File: test_image_resize.py

package info (click to toggle)
pillow 8.1.2%2Bdfsg-0.3%2Bdeb11u2
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 65,628 kB
  • sloc: python: 35,630; ansic: 31,009; makefile: 388; javascript: 114; sh: 77
file content (252 lines) | stat: -rw-r--r-- 8,230 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
"""
Tests for resize functionality.
"""
from itertools import permutations

import pytest

from PIL import Image

from .helper import assert_image_equal, assert_image_similar, hopper


class TestImagingCoreResize:
    def resize(self, im, size, f):
        # Image class independent version of resize.
        im.load()
        return im._new(im.im.resize(size, f))

    def test_nearest_mode(self):
        for mode in [
            "1",
            "P",
            "L",
            "I",
            "F",
            "RGB",
            "RGBA",
            "CMYK",
            "YCbCr",
            "I;16",
        ]:  # exotic mode
            im = hopper(mode)
            r = self.resize(im, (15, 12), Image.NEAREST)
            assert r.mode == mode
            assert r.size == (15, 12)
            assert r.im.bands == im.im.bands

    def test_convolution_modes(self):
        with pytest.raises(ValueError):
            self.resize(hopper("1"), (15, 12), Image.BILINEAR)
        with pytest.raises(ValueError):
            self.resize(hopper("P"), (15, 12), Image.BILINEAR)
        with pytest.raises(ValueError):
            self.resize(hopper("I;16"), (15, 12), Image.BILINEAR)
        for mode in ["L", "I", "F", "RGB", "RGBA", "CMYK", "YCbCr"]:
            im = hopper(mode)
            r = self.resize(im, (15, 12), Image.BILINEAR)
            assert r.mode == mode
            assert r.size == (15, 12)
            assert r.im.bands == im.im.bands

    def test_reduce_filters(self):
        for f in [
            Image.NEAREST,
            Image.BOX,
            Image.BILINEAR,
            Image.HAMMING,
            Image.BICUBIC,
            Image.LANCZOS,
        ]:
            r = self.resize(hopper("RGB"), (15, 12), f)
            assert r.mode == "RGB"
            assert r.size == (15, 12)

    def test_enlarge_filters(self):
        for f in [
            Image.NEAREST,
            Image.BOX,
            Image.BILINEAR,
            Image.HAMMING,
            Image.BICUBIC,
            Image.LANCZOS,
        ]:
            r = self.resize(hopper("RGB"), (212, 195), f)
            assert r.mode == "RGB"
            assert r.size == (212, 195)

    def test_endianness(self):
        # Make an image with one colored pixel, in one channel.
        # When resized, that channel should be the same as a GS image.
        # Other channels should be unaffected.
        # The R and A channels should not swap, which is indicative of
        # an endianness issues.

        samples = {
            "blank": Image.new("L", (2, 2), 0),
            "filled": Image.new("L", (2, 2), 255),
            "dirty": Image.new("L", (2, 2), 0),
        }
        samples["dirty"].putpixel((1, 1), 128)

        for f in [
            Image.NEAREST,
            Image.BOX,
            Image.BILINEAR,
            Image.HAMMING,
            Image.BICUBIC,
            Image.LANCZOS,
        ]:
            # samples resized with current filter
            references = {
                name: self.resize(ch, (4, 4), f) for name, ch in samples.items()
            }

            for mode, channels_set in [
                ("RGB", ("blank", "filled", "dirty")),
                ("RGBA", ("blank", "blank", "filled", "dirty")),
                ("LA", ("filled", "dirty")),
            ]:
                for channels in set(permutations(channels_set)):
                    # compile image from different channels permutations
                    im = Image.merge(mode, [samples[ch] for ch in channels])
                    resized = self.resize(im, (4, 4), f)

                    for i, ch in enumerate(resized.split()):
                        # check what resized channel in image is the same
                        # as separately resized channel
                        assert_image_equal(ch, references[channels[i]])

    def test_enlarge_zero(self):
        for f in [
            Image.NEAREST,
            Image.BOX,
            Image.BILINEAR,
            Image.HAMMING,
            Image.BICUBIC,
            Image.LANCZOS,
        ]:
            r = self.resize(Image.new("RGB", (0, 0), "white"), (212, 195), f)
            assert r.mode == "RGB"
            assert r.size == (212, 195)
            assert r.getdata()[0] == (0, 0, 0)

    def test_unknown_filter(self):
        with pytest.raises(ValueError):
            self.resize(hopper(), (10, 10), 9)


@pytest.fixture
def gradients_image():
    im = Image.open("Tests/images/radial_gradients.png")
    im.load()
    try:
        yield im
    finally:
        im.close()


class TestReducingGapResize:
    def test_reducing_gap_values(self, gradients_image):
        ref = gradients_image.resize((52, 34), Image.BICUBIC, reducing_gap=None)
        im = gradients_image.resize((52, 34), Image.BICUBIC)
        assert_image_equal(ref, im)

        with pytest.raises(ValueError):
            gradients_image.resize((52, 34), Image.BICUBIC, reducing_gap=0)

        with pytest.raises(ValueError):
            gradients_image.resize((52, 34), Image.BICUBIC, reducing_gap=0.99)

    def test_reducing_gap_1(self, gradients_image):
        for box, epsilon in [
            (None, 4),
            ((1.1, 2.2, 510.8, 510.9), 4),
            ((3, 10, 410, 256), 10),
        ]:
            ref = gradients_image.resize((52, 34), Image.BICUBIC, box=box)
            im = gradients_image.resize(
                (52, 34), Image.BICUBIC, box=box, reducing_gap=1.0
            )

            with pytest.raises(AssertionError):
                assert_image_equal(ref, im)

            assert_image_similar(ref, im, epsilon)

    def test_reducing_gap_2(self, gradients_image):
        for box, epsilon in [
            (None, 1.5),
            ((1.1, 2.2, 510.8, 510.9), 1.5),
            ((3, 10, 410, 256), 1),
        ]:
            ref = gradients_image.resize((52, 34), Image.BICUBIC, box=box)
            im = gradients_image.resize(
                (52, 34), Image.BICUBIC, box=box, reducing_gap=2.0
            )

            with pytest.raises(AssertionError):
                assert_image_equal(ref, im)

            assert_image_similar(ref, im, epsilon)

    def test_reducing_gap_3(self, gradients_image):
        for box, epsilon in [
            (None, 1),
            ((1.1, 2.2, 510.8, 510.9), 1),
            ((3, 10, 410, 256), 0.5),
        ]:
            ref = gradients_image.resize((52, 34), Image.BICUBIC, box=box)
            im = gradients_image.resize(
                (52, 34), Image.BICUBIC, box=box, reducing_gap=3.0
            )

            with pytest.raises(AssertionError):
                assert_image_equal(ref, im)

            assert_image_similar(ref, im, epsilon)

    def test_reducing_gap_8(self, gradients_image):
        for box in [None, (1.1, 2.2, 510.8, 510.9), (3, 10, 410, 256)]:
            ref = gradients_image.resize((52, 34), Image.BICUBIC, box=box)
            im = gradients_image.resize(
                (52, 34), Image.BICUBIC, box=box, reducing_gap=8.0
            )

            assert_image_equal(ref, im)

    def test_box_filter(self, gradients_image):
        for box, epsilon in [
            ((0, 0, 512, 512), 5.5),
            ((0.9, 1.7, 128, 128), 9.5),
        ]:
            ref = gradients_image.resize((52, 34), Image.BOX, box=box)
            im = gradients_image.resize((52, 34), Image.BOX, box=box, reducing_gap=1.0)

            assert_image_similar(ref, im, epsilon)


class TestImageResize:
    def test_resize(self):
        def resize(mode, size):
            out = hopper(mode).resize(size)
            assert out.mode == mode
            assert out.size == size

        for mode in "1", "P", "L", "RGB", "I", "F":
            resize(mode, (112, 103))
            resize(mode, (188, 214))

        # Test unknown resampling filter
        with hopper() as im:
            with pytest.raises(ValueError):
                im.resize((10, 10), "unknown")

    def test_default_filter(self):
        for mode in "L", "RGB", "I", "F":
            im = hopper(mode)
            assert im.resize((20, 20), Image.BICUBIC) == im.resize((20, 20))

        for mode in "1", "P":
            im = hopper(mode)
            assert im.resize((20, 20), Image.NEAREST) == im.resize((20, 20))