File: EMath.cpp

package info (click to toggle)
pinball 0.3.20201218-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 8,452 kB
  • sloc: cpp: 15,230; makefile: 840; sh: 381; xml: 24
file content (408 lines) | stat: -rw-r--r-- 12,026 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
/***************************************************************************
                          EMath.cpp  -  description
                             -------------------
    begin                : Sat Jan 29 2000
    copyright            : (C) 2000 by
    email                :
 ***************************************************************************/

#include <math.h>
#include <stdlib.h>

#include "Private.h"
#include "EMath.h"

#if EM_USE_FAST_FLOAT2INT
IntOrFloat gBias; //.i = (23 + 127) << 23;
#endif

const Matrix EMath::identityMatrix =
{
	{
  	/* 3x3 identity */
   	{ 1.0f, 0.0f, 0.0f },
   	{ 0.0f, 1.0f, 0.0f },
   	{ 0.0f, 0.0f, 1.0f },
  },
	/* zero translation */
	{ 0.0f, 0.0f, 0.0f }
};

EMath::EMath() {
}

EMath::~EMath() {
}

#ifdef PINBALL_TODO
void EMath::applyMatrix(const Matrix & mtx, const Vertex3D & vtxIn, Vertex3D & vtxOut) {
  vtxOut.x = vtxIn.x * mtx.v[0][0] + vtxIn.y * mtx.v[0][1] + vtxIn.z * mtx.v[0][2] + mtx.t[0];
  vtxOut.y = vtxIn.x * mtx.v[1][0] + vtxIn.y * mtx.v[1][1] + vtxIn.z * mtx.v[1][2] + mtx.t[1];
  vtxOut.z = vtxIn.x * mtx.v[2][0] + vtxIn.y * mtx.v[2][1] + vtxIn.z * mtx.v[2][2] + mtx.t[2];
}
#endif

void EMath::applyMatrixTrans(const Matrix & mtx, const Vertex3D & vtxIn, Vertex3D & vtxOut) {
	vtxOut.x = vtxIn.x + mtx.t[0];
	vtxOut.y = vtxIn.y + mtx.t[1];
	vtxOut.z = vtxIn.z + mtx.t[2];
}

void EMath::crossProduct(const Vertex3D & vtxA, const Vertex3D & vtxB, Vertex3D & vtxOut) {
	vtxOut.x = (vtxA.y * vtxB.z) - (vtxA.z * vtxB.y);
	vtxOut.y = (vtxA.z * vtxB.x) - (vtxA.x * vtxB.z);
	vtxOut.z = (vtxA.x * vtxB.y) - (vtxA.y * vtxB.x);
}

float EMath::dotProduct(const Vertex3D & vtxA, const Vertex3D & vtxB) {
	return vtxA.x * vtxB.x + vtxA.y * vtxB.y + vtxA.z * vtxB.z;
}

float EMath::emAcos(float f) {
	return (float) acos(EM_PI_2*f);
}

float EMath::emAtan(float f) {
	return (float)atan(EM_PI_2*f);
}

float EMath::emCos(float f) {
	return (float)cos(EM_PI_2*f);
}

float EMath::emRand() {
	return ((float)(rand()-(RAND_MAX/2))/(RAND_MAX/2));
}

float EMath::emSin(float f) {
	return (float)sin(EM_PI_2*f);
}

float EMath::emSqrt(float f) {
	return (float)sqrt(f);
}

float EMath::emTan(float f) {
	return (float)tan(EM_PI_2*f);
}

float EMath::emPow(float x, float y) {
	return (float)pow(x, y);
}

/* */
void EMath::getTransformationMatrix(Matrix & mtx, const Vertex3D & vtxT, 
                                    const Vertex3D & vtxR, const Vertex3D & vtxS) {
	float sin_x = EMath::emSin(vtxR.x);
  float cos_x = EMath::emCos(vtxR.x);

  float sin_y = EMath::emSin(vtxR.y);
  float cos_y = EMath::emCos(vtxR.y);

  float sin_z = EMath::emSin(vtxR.z);
  float cos_z = EMath::emCos(vtxR.z);

  float sinx_siny = sin_x * sin_y;
  float cosx_siny = cos_x * sin_y;

  mtx.v[0][0] = cos_y * cos_z * vtxS.x;
  mtx.v[0][1] = cos_y * sin_z;
  mtx.v[0][2] = -sin_y;

  mtx.v[1][0] = (sinx_siny * cos_z) - (cos_x * sin_z);
  mtx.v[1][1] = (sinx_siny * sin_z) + (cos_x * cos_z) * vtxS.y;
  mtx.v[1][2] = sin_x * cos_y;

  mtx.v[2][0] = (cosx_siny * cos_z) + (sin_x * sin_z);
  mtx.v[2][1] = (cosx_siny * sin_z) - (sin_x * cos_z);
  mtx.v[2][2] = cos_x * cos_y * vtxS.z;

  mtx.t[0] = vtxT.x;
  mtx.t[1] = vtxT.y;
  mtx.t[2] = vtxT.z;
}

void EMath::getTransformationMatrix(Matrix & mtx, const Vertex3D & vtxT, 
                                    const Quaternion & qRot, const Vertex3D & vtxS) {
  // a lean function for filling m[16] with
  // a 4x4 transformation matrix based on 
  // translation v and rotation q
  // This routine would likely be used by an opengl
  // programmer calling glmultmatrix()
  mtx.v[0][0] = 1 - 2*(qRot.y*qRot.y + qRot.z*qRot.z) * vtxS.x;
  mtx.v[0][1] = 2*(qRot.x*qRot.y + qRot.w*qRot.z);
  mtx.v[0][2] = 2*(qRot.x*qRot.z - qRot.w*qRot.y);

  mtx.v[1][0] = 2*(qRot.x*qRot.y - qRot.w*qRot.z);	
  mtx.v[1][1] = 1 - 2*(qRot.x*qRot.x + qRot.z*qRot.z) * vtxS.y;
  mtx.v[1][2] = 2*(qRot.y*qRot.z + qRot.w*qRot.x);

  mtx.v[2][0] = 2*(qRot.x*qRot.z + qRot.w*qRot.y); 
  mtx.v[2][1] = 2*(qRot.y*qRot.z - qRot.w*qRot.x); 
  mtx.v[2][2] = 1-2*(qRot.x*qRot.x + qRot.y*qRot.y) * vtxS.z;
#ifdef PINBALL_TODO
  mtx.v[0][0] = 1 - 2*(qRot.y*qRot.y + qRot.z*qRot.z);
  mtx.v[1][0] = 2*(qRot.x*qRot.y + qRot.w*qRot.z);
  mtx.v[2][0] = 2*(qRot.x*qRot.z - qRot.w*qRot.y);

  mtx.v[0][1] = 2*(qRot.x*qRot.y - qRot.w*qRot.z);	
  mtx.v[1][1] = 1 - 2*(qRot.x*qRot.x + qRot.z*qRot.z);
  mtx.v[2][1] = 2*(qRot.y*qRot.z + qRot.w*qRot.x);

  mtx.v[0][2] = 2*(qRot.x*qRot.z + qRot.w*qRot.y); 
  mtx.v[1][2] = 2*(qRot.y*qRot.z - qRot.w*qRot.x); 
  mtx.v[2][2] = 1-2*(qRot.x*qRot.x + qRot.y*qRot.y);
#endif
  mtx.t[0] = vtxT.x;
  mtx.t[1] = vtxT.y;
  mtx.t[2] = vtxT.z;
}


/* Stolen from allegro. Thanks!! */
void EMath::inverse(const Matrix & mtx, Matrix & inv) {
	Matrix mtxTmp = mtx;
	inv = identityMatrix;

  int cc;
  int rowMax; // Points to max abs value row in this column
  int row;
  float tmp;

  // Go through columns
  for (int c=0; c<3; c++) {
    // Find the row with max value in this column
    rowMax = c;
    for (int r=c+1; r<3; r++) {
      if (fabs(mtxTmp.v[c][r]) > fabs(mtxTmp.v[c][rowMax])) {
        rowMax = r;
      }
    }

    // If the max value here is 0, we can't invert.  Return identity.
    if (mtx.v[rowMax][c] == 0.0f) {
			inv = identityMatrix;
      return;
		}

    // Swap row "rowMax" with row "c"
    for (cc=0; cc<3; cc++) {
      tmp = mtxTmp.v[cc][c];
      mtxTmp.v[cc][c] = mtxTmp.v[cc][rowMax];
      mtxTmp.v[cc][rowMax] = tmp;
      tmp = inv.v[cc][c];
      inv.v[cc][c] = inv.v[cc][rowMax];
      inv.v[cc][rowMax] = tmp;
    }

    // Now everything we do is on row "c".
    // Set the max cell to 1 by dividing the entire row by that value
    tmp = mtxTmp.v[c][c];
    for (cc=0; cc<3; cc++) {
      mtxTmp.v[cc][c] /= tmp;
      inv.v[cc][c] /= tmp;
    }

    // Now do the other rows, so that this column only has a 1 and 0's
    for (row = 0; row < 3; row++) {
      if (row != c) {
        tmp = mtxTmp.v[c][row];
        for (cc=0; cc<3; cc++) {
          mtxTmp.v[cc][row] -= mtxTmp.v[cc][c] * tmp;
          inv.v[cc][row] -= inv.v[cc][c] * tmp;
        }
      }
    }
    
  }
  
  inv.t[0] = -mtx.t[0];
  inv.t[1] = -mtx.t[1];
  inv.t[2] = -mtx.t[2];
}

/* mtxA or mtxB NOT allowed to be the same as out.
 */
void EMath::matrixMulti(const Matrix & mtxA, const Matrix & mtxB, Matrix & mtxOut) {
  for (int a=0; a<3; a++) {
    for (int b=0; b<3; b++) {
      mtxOut.v[a][b] =
	(mtxA.v[0][b] * mtxB.v[a][0]) +
	(mtxA.v[1][b] * mtxB.v[a][1]) +
	(mtxA.v[2][b] * mtxB.v[a][2]);
    }
    
    mtxOut.t[a] =
      (mtxA.t[0] * mtxB.v[a][0]) +
      (mtxA.t[1] * mtxB.v[a][1]) +
      (mtxA.t[2] * mtxB.v[a][2]) +
      mtxB.t[a];
  }
}


void EMath::planeLineIntersection(const Vertex3D & nrml, float dist, 
				  const Vertex3D & vtxA, const Vertex3D & vtxB, Vertex3D & vtxDiff) {
  // returns the point where the line p1-p2 intersects the plane n&d
  EMath::subst(vtxB, vtxA, vtxDiff);
  float dot = EMath::dotProduct(nrml, vtxDiff);
  float k = -(dist + EMath::dotProduct(nrml, vtxA) ) / dot;
  EMath::scaleVertex(vtxDiff, k);
  EMath::add(vtxA, vtxDiff);
}


/* */
void EMath::normalizeVector(Vertex3D & vtx) {
  float length_1;
  float length = EMath::vectorLength(vtx);
  if (EM_ZERO(length)) {
    vtx.x = 0.0f;
    vtx.y = 1.0f;
    vtx.z = 0.0f;
    return;
  }
  length_1 = 1.0f / length;
  vtx.x *= length_1;
  vtx.y *= length_1;
  vtx.z *= length_1;
}

/* */
void EMath::scaleVector(Vertex3D & vtx, float sc) {
  vtx.x *= sc;
  vtx.y *= sc;
  vtx.z *= sc;
}

/* Projection of vector A onto B. */
float EMath::projection(const Vertex3D & vtxA, const Vertex3D & vtxB, Vertex3D & vtxOut) {
  float k =(vtxA.x * vtxB.x  +  vtxA.y * vtxB.y  +  vtxA.z * vtxB.z) /
		(vtxB.x * vtxB.x  +  vtxB.y * vtxB.y  +  vtxB.z * vtxB.z);
  
  vtxOut.x = k * vtxB.x;
  vtxOut.y = k * vtxB.y;
  vtxOut.z = k * vtxB.z;
  
  return k;
}

float EMath::perpendicular(const Vertex3D & vtxA, const Vertex3D & vtxB, Vertex3D & vtxOut) {
  float k =(vtxA.x * vtxB.x  +  vtxA.y * vtxB.y  +  vtxA.z * vtxB.z) /
    (vtxB.x * vtxB.x  +  vtxB.y * vtxB.y  +  vtxB.z * vtxB.z);
  
  vtxOut.x = vtxA.x - k * vtxB.x;
  vtxOut.y = vtxA.y - k * vtxB.y;
  vtxOut.z = vtxA.z - k * vtxB.z;
  
  return k;
}

/* */
float EMath::polygonZNormal(const Vertex3D & edgeA, const Vertex3D & edgeB, 
			    const Vertex3D & edgeC) {
  return ((edgeB.x - edgeA.x) * (edgeC.y - edgeB.y)) - ((edgeC.x - edgeB.x) * (edgeB.y - edgeA.y));
}


/* First the projection of vtxIn onto vtxWall is counted.
 * the reflection is then vtxOut = vtxIn - 2*vtxPro.
 * If k > 0 the vtxIn vector is comming from behind the wall and
 * no reflection is made. */
void EMath::reflection(const Vertex3D & vtxIn, const Vertex3D & vtxWall, Vertex3D & vtxOut, 
		       bool bBehind) {
  Vertex3D vtxPro;
  float k =(vtxIn.x * vtxWall.x  +  vtxIn.y * vtxWall.y  +  vtxIn.z * vtxWall.z) /
    (vtxWall.x * vtxWall.x  +  vtxWall.y * vtxWall.y  +  vtxWall.z * vtxWall.z);
  
  if ( k < 0 || bBehind)	{
    vtxPro.x = k * vtxWall.x;
    vtxPro.y = k * vtxWall.y;
    vtxPro.z = k * vtxWall.z;
    
    vtxOut.x = - vtxPro.x - vtxPro.x + vtxIn.x;
    vtxOut.y = - vtxPro.y - vtxPro.y + vtxIn.y;
    vtxOut.z = - vtxPro.z - vtxPro.z + vtxIn.z;
  }
}

/* First the projection of vtxIn onto vtxWall is counted.
 * the reflection is then vtxOut = vtxIn - 2*vtxPro.
 * If k > 0 the vtxIn vector is comming from behind the wall and
 * no reflection is made. */
void EMath::reflectionDamp(const Vertex3D & vtxIn, const Vertex3D & vtxWall, Vertex3D & vtxOut, 
			   float damp, float extra, float scale, bool bBehind) {
  Vertex3D vtxPro;
  float k =(vtxIn.x * vtxWall.x  +  vtxIn.y * vtxWall.y  +  vtxIn.z * vtxWall.z) /
    (vtxWall.x * vtxWall.x  +  vtxWall.y * vtxWall.y  +  vtxWall.z * vtxWall.z);
  
  if ( k < 0 || bBehind) {
    vtxPro.x = k * vtxWall.x;
    vtxPro.y = k * vtxWall.y;
    vtxPro.z = k * vtxWall.z;
    
    vtxOut.x = (vtxIn.x - vtxPro.x - vtxPro.x * damp + vtxWall.x * extra) * scale;
    vtxOut.y = (vtxIn.y - vtxPro.y - vtxPro.y * damp + vtxWall.y * extra) * scale;
    vtxOut.z = (vtxIn.z - vtxPro.z - vtxPro.z * damp + vtxWall.z * extra) * scale;
  }
}

#ifdef PINBALL_TODO
float EMath::vectorLength(const Vertex3D & vtx) {
return EMath::emSqrt(vtx.x * vtx.x + vtx.y * vtx.y + vtx.z * vtx.z);
}

float EMath::vectorLengthSqr(const Vertex3D & vtx) {
return (vtx.x * vtx.x + vtx.y * vtx.y + vtx.z * vtx.z);
}
#endif

/* */
float EMath::volume(const Vertex3D & vtxA, const Vertex3D & vtxB, const Vertex3D & vtxC) {
  return vtxA.x*( vtxB.y*vtxC.z - vtxB.z*vtxC.y ) - 
    vtxA.y*( vtxB.x*vtxC.z - vtxB.z*vtxC.x ) + 
    vtxA.z*( vtxB.x*vtxC.y - vtxB.y*vtxC.x );
}

void EMath::rotationArc(const Vertex3D & vtxa, const Vertex3D & vtxb, Quaternion & qOut) {
  Vertex3D vtxA = vtxa;
  Vertex3D vtxB = vtxb;
  EMath::normalizeVector(vtxA);
  EMath::normalizeVector(vtxB);
  Vertex3D vtxCross;
  EMath::crossProduct(vtxA, vtxB, vtxCross);
  float dot = EMath::dotProduct(vtxA, vtxB);
  float sq = EMath::emSqrt((1+dot)*2);
  qOut.x = vtxCross.x / sq;
  qOut.y = vtxCross.y / sq;
  qOut.z = vtxCross.z / sq;
  qOut.w = sq / 2.0f;
}

void EMath::quaternionMulti(const Quaternion & qA, const Quaternion & qB, Quaternion & qOut) {
  qOut.w = qA.w*qB.w - qA.x*qB.x - qA.y*qB.y - qA.z*qB.z; 
  qOut.x = qA.w*qB.x + qA.x*qB.w + qA.y*qB.z - qA.z*qB.y; 
  qOut.y = qA.w*qB.y - qA.x*qB.z + qA.y*qB.w + qA.z*qB.x; 
  qOut.z = qA.w*qB.z + qA.x*qB.y - qA.y*qB.x + qA.z*qB.w; 
}

float EMath::quadratic(float f0, float f1, float f2, float t) {
  // this was a beizer curve
  // float t1 = 1.0f - t;
  // return t1*t1*f0 + 2.0f*t*t1*f1 + t*t*f2;
  float df1 = f1 - f0;
  float df2 = f2 - f1;
  float ddf = df2 - df1;
  return f0 + t*df1 + 0.5f*t*(t-1.0f)*ddf;
}

float EMath::cubic(float f0, float f1, float f2, float f3, float t) {
  float df1 = f1 - f0;
  float df2 = f2 - f1;
  float df3 = f3 - f2;
  float ddf1 = df2 - df1;
  float ddf2 = df3 - df2;
  float dddf = ddf2 - ddf1;
  return f0 + t*df1 + 0.5*t*(t-1.0f)*ddf1 + 0.166667f*t*(t-1.0f)*(t-2.0f)*dddf;
}