File: test_imageops.py

package info (click to toggle)
pillow 8.1.2%2Bdfsg-0.3%2Bdeb11u2
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 65,628 kB
  • sloc: python: 35,630; ansic: 31,009; makefile: 388; javascript: 114; sh: 77
file content (364 lines) | stat: -rw-r--r-- 10,887 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import pytest

from PIL import Image, ImageDraw, ImageOps, ImageStat, features

from .helper import (
    assert_image_equal,
    assert_image_similar,
    assert_tuple_approx_equal,
    hopper,
)


class Deformer:
    def getmesh(self, im):
        x, y = im.size
        return [((0, 0, x, y), (0, 0, x, 0, x, y, y, 0))]


deformer = Deformer()


def test_sanity():

    ImageOps.autocontrast(hopper("L"))
    ImageOps.autocontrast(hopper("RGB"))

    ImageOps.autocontrast(hopper("L"), cutoff=10)
    ImageOps.autocontrast(hopper("L"), cutoff=(2, 10))
    ImageOps.autocontrast(hopper("L"), ignore=[0, 255])
    ImageOps.autocontrast(hopper("L"), mask=hopper("L"))

    ImageOps.colorize(hopper("L"), (0, 0, 0), (255, 255, 255))
    ImageOps.colorize(hopper("L"), "black", "white")

    ImageOps.pad(hopper("L"), (128, 128))
    ImageOps.pad(hopper("RGB"), (128, 128))

    ImageOps.crop(hopper("L"), 1)
    ImageOps.crop(hopper("RGB"), 1)

    ImageOps.deform(hopper("L"), deformer)
    ImageOps.deform(hopper("RGB"), deformer)

    ImageOps.equalize(hopper("L"))
    ImageOps.equalize(hopper("RGB"))

    ImageOps.expand(hopper("L"), 1)
    ImageOps.expand(hopper("RGB"), 1)
    ImageOps.expand(hopper("L"), 2, "blue")
    ImageOps.expand(hopper("RGB"), 2, "blue")

    ImageOps.fit(hopper("L"), (128, 128))
    ImageOps.fit(hopper("RGB"), (128, 128))

    ImageOps.flip(hopper("L"))
    ImageOps.flip(hopper("RGB"))

    ImageOps.grayscale(hopper("L"))
    ImageOps.grayscale(hopper("RGB"))

    ImageOps.invert(hopper("L"))
    ImageOps.invert(hopper("RGB"))

    ImageOps.mirror(hopper("L"))
    ImageOps.mirror(hopper("RGB"))

    ImageOps.posterize(hopper("L"), 4)
    ImageOps.posterize(hopper("RGB"), 4)

    ImageOps.solarize(hopper("L"))
    ImageOps.solarize(hopper("RGB"))

    ImageOps.exif_transpose(hopper("L"))
    ImageOps.exif_transpose(hopper("RGB"))


def test_1pxfit():
    # Division by zero in equalize if image is 1 pixel high
    newimg = ImageOps.fit(hopper("RGB").resize((1, 1)), (35, 35))
    assert newimg.size == (35, 35)

    newimg = ImageOps.fit(hopper("RGB").resize((1, 100)), (35, 35))
    assert newimg.size == (35, 35)

    newimg = ImageOps.fit(hopper("RGB").resize((100, 1)), (35, 35))
    assert newimg.size == (35, 35)


def test_fit_same_ratio():
    # The ratio for this image is 1000.0 / 755 = 1.3245033112582782
    # If the ratios are not acknowledged to be the same,
    # and Pillow attempts to adjust the width to
    # 1.3245033112582782 * 755 = 1000.0000000000001
    # then centering this greater width causes a negative x offset when cropping
    with Image.new("RGB", (1000, 755)) as im:
        new_im = ImageOps.fit(im, (1000, 755))
        assert new_im.size == (1000, 755)


def test_pad():
    # Same ratio
    im = hopper()
    new_size = (im.width * 2, im.height * 2)
    new_im = ImageOps.pad(im, new_size)
    assert new_im.size == new_size

    for label, color, new_size in [
        ("h", None, (im.width * 4, im.height * 2)),
        ("v", "#f00", (im.width * 2, im.height * 4)),
    ]:
        for i, centering in enumerate([(0, 0), (0.5, 0.5), (1, 1)]):
            new_im = ImageOps.pad(im, new_size, color=color, centering=centering)
            assert new_im.size == new_size

            with Image.open(
                "Tests/images/imageops_pad_" + label + "_" + str(i) + ".jpg"
            ) as target:
                assert_image_similar(new_im, target, 6)


def test_pil163():
    # Division by zero in equalize if < 255 pixels in image (@PIL163)

    i = hopper("RGB").resize((15, 16))

    ImageOps.equalize(i.convert("L"))
    ImageOps.equalize(i.convert("P"))
    ImageOps.equalize(i.convert("RGB"))


def test_scale():
    # Test the scaling function
    i = hopper("L").resize((50, 50))

    with pytest.raises(ValueError):
        ImageOps.scale(i, -1)

    newimg = ImageOps.scale(i, 1)
    assert newimg.size == (50, 50)

    newimg = ImageOps.scale(i, 2)
    assert newimg.size == (100, 100)

    newimg = ImageOps.scale(i, 0.5)
    assert newimg.size == (25, 25)


def test_colorize_2color():
    # Test the colorizing function with 2-color functionality

    # Open test image (256px by 10px, black to white)
    with Image.open("Tests/images/bw_gradient.png") as im:
        im = im.convert("L")

    # Create image with original 2-color functionality
    im_test = ImageOps.colorize(im, "red", "green")

    # Test output image (2-color)
    left = (0, 1)
    middle = (127, 1)
    right = (255, 1)
    assert_tuple_approx_equal(
        im_test.getpixel(left),
        (255, 0, 0),
        threshold=1,
        msg="black test pixel incorrect",
    )
    assert_tuple_approx_equal(
        im_test.getpixel(middle),
        (127, 63, 0),
        threshold=1,
        msg="mid test pixel incorrect",
    )
    assert_tuple_approx_equal(
        im_test.getpixel(right),
        (0, 127, 0),
        threshold=1,
        msg="white test pixel incorrect",
    )


def test_colorize_2color_offset():
    # Test the colorizing function with 2-color functionality and offset

    # Open test image (256px by 10px, black to white)
    with Image.open("Tests/images/bw_gradient.png") as im:
        im = im.convert("L")

    # Create image with original 2-color functionality with offsets
    im_test = ImageOps.colorize(
        im, black="red", white="green", blackpoint=50, whitepoint=100
    )

    # Test output image (2-color) with offsets
    left = (25, 1)
    middle = (75, 1)
    right = (125, 1)
    assert_tuple_approx_equal(
        im_test.getpixel(left),
        (255, 0, 0),
        threshold=1,
        msg="black test pixel incorrect",
    )
    assert_tuple_approx_equal(
        im_test.getpixel(middle),
        (127, 63, 0),
        threshold=1,
        msg="mid test pixel incorrect",
    )
    assert_tuple_approx_equal(
        im_test.getpixel(right),
        (0, 127, 0),
        threshold=1,
        msg="white test pixel incorrect",
    )


def test_colorize_3color_offset():
    # Test the colorizing function with 3-color functionality and offset

    # Open test image (256px by 10px, black to white)
    with Image.open("Tests/images/bw_gradient.png") as im:
        im = im.convert("L")

    # Create image with new three color functionality with offsets
    im_test = ImageOps.colorize(
        im,
        black="red",
        white="green",
        mid="blue",
        blackpoint=50,
        whitepoint=200,
        midpoint=100,
    )

    # Test output image (3-color) with offsets
    left = (25, 1)
    left_middle = (75, 1)
    middle = (100, 1)
    right_middle = (150, 1)
    right = (225, 1)
    assert_tuple_approx_equal(
        im_test.getpixel(left),
        (255, 0, 0),
        threshold=1,
        msg="black test pixel incorrect",
    )
    assert_tuple_approx_equal(
        im_test.getpixel(left_middle),
        (127, 0, 127),
        threshold=1,
        msg="low-mid test pixel incorrect",
    )
    assert_tuple_approx_equal(
        im_test.getpixel(middle), (0, 0, 255), threshold=1, msg="mid incorrect"
    )
    assert_tuple_approx_equal(
        im_test.getpixel(right_middle),
        (0, 63, 127),
        threshold=1,
        msg="high-mid test pixel incorrect",
    )
    assert_tuple_approx_equal(
        im_test.getpixel(right),
        (0, 127, 0),
        threshold=1,
        msg="white test pixel incorrect",
    )


def test_exif_transpose():
    exts = [".jpg"]
    if features.check("webp") and features.check("webp_anim"):
        exts.append(".webp")
    for ext in exts:
        with Image.open("Tests/images/hopper" + ext) as base_im:

            def check(orientation_im):
                for im in [
                    orientation_im,
                    orientation_im.copy(),
                ]:  # ImageFile  # Image
                    if orientation_im is base_im:
                        assert "exif" not in im.info
                    else:
                        original_exif = im.info["exif"]
                    transposed_im = ImageOps.exif_transpose(im)
                    assert_image_similar(base_im, transposed_im, 17)
                    if orientation_im is base_im:
                        assert "exif" not in im.info
                    else:
                        assert transposed_im.info["exif"] != original_exif

                        assert 0x0112 not in transposed_im.getexif()

                    # Repeat the operation to test that it does not keep transposing
                    transposed_im2 = ImageOps.exif_transpose(transposed_im)
                    assert_image_equal(transposed_im2, transposed_im)

            check(base_im)
            for i in range(2, 9):
                with Image.open(
                    "Tests/images/hopper_orientation_" + str(i) + ext
                ) as orientation_im:
                    check(orientation_im)


def test_autocontrast_cutoff():
    # Test the cutoff argument of autocontrast
    with Image.open("Tests/images/bw_gradient.png") as img:

        def autocontrast(cutoff):
            return ImageOps.autocontrast(img, cutoff).histogram()

        assert autocontrast(10) == autocontrast((10, 10))
        assert autocontrast(10) != autocontrast((1, 10))


def test_autocontrast_mask_toy_input():
    # Test the mask argument of autocontrast
    with Image.open("Tests/images/bw_gradient.png") as img:

        rect_mask = Image.new("L", img.size, 0)
        draw = ImageDraw.Draw(rect_mask)
        x0 = img.size[0] // 4
        y0 = img.size[1] // 4
        x1 = 3 * img.size[0] // 4
        y1 = 3 * img.size[1] // 4
        draw.rectangle((x0, y0, x1, y1), fill=255)

        result = ImageOps.autocontrast(img, mask=rect_mask)
        result_nomask = ImageOps.autocontrast(img)

        assert result != result_nomask
        assert ImageStat.Stat(result, mask=rect_mask).median == [127]
        assert ImageStat.Stat(result_nomask).median == [128]


def test_auto_contrast_mask_real_input():
    # Test the autocontrast with a rectangular mask
    with Image.open("Tests/images/iptc.jpg") as img:

        rect_mask = Image.new("L", img.size, 0)
        draw = ImageDraw.Draw(rect_mask)
        x0, y0 = img.size[0] // 2, img.size[1] // 2
        x1, y1 = img.size[0] - 40, img.size[1]
        draw.rectangle((x0, y0, x1, y1), fill=255)

        result = ImageOps.autocontrast(img, mask=rect_mask)
        result_nomask = ImageOps.autocontrast(img)

        assert result_nomask != result
        assert_tuple_approx_equal(
            ImageStat.Stat(result, mask=rect_mask).median,
            [195, 202, 184],
            threshold=2,
            msg="autocontrast with mask pixel incorrect",
        )
        assert_tuple_approx_equal(
            ImageStat.Stat(result_nomask).median,
            [119, 106, 79],
            threshold=2,
            msg="autocontrast without mask pixel incorrect",
        )