1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
"""
Tests for resize functionality.
"""
from itertools import permutations
import pytest
from PIL import Image
from .helper import assert_image_equal, assert_image_similar, hopper
class TestImagingCoreResize:
def resize(self, im, size, f):
# Image class independent version of resize.
im.load()
return im._new(im.im.resize(size, f))
def test_nearest_mode(self):
for mode in [
"1",
"P",
"L",
"I",
"F",
"RGB",
"RGBA",
"CMYK",
"YCbCr",
"I;16",
]: # exotic mode
im = hopper(mode)
r = self.resize(im, (15, 12), Image.NEAREST)
assert r.mode == mode
assert r.size == (15, 12)
assert r.im.bands == im.im.bands
def test_convolution_modes(self):
with pytest.raises(ValueError):
self.resize(hopper("1"), (15, 12), Image.BILINEAR)
with pytest.raises(ValueError):
self.resize(hopper("P"), (15, 12), Image.BILINEAR)
with pytest.raises(ValueError):
self.resize(hopper("I;16"), (15, 12), Image.BILINEAR)
for mode in ["L", "I", "F", "RGB", "RGBA", "CMYK", "YCbCr"]:
im = hopper(mode)
r = self.resize(im, (15, 12), Image.BILINEAR)
assert r.mode == mode
assert r.size == (15, 12)
assert r.im.bands == im.im.bands
def test_reduce_filters(self):
for f in [
Image.NEAREST,
Image.BOX,
Image.BILINEAR,
Image.HAMMING,
Image.BICUBIC,
Image.LANCZOS,
]:
r = self.resize(hopper("RGB"), (15, 12), f)
assert r.mode == "RGB"
assert r.size == (15, 12)
def test_enlarge_filters(self):
for f in [
Image.NEAREST,
Image.BOX,
Image.BILINEAR,
Image.HAMMING,
Image.BICUBIC,
Image.LANCZOS,
]:
r = self.resize(hopper("RGB"), (212, 195), f)
assert r.mode == "RGB"
assert r.size == (212, 195)
def test_endianness(self):
# Make an image with one colored pixel, in one channel.
# When resized, that channel should be the same as a GS image.
# Other channels should be unaffected.
# The R and A channels should not swap, which is indicative of
# an endianness issues.
samples = {
"blank": Image.new("L", (2, 2), 0),
"filled": Image.new("L", (2, 2), 255),
"dirty": Image.new("L", (2, 2), 0),
}
samples["dirty"].putpixel((1, 1), 128)
for f in [
Image.NEAREST,
Image.BOX,
Image.BILINEAR,
Image.HAMMING,
Image.BICUBIC,
Image.LANCZOS,
]:
# samples resized with current filter
references = {
name: self.resize(ch, (4, 4), f) for name, ch in samples.items()
}
for mode, channels_set in [
("RGB", ("blank", "filled", "dirty")),
("RGBA", ("blank", "blank", "filled", "dirty")),
("LA", ("filled", "dirty")),
]:
for channels in set(permutations(channels_set)):
# compile image from different channels permutations
im = Image.merge(mode, [samples[ch] for ch in channels])
resized = self.resize(im, (4, 4), f)
for i, ch in enumerate(resized.split()):
# check what resized channel in image is the same
# as separately resized channel
assert_image_equal(ch, references[channels[i]])
def test_enlarge_zero(self):
for f in [
Image.NEAREST,
Image.BOX,
Image.BILINEAR,
Image.HAMMING,
Image.BICUBIC,
Image.LANCZOS,
]:
r = self.resize(Image.new("RGB", (0, 0), "white"), (212, 195), f)
assert r.mode == "RGB"
assert r.size == (212, 195)
assert r.getdata()[0] == (0, 0, 0)
def test_unknown_filter(self):
with pytest.raises(ValueError):
self.resize(hopper(), (10, 10), 9)
@pytest.fixture
def gradients_image():
im = Image.open("Tests/images/radial_gradients.png")
im.load()
try:
yield im
finally:
im.close()
class TestReducingGapResize:
def test_reducing_gap_values(self, gradients_image):
ref = gradients_image.resize((52, 34), Image.BICUBIC, reducing_gap=None)
im = gradients_image.resize((52, 34), Image.BICUBIC)
assert_image_equal(ref, im)
with pytest.raises(ValueError):
gradients_image.resize((52, 34), Image.BICUBIC, reducing_gap=0)
with pytest.raises(ValueError):
gradients_image.resize((52, 34), Image.BICUBIC, reducing_gap=0.99)
def test_reducing_gap_1(self, gradients_image):
for box, epsilon in [
(None, 4),
((1.1, 2.2, 510.8, 510.9), 4),
((3, 10, 410, 256), 10),
]:
ref = gradients_image.resize((52, 34), Image.BICUBIC, box=box)
im = gradients_image.resize(
(52, 34), Image.BICUBIC, box=box, reducing_gap=1.0
)
with pytest.raises(AssertionError):
assert_image_equal(ref, im)
assert_image_similar(ref, im, epsilon)
def test_reducing_gap_2(self, gradients_image):
for box, epsilon in [
(None, 1.5),
((1.1, 2.2, 510.8, 510.9), 1.5),
((3, 10, 410, 256), 1),
]:
ref = gradients_image.resize((52, 34), Image.BICUBIC, box=box)
im = gradients_image.resize(
(52, 34), Image.BICUBIC, box=box, reducing_gap=2.0
)
with pytest.raises(AssertionError):
assert_image_equal(ref, im)
assert_image_similar(ref, im, epsilon)
def test_reducing_gap_3(self, gradients_image):
for box, epsilon in [
(None, 1),
((1.1, 2.2, 510.8, 510.9), 1),
((3, 10, 410, 256), 0.5),
]:
ref = gradients_image.resize((52, 34), Image.BICUBIC, box=box)
im = gradients_image.resize(
(52, 34), Image.BICUBIC, box=box, reducing_gap=3.0
)
with pytest.raises(AssertionError):
assert_image_equal(ref, im)
assert_image_similar(ref, im, epsilon)
def test_reducing_gap_8(self, gradients_image):
for box in [None, (1.1, 2.2, 510.8, 510.9), (3, 10, 410, 256)]:
ref = gradients_image.resize((52, 34), Image.BICUBIC, box=box)
im = gradients_image.resize(
(52, 34), Image.BICUBIC, box=box, reducing_gap=8.0
)
assert_image_equal(ref, im)
def test_box_filter(self, gradients_image):
for box, epsilon in [
((0, 0, 512, 512), 5.5),
((0.9, 1.7, 128, 128), 9.5),
]:
ref = gradients_image.resize((52, 34), Image.BOX, box=box)
im = gradients_image.resize((52, 34), Image.BOX, box=box, reducing_gap=1.0)
assert_image_similar(ref, im, epsilon)
class TestImageResize:
def test_resize(self):
def resize(mode, size):
out = hopper(mode).resize(size)
assert out.mode == mode
assert out.size == size
for mode in "1", "P", "L", "RGB", "I", "F":
resize(mode, (112, 103))
resize(mode, (188, 214))
# Test unknown resampling filter
with hopper() as im:
with pytest.raises(ValueError):
im.resize((10, 10), "unknown")
def test_default_filter(self):
for mode in "L", "RGB", "I", "F":
im = hopper(mode)
assert im.resize((20, 20), Image.BICUBIC) == im.resize((20, 20))
for mode in "1", "P":
im = hopper(mode)
assert im.resize((20, 20), Image.NEAREST) == im.resize((20, 20))
|