1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
import pytest
from PIL import Image, ImageMath, ImageMode
from .helper import convert_to_comparable, skip_unless_feature
codecs = dir(Image.core)
# There are several internal implementations
remarkable_factors = [
# special implementations
1,
2,
3,
4,
5,
6,
# 1xN implementation
(1, 2),
(1, 3),
(1, 4),
(1, 7),
# Nx1 implementation
(2, 1),
(3, 1),
(4, 1),
(7, 1),
# general implementation with different paths
(4, 6),
(5, 6),
(4, 7),
(5, 7),
(19, 17),
]
gradients_image = Image.open("Tests/images/radial_gradients.png")
gradients_image.load()
def test_args_factor():
im = Image.new("L", (10, 10))
assert (4, 4) == im.reduce(3).size
assert (4, 10) == im.reduce((3, 1)).size
assert (10, 4) == im.reduce((1, 3)).size
with pytest.raises(ValueError):
im.reduce(0)
with pytest.raises(TypeError):
im.reduce(2.0)
with pytest.raises(ValueError):
im.reduce((0, 10))
def test_args_box():
im = Image.new("L", (10, 10))
assert (5, 5) == im.reduce(2, (0, 0, 10, 10)).size
assert (1, 1) == im.reduce(2, (5, 5, 6, 6)).size
with pytest.raises(TypeError):
im.reduce(2, "stri")
with pytest.raises(TypeError):
im.reduce(2, 2)
with pytest.raises(ValueError):
im.reduce(2, (0, 0, 11, 10))
with pytest.raises(ValueError):
im.reduce(2, (0, 0, 10, 11))
with pytest.raises(ValueError):
im.reduce(2, (-1, 0, 10, 10))
with pytest.raises(ValueError):
im.reduce(2, (0, -1, 10, 10))
with pytest.raises(ValueError):
im.reduce(2, (0, 5, 10, 5))
with pytest.raises(ValueError):
im.reduce(2, (5, 0, 5, 10))
def test_unsupported_modes():
im = Image.new("P", (10, 10))
with pytest.raises(ValueError):
im.reduce(3)
im = Image.new("1", (10, 10))
with pytest.raises(ValueError):
im.reduce(3)
im = Image.new("I;16", (10, 10))
with pytest.raises(ValueError):
im.reduce(3)
def get_image(mode):
mode_info = ImageMode.getmode(mode)
if mode_info.basetype == "L":
bands = [gradients_image]
for _ in mode_info.bands[1:]:
# rotate previous image
band = bands[-1].transpose(Image.ROTATE_90)
bands.append(band)
# Correct alpha channel by transforming completely transparent pixels.
# Low alpha values also emphasize error after alpha multiplication.
if mode.endswith("A"):
bands[-1] = bands[-1].point(lambda x: int(85 + x / 1.5))
im = Image.merge(mode, bands)
else:
assert len(mode_info.bands) == 1
im = gradients_image.convert(mode)
# change the height to make a not-square image
return im.crop((0, 0, im.width, im.height - 5))
def compare_reduce_with_box(im, factor):
box = (11, 13, 146, 164)
reduced = im.reduce(factor, box=box)
reference = im.crop(box).reduce(factor)
assert reduced == reference
def compare_reduce_with_reference(im, factor, average_diff=0.4, max_diff=1):
"""Image.reduce() should look very similar to Image.resize(BOX).
A reference image is compiled from a large source area
and possible last column and last row.
+-----------+
|..........c|
|..........c|
|..........c|
|rrrrrrrrrrp|
+-----------+
"""
reduced = im.reduce(factor)
if not isinstance(factor, (list, tuple)):
factor = (factor, factor)
reference = Image.new(im.mode, reduced.size)
area_size = (im.size[0] // factor[0], im.size[1] // factor[1])
area_box = (0, 0, area_size[0] * factor[0], area_size[1] * factor[1])
area = im.resize(area_size, Image.BOX, area_box)
reference.paste(area, (0, 0))
if area_size[0] < reduced.size[0]:
assert reduced.size[0] - area_size[0] == 1
last_column_box = (area_box[2], 0, im.size[0], area_box[3])
last_column = im.resize((1, area_size[1]), Image.BOX, last_column_box)
reference.paste(last_column, (area_size[0], 0))
if area_size[1] < reduced.size[1]:
assert reduced.size[1] - area_size[1] == 1
last_row_box = (0, area_box[3], area_box[2], im.size[1])
last_row = im.resize((area_size[0], 1), Image.BOX, last_row_box)
reference.paste(last_row, (0, area_size[1]))
if area_size[0] < reduced.size[0] and area_size[1] < reduced.size[1]:
last_pixel_box = (area_box[2], area_box[3], im.size[0], im.size[1])
last_pixel = im.resize((1, 1), Image.BOX, last_pixel_box)
reference.paste(last_pixel, area_size)
assert_compare_images(reduced, reference, average_diff, max_diff)
def assert_compare_images(a, b, max_average_diff, max_diff=255):
assert a.mode == b.mode, f"got mode {repr(a.mode)}, expected {repr(b.mode)}"
assert a.size == b.size, f"got size {repr(a.size)}, expected {repr(b.size)}"
a, b = convert_to_comparable(a, b)
bands = ImageMode.getmode(a.mode).bands
for band, ach, bch in zip(bands, a.split(), b.split()):
ch_diff = ImageMath.eval("convert(abs(a - b), 'L')", a=ach, b=bch)
ch_hist = ch_diff.histogram()
average_diff = sum(i * num for i, num in enumerate(ch_hist)) / (
a.size[0] * a.size[1]
)
msg = (
f"average pixel value difference {average_diff:.4f} > "
f"expected {max_average_diff:.4f} for '{band}' band"
)
assert max_average_diff >= average_diff, msg
last_diff = [i for i, num in enumerate(ch_hist) if num > 0][-1]
assert max_diff >= last_diff, (
f"max pixel value difference {last_diff} > expected {max_diff} "
f"for '{band}' band"
)
def test_mode_L():
im = get_image("L")
for factor in remarkable_factors:
compare_reduce_with_reference(im, factor)
compare_reduce_with_box(im, factor)
def test_mode_LA():
im = get_image("LA")
for factor in remarkable_factors:
compare_reduce_with_reference(im, factor, 0.8, 5)
# With opaque alpha, an error should be way smaller.
im.putalpha(Image.new("L", im.size, 255))
for factor in remarkable_factors:
compare_reduce_with_reference(im, factor)
compare_reduce_with_box(im, factor)
def test_mode_La():
im = get_image("La")
for factor in remarkable_factors:
compare_reduce_with_reference(im, factor)
compare_reduce_with_box(im, factor)
def test_mode_RGB():
im = get_image("RGB")
for factor in remarkable_factors:
compare_reduce_with_reference(im, factor)
compare_reduce_with_box(im, factor)
def test_mode_RGBA():
im = get_image("RGBA")
for factor in remarkable_factors:
compare_reduce_with_reference(im, factor, 0.8, 5)
# With opaque alpha, an error should be way smaller.
im.putalpha(Image.new("L", im.size, 255))
for factor in remarkable_factors:
compare_reduce_with_reference(im, factor)
compare_reduce_with_box(im, factor)
def test_mode_RGBa():
im = get_image("RGBa")
for factor in remarkable_factors:
compare_reduce_with_reference(im, factor)
compare_reduce_with_box(im, factor)
def test_mode_I():
im = get_image("I")
for factor in remarkable_factors:
compare_reduce_with_reference(im, factor)
compare_reduce_with_box(im, factor)
def test_mode_F():
im = get_image("F")
for factor in remarkable_factors:
compare_reduce_with_reference(im, factor, 0, 0)
compare_reduce_with_box(im, factor)
@skip_unless_feature("jpg_2000")
def test_jpeg2k():
with Image.open("Tests/images/test-card-lossless.jp2") as im:
assert im.reduce(2).size == (320, 240)
|