size
with pytest.raises(ValueError):
im.transform((100, 100), Image.Transform.EXTENT, (0, 0, w, h), resample) # type: ignore[arg-type]
class TestImageTransformAffine:
transform = Image.Transform.AFFINE
def _test_image(self) -> Image.Image:
im = hopper("RGB")
return im.crop((10, 20, im.width - 10, im.height - 20))
@pytest.mark.parametrize(
"deg, transpose",
(
(0, None),
(90, Image.Transpose.ROTATE_90),
(180, Image.Transpose.ROTATE_180),
(270, Image.Transpose.ROTATE_270),
),
)
def test_rotate(self, deg: int, transpose: Image.Transpose | None) -> None:
im = self._test_image()
angle = -math.radians(deg)
matrix = [
round(math.cos(angle), 15),
round(math.sin(angle), 15),
0.0,
round(-math.sin(angle), 15),
round(math.cos(angle), 15),
0.0,
0,
0,
]
matrix[2] = (1 - matrix[0] - matrix[1]) * im.width / 2
matrix[5] = (1 - matrix[3] - matrix[4]) * im.height / 2
if transpose is not None:
transposed = im.transpose(transpose)
else:
transposed = im
for resample in [
Image.Resampling.NEAREST,
Image.Resampling.BILINEAR,
Image.Resampling.BICUBIC,
]:
transformed = im.transform(
transposed.size, self.transform, matrix, resample
)
assert_image_equal(transposed, transformed)
@pytest.mark.parametrize(
"scale, epsilon_scale",
(
(1.1, 6.9),
(1.5, 5.5),
(2.0, 5.5),
(2.3, 3.7),
(2.5, 3.7),
),
)
@pytest.mark.parametrize(
"resample,epsilon",
(
(Image.Resampling.NEAREST, 0),
(Image.Resampling.BILINEAR, 2),
(Image.Resampling.BICUBIC, 1),
),
)
def test_resize(
self,
scale: float,
epsilon_scale: float,
resample: Image.Resampling,
epsilon: int,
) -> None:
im = self._test_image()
size_up = int(round(im.width * scale)), int(round(im.height * scale))
matrix_up = [1 / scale, 0, 0, 0, 1 / scale, 0, 0, 0]
matrix_down = [scale, 0, 0, 0, scale, 0, 0, 0]
transformed = im.transform(size_up, self.transform, matrix_up, resample)
transformed = transformed.transform(
im.size, self.transform, matrix_down, resample
)
assert_image_similar(transformed, im, epsilon * epsilon_scale)
@pytest.mark.parametrize(
"x, y, epsilon_scale",
(
(0.1, 0, 3.7),
(0.6, 0, 9.1),
(50, 50, 0),
),
)
@pytest.mark.parametrize(
"resample, epsilon",
(
(Image.Resampling.NEAREST, 0),
(Image.Resampling.BILINEAR, 1.5),
(Image.Resampling.BICUBIC, 1),
),
)
def test_translate(
self,
x: float,
y: float,
epsilon_scale: float,
resample: Image.Resampling,
epsilon: float,
) -> None:
im = self._test_image()
size_up = int(round(im.width + x)), int(round(im.height + y))
matrix_up = [1, 0, -x, 0, 1, -y, 0, 0]
matrix_down = [1, 0, x, 0, 1, y, 0, 0]
transformed = im.transform(size_up, self.transform, matrix_up, resample)
transformed = transformed.transform(
im.size, self.transform, matrix_down, resample
)
assert_image_similar(transformed, im, epsilon * epsilon_scale)
class TestImageTransformPerspective(TestImageTransformAffine):
# Repeat all tests for AFFINE transformations with PERSPECTIVE
transform = Image.Transform.PERSPECTIVE
|