1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
from __future__ import annotations
import warnings
import pytest
from PIL import Image, _typing
from .helper import assert_deep_equal, assert_image, hopper, skip_unless_feature
TYPE_CHECKING = False
if TYPE_CHECKING:
import numpy
import numpy.typing as npt
else:
numpy = pytest.importorskip("numpy", reason="NumPy not installed")
TEST_IMAGE_SIZE = (10, 10)
def test_numpy_to_image() -> None:
def to_image(dtype: npt.DTypeLike, bands: int = 1, boolean: int = 0) -> Image.Image:
data = tuple(range(100))
if bands == 1:
if boolean:
data = (0, 255) * 50
a = numpy.array(data, dtype=dtype)
a.shape = TEST_IMAGE_SIZE
i = Image.fromarray(a)
assert i.get_flattened_data() == data
else:
a = numpy.array([[x] * bands for x in data], dtype=dtype)
a.shape = TEST_IMAGE_SIZE[0], TEST_IMAGE_SIZE[1], bands
i = Image.fromarray(a)
assert i.get_flattened_data(0) == tuple(range(100))
return i
# Check supported 1-bit integer formats
assert_image(to_image(bool, 1, 1), "1", TEST_IMAGE_SIZE)
assert_image(to_image(numpy.bool_, 1, 1), "1", TEST_IMAGE_SIZE)
# Check supported 8-bit integer formats
assert_image(to_image(numpy.uint8), "L", TEST_IMAGE_SIZE)
assert_image(to_image(numpy.uint8, 3), "RGB", TEST_IMAGE_SIZE)
assert_image(to_image(numpy.uint8, 4), "RGBA", TEST_IMAGE_SIZE)
assert_image(to_image(numpy.int8), "I", TEST_IMAGE_SIZE)
# Check non-fixed-size integer types
# These may fail, depending on the platform, since we have no native
# 64-bit int image types.
# assert_image(to_image(numpy.uint), "I", TEST_IMAGE_SIZE)
# assert_image(to_image(numpy.int), "I", TEST_IMAGE_SIZE)
# Check 16-bit integer formats
if Image._ENDIAN == "<":
assert_image(to_image(numpy.uint16), "I;16", TEST_IMAGE_SIZE)
else:
assert_image(to_image(numpy.uint16), "I;16B", TEST_IMAGE_SIZE)
assert_image(to_image(numpy.int16), "I", TEST_IMAGE_SIZE)
# Check 32-bit integer formats
assert_image(to_image(numpy.uint32), "I", TEST_IMAGE_SIZE)
assert_image(to_image(numpy.int32), "I", TEST_IMAGE_SIZE)
# Check 64-bit integer formats
with pytest.raises(TypeError):
to_image(numpy.uint64)
with pytest.raises(TypeError):
to_image(numpy.int64)
# Check floating-point formats
assert_image(to_image(float), "F", TEST_IMAGE_SIZE)
with pytest.raises(TypeError):
to_image(numpy.float16)
assert_image(to_image(numpy.float32), "F", TEST_IMAGE_SIZE)
assert_image(to_image(numpy.float64), "F", TEST_IMAGE_SIZE)
assert_image(to_image(numpy.uint8, 2), "LA", (10, 10))
assert_image(to_image(numpy.uint8, 3), "RGB", (10, 10))
assert_image(to_image(numpy.uint8, 4), "RGBA", (10, 10))
# Based on an erring example at
# https://stackoverflow.com/questions/10854903/what-is-causing-dimension-dependent-attributeerror-in-pil-fromarray-function
def test_3d_array() -> None:
size = (5, TEST_IMAGE_SIZE[0], TEST_IMAGE_SIZE[1])
a = numpy.ones(size, dtype=numpy.uint8)
assert_image(Image.fromarray(a[1, :, :]), "L", TEST_IMAGE_SIZE)
size = (TEST_IMAGE_SIZE[0], 5, TEST_IMAGE_SIZE[1])
a = numpy.ones(size, dtype=numpy.uint8)
assert_image(Image.fromarray(a[:, 1, :]), "L", TEST_IMAGE_SIZE)
size = (TEST_IMAGE_SIZE[0], TEST_IMAGE_SIZE[1], 5)
a = numpy.ones(size, dtype=numpy.uint8)
assert_image(Image.fromarray(a[:, :, 1]), "L", TEST_IMAGE_SIZE)
def test_1d_array() -> None:
a = numpy.ones(5, dtype=numpy.uint8)
assert_image(Image.fromarray(a), "L", (1, 5))
def _test_img_equals_nparray(img: Image.Image, np_img: _typing.NumpyArray) -> None:
assert len(np_img.shape) >= 2
np_size = np_img.shape[1], np_img.shape[0]
assert img.size == np_size
px = img.load()
assert px is not None
for x in range(0, img.size[0], int(img.size[0] / 10)):
for y in range(0, img.size[1], int(img.size[1] / 10)):
assert_deep_equal(px[x, y], np_img[y, x])
def test_16bit() -> None:
with Image.open("Tests/images/16bit.cropped.tif") as img:
np_img = numpy.array(img)
_test_img_equals_nparray(img, np_img)
assert np_img.dtype == numpy.dtype("<u2")
def test_1bit() -> None:
# Test that 1-bit arrays convert to numpy and back
# See: https://github.com/python-pillow/Pillow/issues/350
arr = numpy.array([[1, 0, 0, 1, 0], [0, 1, 0, 0, 0]], "u1")
img = Image.fromarray(arr * 255).convert("1")
assert img.mode == "1"
arr_back = numpy.array(img)
numpy.testing.assert_array_equal(arr, arr_back)
def test_save_tiff_uint16() -> None:
# Tests that we're getting the pixel value in the right byte order.
pixel_value = 0x1234
a = numpy.array(
[pixel_value] * TEST_IMAGE_SIZE[0] * TEST_IMAGE_SIZE[1], dtype=numpy.uint16
)
a.shape = TEST_IMAGE_SIZE
img = Image.fromarray(a)
assert img.getpixel((0, 0)) == pixel_value
@pytest.mark.parametrize(
"mode, dtype",
(
("L", numpy.uint8),
("I", numpy.int32),
("F", numpy.float32),
("LA", numpy.uint8),
("RGB", numpy.uint8),
("RGBA", numpy.uint8),
("RGBX", numpy.uint8),
("CMYK", numpy.uint8),
("YCbCr", numpy.uint8),
("I;16", "<u2"),
("I;16B", ">u2"),
("I;16L", "<u2"),
("HSV", numpy.uint8),
),
)
def test_to_array(mode: str, dtype: npt.DTypeLike) -> None:
img = hopper(mode)
# Resize to non-square
img = img.crop((3, 0, 124, 127))
assert img.size == (121, 127)
np_img = numpy.array(img)
_test_img_equals_nparray(img, np_img)
assert np_img.dtype == dtype
def test_point_lut() -> None:
# See https://github.com/python-pillow/Pillow/issues/439
data = list(range(256)) * 3
lut = numpy.array(data, dtype=numpy.uint8)
im = hopper()
im.point(lut)
def test_putdata() -> None:
# Shouldn't segfault
# See https://github.com/python-pillow/Pillow/issues/1008
im = Image.new("F", (150, 100))
arr = numpy.zeros((15000,), numpy.float32)
im.putdata(arr)
assert len(im.get_flattened_data()) == len(arr)
def test_resize() -> None:
im = hopper()
size = (64, 64)
im_resized = im.resize(numpy.array(size))
assert im_resized.size == size
@pytest.mark.parametrize(
"dtype",
(
bool,
numpy.bool_,
numpy.int8,
numpy.int16,
numpy.int32,
numpy.uint8,
numpy.uint16,
numpy.uint32,
float,
numpy.float32,
numpy.float64,
),
)
def test_roundtrip_eye(dtype: npt.DTypeLike) -> None:
arr = numpy.eye(10, dtype=dtype)
numpy.testing.assert_array_equal(arr, numpy.array(Image.fromarray(arr)))
def test_zero_size() -> None:
# Shouldn't cause floating point exception
# See https://github.com/python-pillow/Pillow/issues/2259
im = Image.fromarray(numpy.empty((0, 0), dtype=numpy.uint8))
assert im.size == (0, 0)
@skip_unless_feature("libtiff")
def test_transposed() -> None:
with Image.open("Tests/images/g4_orientation_5.tif") as im:
assert im.size == (590, 88)
a = numpy.array(im)
assert a.shape == (88, 590)
def test_bool() -> None:
# https://github.com/python-pillow/Pillow/issues/2044
a = numpy.zeros((10, 2), dtype=bool)
a[0][0] = True
im2 = Image.fromarray(a)
assert im2.getpixel((0, 0)) == 255
def test_no_resource_warning_for_numpy_array() -> None:
# https://github.com/python-pillow/Pillow/issues/835
# Arrange
from numpy import array
test_file = "Tests/images/hopper.png"
with Image.open(test_file) as im:
# Act/Assert
with warnings.catch_warnings():
warnings.simplefilter("error")
array(im)
|