File: accessors.py

package info (click to toggle)
pint-xarray 0.5.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 456 kB
  • sloc: python: 4,477; sh: 10; makefile: 4
file content (1719 lines) | stat: -rw-r--r-- 57,962 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
# TODO is it possible to import pint-xarray from within xarray if pint is present?
import itertools

import pint
from pint import Unit
from xarray import register_dataarray_accessor, register_dataset_accessor
from xarray.core.dtypes import NA

from pint_xarray import conversion
from pint_xarray.conversion import no_unit_values
from pint_xarray.errors import format_error_message

_default = object()


def setup_registry(registry):
    """set up the given registry for use with pint_xarray

    Namely, it enables ``force_ndarray_like`` to make sure results are always
    duck arrays.

    Parameters
    ----------
    registry : pint.UnitRegistry
        The registry to modify
    """
    if not registry.force_ndarray and not registry.force_ndarray_like:
        registry.force_ndarray_like = True

    return registry


default_registry = setup_registry(pint.get_application_registry())

# TODO could/should we overwrite xr.open_dataset and xr.open_mfdataset to make
# them apply units upon loading???
# TODO could even override the decode_cf kwarg?

# TODO docstrings
# TODO type hints


def is_dict_like(obj):
    return hasattr(obj, "keys") and hasattr(obj, "__getitem__")


def zip_mappings(*mappings, fill_value=None):
    """zip mappings by combining values for common keys into a tuple

    Works like itertools.zip_longest, so if a key is missing from a
    mapping, it is replaced by ``fill_value``.

    Parameters
    ----------
    *mappings : dict-like
        The mappings to zip
    fill_value
        The value to use if a key is missing from a mapping.

    Returns
    -------
    zipped : dict-like
        The zipped mapping
    """
    keys = set(itertools.chain.from_iterable(mapping.keys() for mapping in mappings))

    # TODO: could this be made more efficient using itertools.groupby?
    zipped = {
        key: tuple(mapping.get(key, fill_value) for mapping in mappings) for key in keys
    }
    return zipped


def units_to_str_or_none(mapping, unit_format):
    formatter = str if not unit_format else lambda v: unit_format.format(v)

    return {
        key: formatter(value) if isinstance(value, Unit) else value
        for key, value in mapping.items()
    }


# based on xarray.core.utils.either_dict_or_kwargs
# https://github.com/pydata/xarray/blob/v0.15.1/xarray/core/utils.py#L249-L268
def either_dict_or_kwargs(positional, keywords, method_name):
    if positional not in (_default, None):
        if not is_dict_like(positional):
            raise ValueError(
                f"the first argument to .{method_name} must be a dictionary"
            )
        if keywords:
            raise ValueError(
                "cannot specify both keyword and positional "
                f"arguments to .{method_name}"
            )
        return positional
    else:
        return keywords


def get_registry(unit_registry, new_units, existing_units):
    units = itertools.chain(new_units.values(), existing_units.values())
    registries = {unit._REGISTRY for unit in units if isinstance(unit, Unit)}

    if unit_registry is None:
        if not registries:
            unit_registry = default_registry
        elif len(registries) == 1:
            (unit_registry,) = registries
    registries.add(unit_registry)

    if len(registries) > 1 or unit_registry not in registries:
        raise ValueError(
            "using multiple unit registries in the same object is not supported"
        )

    if not unit_registry.force_ndarray_like and not unit_registry.force_ndarray:
        raise ValueError(
            "invalid registry. Please enable 'force_ndarray_like' or 'force_ndarray'."
        )

    return unit_registry


def _decide_units(units, registry, unit_attribute):
    if units is _default and unit_attribute in (None, _default):
        # or warn and return None?
        raise ValueError("no units given")
    elif units in no_unit_values or isinstance(units, Unit):
        # TODO what happens if they pass in a Unit from a different registry
        return units
    elif units is _default:
        if unit_attribute in no_unit_values:
            return unit_attribute
        if isinstance(unit_attribute, Unit):
            units = unit_attribute
        else:
            units = registry.parse_units(unit_attribute)
    else:
        units = registry.parse_units(units)
    return units


class DatasetLocIndexer:
    __slots__ = ("ds",)

    def __init__(self, ds):
        self.ds = ds

    def __getitem__(self, indexers):
        if not is_dict_like(indexers):
            raise NotImplementedError("pandas-style indexing is not supported, yet")

        dims = self.ds.dims
        indexer_units = conversion.extract_indexer_units(indexers)
        indexer_units = {
            name: indexer for name, indexer in indexer_units.items() if name in dims
        }

        # convert the indexes to the indexer's units
        try:
            converted = conversion.convert_units(self.ds, indexer_units)
        except ValueError as e:
            raise KeyError(*e.args) from e

        # index
        stripped_indexers = conversion.strip_indexer_units(indexers)

        stripped = conversion.strip_units(converted)
        converted_units = conversion.extract_units(converted)
        indexed = stripped.loc[stripped_indexers]

        return conversion.attach_units(indexed, converted_units)


class DataArrayLocIndexer:
    __slots__ = ("da",)

    def __init__(self, da):
        self.da = da

    def __getitem__(self, indexers):
        if not is_dict_like(indexers):
            raise NotImplementedError("pandas-style indexing is not supported, yet")

        dims = self.da.dims
        indexer_units = conversion.extract_indexer_units(indexers)
        indexer_units = {
            name: indexer for name, indexer in indexer_units.items() if name in dims
        }

        # convert the indexes to the indexer's units
        try:
            converted = conversion.convert_units(self.da, indexer_units)
        except ValueError as e:
            raise KeyError(*e.args) from e

        # index
        stripped_indexers = conversion.strip_indexer_units(indexers)

        stripped = conversion.strip_units(converted)
        converted_units = conversion.extract_units(converted)
        indexed = stripped.loc[stripped_indexers]

        return conversion.attach_units(indexed, converted_units)

    def __setitem__(self, indexers, values):
        if not is_dict_like(indexers):
            raise NotImplementedError("pandas-style indexing is not supported, yet")

        dims = self.da.dims
        unit_attrs = conversion.extract_unit_attributes(self.da)
        index_units = {
            name: units for name, units in unit_attrs.items() if name in dims
        }

        # convert the indexers to the index units
        try:
            converted = conversion.convert_indexer_units(indexers, index_units)
        except ValueError as e:
            raise KeyError(*e.args) from e

        # index
        stripped_indexers = conversion.strip_indexer_units(converted)
        self.da.loc[stripped_indexers] = values


@register_dataarray_accessor("pint")
class PintDataArrayAccessor:
    """
    Access methods for DataArrays with units using Pint.

    Methods and attributes can be accessed through the `.pint` attribute.
    """

    def __init__(self, da):
        self.da = da

    def quantify(self, units=_default, unit_registry=None, **unit_kwargs):
        """
        Attach units to the DataArray.

        Units can be specified as a pint.Unit or as a string, which will be
        parsed by the given unit registry. If no units are specified then the
        units will be parsed from the `'units'` entry of the DataArray's
        `.attrs`. Will raise a ValueError if the DataArray already contains a
        unit-aware array with a different unit.

        .. note::
            Be aware that unless you're using ``dask`` this will load
            the data into memory. To avoid that, consider converting
            to ``dask`` first (e.g. using ``chunk``).

        .. note::
            Also note that datetime units (i.e. ones that match
            ``{units} since {date}``) in unit attributes will be
            ignored, to avoid interfering with ``xarray``'s datetime
            encoding / decoding.

        Parameters
        ----------
        units : unit-like or mapping of hashable to unit-like, optional
            Physical units to use for this DataArray. If a str or
            pint.Unit, will be used as the DataArray's units. If a
            dict-like, it should map a variable name to the desired
            unit (use the DataArray's name to refer to its data). If
            not provided, ``quantify`` will try to read them from
            ``DataArray.attrs['units']`` using pint's parser. The
            ``"units"`` attribute will be removed from all variables
            except from dimension coordinates.
        unit_registry : pint.UnitRegistry, optional
            Unit registry to be used for the units attached to this DataArray.
            If not given then a default registry will be created.
        **unit_kwargs
            Keyword argument form of units.

        Returns
        -------
        quantified : DataArray
            DataArray whose wrapped array data will now be a Quantity
            array with the specified units.

        Notes
        -----
        ``"none"`` and ``None`` can be used to mark variables that should not
        be quantified.

        Examples
        --------
        >>> da = xr.DataArray(
        ...     data=[0.4, 0.9, 1.7, 4.8, 3.2, 9.1],
        ...     dims=["wavelength"],
        ...     coords={"wavelength": [1e-4, 2e-4, 4e-4, 6e-4, 1e-3, 2e-3]},
        ... )
        >>> da.pint.quantify(units="Hz")
        <xarray.DataArray (wavelength: 6)> Size: 48B
        <Quantity([0.4 0.9 1.7 4.8 3.2 9.1], 'hertz')>
        Coordinates:
          * wavelength  (wavelength) float64 48B 0.0001 0.0002 0.0004 0.0006 0.001 0.002

        Don't quantify the data:

        >>> da = xr.DataArray(
        ...     data=[0.4, 0.9],
        ...     dims=["wavelength"],
        ...     attrs={"units": "Hz"},
        ... )
        >>> da.pint.quantify(units=None)
        <xarray.DataArray (wavelength: 2)> Size: 16B
        array([0.4, 0.9])
        Dimensions without coordinates: wavelength

        Quantify with the same unit:

        >>> q = da.pint.quantify()
        >>> q
        <xarray.DataArray (wavelength: 2)> Size: 16B
        <Quantity([0.4 0.9], 'hertz')>
        Dimensions without coordinates: wavelength
        >>> q.pint.quantify("Hz")
        <xarray.DataArray (wavelength: 2)> Size: 16B
        <Quantity([0.4 0.9], 'hertz')>
        Dimensions without coordinates: wavelength
        """
        if units is None or isinstance(units, (str, pint.Unit)):
            if self.da.name in unit_kwargs:
                raise ValueError(
                    f"ambiguous values given for {repr(self.da.name)}:"
                    f" {repr(units)} and {repr(unit_kwargs[self.da.name])}"
                )
            unit_kwargs[self.da.name] = units
            units = None

        units = either_dict_or_kwargs(units, unit_kwargs, "quantify")

        registry = get_registry(unit_registry, units, conversion.extract_units(self.da))

        unit_attrs = conversion.extract_unit_attributes(self.da)

        possible_new_units = zip_mappings(units, unit_attrs, fill_value=_default)
        new_units = {}
        invalid_units = {}
        for name, (unit, attr) in possible_new_units.items():
            if unit not in (_default, None) or attr not in (_default, None):
                try:
                    new_units[name] = _decide_units(unit, registry, attr)
                except (ValueError, pint.UndefinedUnitError) as e:
                    if unit not in (_default, None):
                        type = "parameter"
                        reported_unit = unit
                    else:
                        type = "attribute"
                        reported_unit = attr

                    invalid_units[name] = (reported_unit, type, e)

        if invalid_units:
            raise ValueError(format_error_message(invalid_units, "parse"))

        existing_units = {
            name: unit
            for name, unit in conversion.extract_units(self.da).items()
            if isinstance(unit, Unit)
        }
        overwritten_units = {
            name: (old, new)
            for name, (old, new) in zip_mappings(
                existing_units, new_units, fill_value=_default
            ).items()
            if old is not _default and new is not _default and old != new
        }
        if overwritten_units:
            errors = {
                name: (
                    new,
                    ValueError(
                        f"Cannot attach unit {repr(new)} to quantity: data "
                        f"already has units {repr(old)}"
                    ),
                )
                for name, (old, new) in overwritten_units.items()
            }
            raise ValueError(format_error_message(errors, "attach"))

        return self.da.pipe(conversion.strip_unit_attributes).pipe(
            conversion.attach_units, new_units
        )

    def dequantify(self, format=None):
        r"""
        Convert the units of the DataArray to string attributes.

        Will replace ``.attrs['units']`` on each variable with a string
        representation of the ``pint.Unit`` instance.

        Parameters
        ----------
        format : str, default: None
            The format specification (as accepted by pint) used for the string
            representations. If ``None``, the registry's default
            (:py:attr:`pint.UnitRegistry.default_format`) is used instead.

        Returns
        -------
        dequantified : DataArray
            DataArray whose array data is unitless, and of the type
            that was previously wrapped by `pint.Quantity`.

        See Also
        --------
        :doc:`pint:user/formatting`
            pint's string formatting guide

        Examples
        --------
        >>> da = xr.DataArray([0, 1], dims="x")
        >>> q = da.pint.quantify("m / s")
        >>> q
        <xarray.DataArray (x: 2)> Size: 16B
        <Quantity([0 1], 'meter / second')>
        Dimensions without coordinates: x

        >>> q.pint.dequantify(format="P")
        <xarray.DataArray (x: 2)> Size: 16B
        array([0, 1])
        Dimensions without coordinates: x
        Attributes:
            units:    meter/second
        >>> q.pint.dequantify(format="~P")
        <xarray.DataArray (x: 2)> Size: 16B
        array([0, 1])
        Dimensions without coordinates: x
        Attributes:
            units:    m/s

        Use the registry's default format

        >>> pint_xarray.unit_registry.default_format = "~L"
        >>> q.pint.dequantify()
        <xarray.DataArray (x: 2)> Size: 16B
        array([0, 1])
        Dimensions without coordinates: x
        Attributes:
            units:    \frac{\mathrm{m}}{\mathrm{s}}
        """
        units = conversion.extract_unit_attributes(self.da)
        units.update(conversion.extract_units(self.da))

        unit_format = f"{{:{format}}}" if isinstance(format, str) else format

        units = units_to_str_or_none(units, unit_format)
        return (
            self.da.pipe(conversion.strip_units)
            .pipe(conversion.strip_unit_attributes)
            .pipe(conversion.attach_unit_attributes, units)
        )

    @property
    def magnitude(self):
        """the magnitude of the data or the data itself if not a quantity."""
        data = self.da.data
        return getattr(data, "magnitude", data)

    @property
    def units(self):
        """the units of the data or :py:obj:`None` if not a quantity.

        Setting the units is possible, but only if the data is not already a quantity.
        """
        return getattr(self.da.data, "units", None)

    @units.setter
    def units(self, units):
        self.da.data = conversion.array_attach_units(self.da.data, units)

    @property
    def dimensionality(self):
        """get the dimensionality of the data or :py:obj:`None` if not a quantity."""
        return getattr(self.da.data, "dimensionality", None)

    @property
    def registry(self):
        # TODO is this a bad idea? (see GH issue #1071 in pint)
        return getattr(self.da.data, "_REGISTRY", None)

    @registry.setter
    def registry(self, _):
        raise AttributeError("Don't try to change the registry once created")

    def to(self, units=None, **unit_kwargs):
        """convert the quantities in a DataArray

        Parameters
        ----------
        units : unit-like or mapping of hashable to unit-like, optional
            The units to convert to. If a unit name or ``pint.Unit``
            object, convert the DataArray's data. If a dict-like, it
            has to map a variable name to a unit name or ``pint.Unit``
            object.
        **unit_kwargs
            The kwargs form of ``units``. Can only be used for
            variable names that are strings and valid python identifiers.

        Returns
        -------
        object : DataArray
            A new object with converted units.

        Examples
        --------
        >>> da = xr.DataArray(
        ...     data=np.linspace(0, 1, 5) * ureg.m,
        ...     coords={"u": ("x", np.arange(5) * ureg.s)},
        ...     dims="x",
        ...     name="arr",
        ... )
        >>> da
        <xarray.DataArray 'arr' (x: 5)> Size: 40B
        <Quantity([0.   0.25 0.5  0.75 1.  ], 'meter')>
        Coordinates:
            u        (x) int64 40B [s] 0 1 2 3 4
        Dimensions without coordinates: x

        Convert the data

        >>> da.pint.to("mm")
        <xarray.DataArray 'arr' (x: 5)> Size: 40B
        <Quantity([   0.  250.  500.  750. 1000.], 'millimeter')>
        Coordinates:
            u        (x) int64 40B [s] 0 1 2 3 4
        Dimensions without coordinates: x
        >>> da.pint.to(ureg.mm)
        <xarray.DataArray 'arr' (x: 5)> Size: 40B
        <Quantity([   0.  250.  500.  750. 1000.], 'millimeter')>
        Coordinates:
            u        (x) int64 40B [s] 0 1 2 3 4
        Dimensions without coordinates: x
        >>> da.pint.to({da.name: "mm"})
        <xarray.DataArray 'arr' (x: 5)> Size: 40B
        <Quantity([   0.  250.  500.  750. 1000.], 'millimeter')>
        Coordinates:
            u        (x) int64 40B [s] 0 1 2 3 4
        Dimensions without coordinates: x

        Convert coordinates

        >>> da.pint.to({"u": ureg.ms})
        <xarray.DataArray 'arr' (x: 5)> Size: 40B
        <Quantity([0.   0.25 0.5  0.75 1.  ], 'meter')>
        Coordinates:
            u        (x) float64 40B [ms] 0.0 1e+03 2e+03 3e+03 4e+03
        Dimensions without coordinates: x
        >>> da.pint.to(u="ms")
        <xarray.DataArray 'arr' (x: 5)> Size: 40B
        <Quantity([0.   0.25 0.5  0.75 1.  ], 'meter')>
        Coordinates:
            u        (x) float64 40B [ms] 0.0 1e+03 2e+03 3e+03 4e+03
        Dimensions without coordinates: x

        Convert both simultaneously

        >>> da.pint.to("mm", u="ms")
        <xarray.DataArray 'arr' (x: 5)> Size: 40B
        <Quantity([   0.  250.  500.  750. 1000.], 'millimeter')>
        Coordinates:
            u        (x) float64 40B [ms] 0.0 1e+03 2e+03 3e+03 4e+03
        Dimensions without coordinates: x
        >>> da.pint.to({"arr": ureg.mm, "u": ureg.ms})
        <xarray.DataArray 'arr' (x: 5)> Size: 40B
        <Quantity([   0.  250.  500.  750. 1000.], 'millimeter')>
        Coordinates:
            u        (x) float64 40B [ms] 0.0 1e+03 2e+03 3e+03 4e+03
        Dimensions without coordinates: x
        >>> da.pint.to(arr="mm", u="ms")
        <xarray.DataArray 'arr' (x: 5)> Size: 40B
        <Quantity([   0.  250.  500.  750. 1000.], 'millimeter')>
        Coordinates:
            u        (x) float64 40B [ms] 0.0 1e+03 2e+03 3e+03 4e+03
        Dimensions without coordinates: x
        """
        if isinstance(units, (str, pint.Unit)):
            unit_kwargs[self.da.name] = units
            units = None
        elif units is not None and not is_dict_like(units):
            raise ValueError(
                "units must be either a string, a pint.Unit object or a dict-like,"
                f" but got {units!r}"
            )

        units = either_dict_or_kwargs(units, unit_kwargs, "to")

        return conversion.convert_units(self.da, units)

    def chunk(self, chunks, name_prefix="xarray-", token=None, lock=False):
        """unit-aware version of chunk

        Like :py:meth:`xarray.DataArray.chunk`, but chunking a quantity will change the
        wrapped type to ``dask``.

        .. note::
            It is recommended to only use this when chunking in-memory arrays. To
            rechunk please use :py:meth:`xarray.DataArray.chunk`.

        See Also
        --------
        xarray.DataArray.chunk
        xarray.Dataset.pint.chunk
        """
        units = conversion.extract_units(self.da)
        stripped = conversion.strip_units(self.da)

        chunked = stripped.chunk(
            chunks, name_prefix=name_prefix, token=token, lock=lock
        )
        return conversion.attach_units(chunked, units)

    def reindex(
        self,
        indexers=None,
        method=None,
        tolerance=None,
        copy=True,
        fill_value=NA,
        **indexers_kwargs,
    ):
        """unit-aware version of reindex

        Like :py:meth:`xarray.DataArray.reindex`, except the object's indexes are
        converted to the units of the indexers first.

        .. note::
            ``tolerance`` and ``fill_value`` are not supported, yet. They will be passed
            through to ``DataArray.reindex`` unmodified.

        See Also
        --------
        xarray.Dataset.pint.reindex
        xarray.DataArray.pint.reindex_like
        xarray.DataArray.reindex
        """
        indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "reindex")

        dims = self.da.dims
        indexer_units = conversion.extract_indexer_units(indexers)
        indexer_units = {
            name: indexer for name, indexer in indexer_units.items() if name in dims
        }

        # TODO: handle tolerance
        # TODO: handle fill_value

        # convert the indexes to the indexer's units
        converted = conversion.convert_units(self.da, indexer_units)
        converted_units = conversion.extract_units(converted)
        stripped = conversion.strip_units(converted)

        # index
        stripped_indexers = conversion.strip_indexer_units(indexers)
        indexed = stripped.reindex(
            stripped_indexers,
            method=method,
            tolerance=tolerance,
            copy=copy,
            fill_value=fill_value,
        )
        return conversion.attach_units(indexed, converted_units)

    def reindex_like(
        self, other, method=None, tolerance=None, copy=True, fill_value=NA
    ):
        """unit-aware version of reindex_like

        Like :py:meth:`xarray.DataArray.reindex_like`, except the object's indexes
        are converted to the units of the indexers first.

        .. note::
            ``tolerance`` and ``fill_value`` are not supported, yet. They will be passed
            through to ``DataArray.reindex_like`` unmodified.

        See Also
        --------
        xarray.Dataset.pint.reindex_like
        xarray.DataArray.pint.reindex
        xarray.DataArray.reindex_like
        """
        indexer_units = conversion.extract_units(other)

        converted = conversion.convert_units(self.da, indexer_units)
        units = conversion.extract_units(converted)
        stripped = conversion.strip_units(converted)
        stripped_other = conversion.strip_units(other)

        # TODO: handle tolerance
        # TODO: handle fill_value

        reindexed = stripped.reindex_like(
            stripped_other,
            method=method,
            tolerance=tolerance,
            copy=copy,
            fill_value=fill_value,
        )
        return conversion.attach_units(reindexed, units)

    def interp(
        self,
        coords=None,
        method="linear",
        assume_sorted=False,
        kwargs=None,
        **coords_kwargs,
    ):
        """unit-aware version of interp

        Like :py:meth:`xarray.DataArray.interp`, except the object's indexes are
        converted to the units of the indexers first.

        .. note::
            ``method``, ``assume_sorted`` and ``kwargs`` are passed unmodified to
            ``DataArray.interp``.

        See Also
        --------
        xarray.Dataset.pint.interp
        xarray.DataArray.pint.interp_like
        xarray.DataArray.interp
        """
        indexers = either_dict_or_kwargs(coords, coords_kwargs, "interp")

        dims = self.da.dims
        indexer_units = conversion.extract_indexer_units(indexers)
        indexer_units = {
            name: indexer for name, indexer in indexer_units.items() if name in dims
        }

        # convert the indexes to the indexer's units
        converted = conversion.convert_units(self.da, indexer_units)
        units = conversion.extract_units(converted)
        stripped = conversion.strip_units(converted)

        # index
        stripped_indexers = conversion.strip_indexer_units(indexers)
        interpolated = stripped.interp(
            stripped_indexers,
            method=method,
            assume_sorted=assume_sorted,
            kwargs=kwargs,
        )
        return conversion.attach_units(interpolated, units)

    def interp_like(self, other, method="linear", assume_sorted=False, kwargs=None):
        """unit-aware version of interp_like

        Like :py:meth:`xarray.DataArray.interp_like`, except the object's indexes are converted
        to the units of the indexers first.

        .. note::
            ``method``, ``assume_sorted`` and ``kwargs`` are passed unmodified to
            ``DataArray.interp``.

        See Also
        --------
        xarray.Dataset.pint.interp_like
        xarray.DataArray.pint.interp
        xarray.DataArray.interp_like
        """
        indexer_units = conversion.extract_units(other)

        converted = conversion.convert_units(self.da, indexer_units)
        units = conversion.extract_units(converted)
        stripped = conversion.strip_units(converted)
        stripped_other = conversion.strip_units(other)
        interpolated = stripped.interp_like(
            stripped_other,
            method=method,
            assume_sorted=assume_sorted,
            kwargs=kwargs,
        )
        return conversion.attach_units(interpolated, units)

    def sel(
        self, indexers=None, method=None, tolerance=None, drop=False, **indexers_kwargs
    ):
        """unit-aware version of sel

        Like :py:meth:`xarray.DataArray.sel`, except the object's indexes are converted
        to the units of the indexers first.

        .. note::
            ``tolerance`` is not supported, yet. It will be passed through to
            ``DataArray.sel`` unmodified.

        See Also
        --------
        xarray.Dataset.pint.sel
        xarray.DataArray.sel
        xarray.Dataset.sel
        """
        indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "sel")

        dims = self.da.dims
        indexer_units = conversion.extract_indexer_units(indexers)
        indexer_units = {
            name: indexer for name, indexer in indexer_units.items() if name in dims
        }

        # TODO: handle tolerance

        # convert the indexes to the indexer's units
        try:
            converted = conversion.convert_units(self.da, indexer_units)
        except ValueError as e:
            raise KeyError(*e.args) from e

        # index
        stripped_indexers = conversion.strip_indexer_units(indexers)

        stripped = conversion.strip_units(converted)
        converted_units = conversion.extract_units(converted)
        indexed = stripped.sel(
            stripped_indexers,
            method=method,
            tolerance=tolerance,
            drop=drop,
        )

        return conversion.attach_units(indexed, converted_units)

    @property
    def loc(self):
        """Unit-aware attribute for indexing

        .. note::
           Position based indexing (e.g. ``ds.loc[1, 2:]``) is not supported, yet

        See Also
        --------
        xarray.DataArray.loc
        """
        return DataArrayLocIndexer(self.da)

    def drop_sel(self, labels=None, *, errors="raise", **labels_kwargs):
        """unit-aware version of drop_sel

        Just like :py:meth:`xarray.DataArray.drop_sel`, except the indexers are converted
        to the units of the object's indexes first.

        See Also
        --------
        xarray.Dataset.pint.drop_sel
        xarray.DataArray.drop_sel
        xarray.Dataset.drop_sel
        """
        indexers = either_dict_or_kwargs(labels, labels_kwargs, "drop_sel")

        dims = self.da.dims
        unit_attrs = conversion.extract_unit_attributes(self.da)
        index_units = {
            name: units for name, units in unit_attrs.items() if name in dims
        }

        # convert the indexers to the indexes units
        try:
            converted_indexers = conversion.convert_indexer_units(indexers, index_units)
        except ValueError as e:
            raise KeyError(*e.args) from e

        # index
        stripped_indexers = conversion.strip_indexer_units(converted_indexers)
        indexed = self.da.drop_sel(
            stripped_indexers,
            errors=errors,
        )

        return indexed

    def ffill(self, dim, limit=None):
        """unit-aware version of ffill

        Like :py:meth:`xarray.DataArray.ffill` but without stripping the data units.

        See Also
        --------
        xarray.DataArray.ffill
        xarray.DataArray.pint.bfill
        """
        units = conversion.extract_units(self.da)
        stripped = conversion.strip_units(self.da)

        filled = stripped.ffill(dim=dim, limit=limit)

        return conversion.attach_units(filled, units)

    def bfill(self, dim, limit=None):
        """unit-aware version of bfill

        Like :py:meth:`xarray.DataArray.bfill` but without stripping the data units.

        See Also
        --------
        xarray.DataArray.bfill
        xarray.DataArray.pint.ffill
        """
        units = conversion.extract_units(self.da)
        stripped = conversion.strip_units(self.da)

        filled = stripped.bfill(dim=dim, limit=limit)

        return conversion.attach_units(filled, units)

    def interpolate_na(
        self,
        dim=None,
        method="linear",
        limit=None,
        use_coordinate=True,
        max_gap=None,
        keep_attrs=None,
        **kwargs,
    ):
        """unit-aware version of interpolate_na

        Like :py:meth:`xarray.DataArray.interpolate_na` but without stripping the units
        on data or coordinates.

        .. note::
            ``max_gap`` is not supported, yet, and will be passed through to
            ``DataArray.interpolate_na`` unmodified.

        See Also
        --------
        xarray.Dataset.pint.interpolate_na
        xarray.DataArray.interpolate_na
        """
        units = conversion.extract_units(self.da)
        stripped = conversion.strip_units(self.da)

        interpolated = stripped.interpolate_na(
            dim=dim,
            method=method,
            limit=limit,
            use_coordinate=use_coordinate,
            max_gap=max_gap,
            keep_attrs=keep_attrs,
            **kwargs,
        )

        return conversion.attach_units(interpolated, units)


@register_dataset_accessor("pint")
class PintDatasetAccessor:
    """
    Access methods for DataArrays with units using Pint.

    Methods and attributes can be accessed through the `.pint` attribute.
    """

    def __init__(self, ds):
        self.ds = ds

    def quantify(self, units=_default, unit_registry=None, **unit_kwargs):
        """
        Attach units to the variables of the Dataset.

        Units can be specified as a ``pint.Unit`` or as a
        string, which will be parsed by the given unit registry. If no
        units are specified then the units will be parsed from the
        ``"units"`` entry of the Dataset variable's ``.attrs``. Will
        raise a ValueError if any of the variables already contain a
        unit-aware array with a different unit.

        .. note::
            Be aware that unless you're using ``dask`` this will load
            the data into memory. To avoid that, consider converting
            to ``dask`` first (e.g. using ``chunk``).

        .. note::
            Also note that datetime units (i.e. ones that match
            ``{units} since {date}``) in unit attributes will be
            ignored, to avoid interfering with ``xarray``'s datetime
            encoding / decoding.

        Parameters
        ----------
        units : mapping of hashable to unit-like, optional
            Physical units to use for particular DataArrays in this
            Dataset. It should map variable names to units (unit names
            or ``pint.Unit`` objects). If not provided, ``quantify``
            will try to read them from ``Dataset[var].attrs['units']``
            using pint's parser. The ``"units"`` attribute will be
            removed from all variables except from dimension coordinates.
        unit_registry : pint.UnitRegistry, optional
            Unit registry to be used for the units attached to each
            DataArray in this Dataset. If not given then a default
            registry will be created.
        **unit_kwargs
            Keyword argument form of ``units``.

        Returns
        -------
        quantified : Dataset
            Dataset whose variables will now contain Quantity arrays
            with units.

        Notes
        -----
        ``"none"`` and ``None`` can be used to mark variables
        that should not be quantified.

        Examples
        --------
        >>> ds = xr.Dataset(
        ...     {"a": ("x", [0, 3, 2], {"units": "m"}), "b": ("x", [5, -2, 1])},
        ...     coords={"x": [0, 1, 2], "u": ("x", [-1, 0, 1], {"units": "s"})},
        ... )

        >>> ds.pint.quantify()
        <xarray.Dataset> Size: 96B
        Dimensions:  (x: 3)
        Coordinates:
          * x        (x) int64 24B 0 1 2
            u        (x) int64 24B [s] -1 0 1
        Data variables:
            a        (x) int64 24B [m] 0 3 2
            b        (x) int64 24B 5 -2 1
        >>> ds.pint.quantify({"b": "dm"})
        <xarray.Dataset> Size: 96B
        Dimensions:  (x: 3)
        Coordinates:
          * x        (x) int64 24B 0 1 2
            u        (x) int64 24B [s] -1 0 1
        Data variables:
            a        (x) int64 24B [m] 0 3 2
            b        (x) int64 24B [dm] 5 -2 1

        Don't quantify specific variables:

        >>> ds.pint.quantify({"a": None})
        <xarray.Dataset> Size: 96B
        Dimensions:  (x: 3)
        Coordinates:
          * x        (x) int64 24B 0 1 2
            u        (x) int64 24B [s] -1 0 1
        Data variables:
            a        (x) int64 24B 0 3 2
            b        (x) int64 24B 5 -2 1

        Quantify with the same unit:

        >>> q = ds.pint.quantify()
        >>> q
        <xarray.Dataset> Size: 96B
        Dimensions:  (x: 3)
        Coordinates:
          * x        (x) int64 24B 0 1 2
            u        (x) int64 24B [s] -1 0 1
        Data variables:
            a        (x) int64 24B [m] 0 3 2
            b        (x) int64 24B 5 -2 1
        >>> q.pint.quantify({"a": "m"})
        <xarray.Dataset> Size: 96B
        Dimensions:  (x: 3)
        Coordinates:
          * x        (x) int64 24B 0 1 2
            u        (x) int64 24B [s] -1 0 1
        Data variables:
            a        (x) int64 24B [m] 0 3 2
            b        (x) int64 24B 5 -2 1
        """
        units = either_dict_or_kwargs(units, unit_kwargs, "quantify")
        registry = get_registry(unit_registry, units, conversion.extract_units(self.ds))

        unit_attrs = conversion.extract_unit_attributes(self.ds)

        possible_new_units = zip_mappings(units, unit_attrs, fill_value=_default)
        new_units = {}
        invalid_units = {}
        for name, (unit, attr) in possible_new_units.items():
            if unit is not _default or attr not in (None, _default):
                try:
                    new_units[name] = _decide_units(unit, registry, attr)
                except (ValueError, pint.UndefinedUnitError) as e:
                    if unit is not _default:
                        type = "parameter"
                        reported_unit = unit
                    else:
                        type = "attribute"
                        reported_unit = attr

                    invalid_units[name] = (reported_unit, type, e)

        if invalid_units:
            raise ValueError(format_error_message(invalid_units, "parse"))

        existing_units = {
            name: unit
            for name, unit in conversion.extract_units(self.ds).items()
            if isinstance(unit, Unit)
        }
        overwritten_units = {
            name: (old, new)
            for name, (old, new) in zip_mappings(
                existing_units, new_units, fill_value=_default
            ).items()
            if old is not _default and new is not _default and old != new
        }
        if overwritten_units:
            errors = {
                name: (
                    new,
                    ValueError(
                        f"Cannot attach unit {repr(new)} to quantity: data "
                        f"already has units {repr(old)}"
                    ),
                )
                for name, (old, new) in overwritten_units.items()
            }
            raise ValueError(format_error_message(errors, "attach"))

        return self.ds.pipe(conversion.strip_unit_attributes).pipe(
            conversion.attach_units, new_units
        )

    def dequantify(self, format=None):
        r"""
        Convert units from the Dataset to string attributes.

        Will replace ``.attrs['units']`` on each variable with a string
        representation of the ``pint.Unit`` instance.

        Parameters
        ----------
        format : str, default: None
            The format specification (as accepted by pint's unit formatter) used for the
            string representations. If ``None``, the registry's default
            (:py:attr:`pint.UnitRegistry.default_format`) is used instead.

        Returns
        -------
        dequantified : Dataset
            Dataset whose data variables are unitless, and of the type
            that was previously wrapped by ``pint.Quantity``.

        See Also
        --------
        :doc:`pint:user/formatting`
            pint's string formatting guide

        Examples
        --------
        >>> ds = xr.Dataset({"a": ("x", [0, 1]), "b": ("y", [2, 3, 4])})
        >>> q = ds.pint.quantify({"a": "m / s", "b": "s"})
        >>> q
        <xarray.Dataset> Size: 40B
        Dimensions:  (x: 2, y: 3)
        Dimensions without coordinates: x, y
        Data variables:
            a        (x) int64 16B [m/s] 0 1
            b        (y) int64 24B [s] 2 3 4

        >>> d = q.pint.dequantify(format="P")
        >>> d.a
        <xarray.DataArray 'a' (x: 2)> Size: 16B
        array([0, 1])
        Dimensions without coordinates: x
        Attributes:
            units:    meter/second
        >>> d.b
        <xarray.DataArray 'b' (y: 3)> Size: 24B
        array([2, 3, 4])
        Dimensions without coordinates: y
        Attributes:
            units:    second

        >>> d = q.pint.dequantify(format="~P")
        >>> d.a
        <xarray.DataArray 'a' (x: 2)> Size: 16B
        array([0, 1])
        Dimensions without coordinates: x
        Attributes:
            units:    m/s
        >>> d.b
        <xarray.DataArray 'b' (y: 3)> Size: 24B
        array([2, 3, 4])
        Dimensions without coordinates: y
        Attributes:
            units:    s

        Use the registry's default format

        >>> pint_xarray.unit_registry.default_format = "~L"
        >>> d = q.pint.dequantify()
        >>> d.a
        <xarray.DataArray 'a' (x: 2)> Size: 16B
        array([0, 1])
        Dimensions without coordinates: x
        Attributes:
            units:    \frac{\mathrm{m}}{\mathrm{s}}
        >>> d.b
        <xarray.DataArray 'b' (y: 3)> Size: 24B
        array([2, 3, 4])
        Dimensions without coordinates: y
        Attributes:
            units:    \mathrm{s}
        """
        units = conversion.extract_unit_attributes(self.ds)
        units.update(conversion.extract_units(self.ds))

        unit_format = f"{{:{format}}}" if isinstance(format, str) else format

        units = units_to_str_or_none(units, unit_format)
        return (
            self.ds.pipe(conversion.strip_units)
            .pipe(conversion.strip_unit_attributes)
            .pipe(conversion.attach_unit_attributes, units)
        )

    def to(self, units=None, **unit_kwargs):
        """convert the quantities in a Dataset

        Parameters
        ----------
        units : unit-like or mapping of hashable to unit-like, optional
            The units to convert to. If a unit name or ``pint.Unit``
            object, convert all the object's data variables. If a dict-like, it
            maps variable names to unit names or ``pint.Unit``
            objects.
        **unit_kwargs
            The kwargs form of ``units``. Can only be used for
            variable names that are strings and valid python identifiers.

        Returns
        -------
        object : Dataset
            A new object with converted units.

        Examples
        --------
        >>> ds = xr.Dataset(
        ...     data_vars={
        ...         "a": ("x", np.linspace(0, 1, 5) * ureg.m),
        ...         "b": ("x", np.linspace(-1, 0, 5) * ureg.kg),
        ...     },
        ...     coords={"u": ("x", np.arange(5) * ureg.s)},
        ... )
        >>> ds
        <xarray.Dataset> Size: 120B
        Dimensions:  (x: 5)
        Coordinates:
            u        (x) int64 40B [s] 0 1 2 3 4
        Dimensions without coordinates: x
        Data variables:
            a        (x) float64 40B [m] 0.0 0.25 0.5 0.75 1.0
            b        (x) float64 40B [kg] -1.0 -0.75 -0.5 -0.25 0.0

        Convert the data

        >>> ds.pint.to({"a": "mm", "b": ureg.g})
        <xarray.Dataset> Size: 120B
        Dimensions:  (x: 5)
        Coordinates:
            u        (x) int64 40B [s] 0 1 2 3 4
        Dimensions without coordinates: x
        Data variables:
            a        (x) float64 40B [mm] 0.0 250.0 500.0 750.0 1e+03
            b        (x) float64 40B [g] -1e+03 -750.0 -500.0 -250.0 0.0
        >>> ds.pint.to(a=ureg.mm, b="g")
        <xarray.Dataset> Size: 120B
        Dimensions:  (x: 5)
        Coordinates:
            u        (x) int64 40B [s] 0 1 2 3 4
        Dimensions without coordinates: x
        Data variables:
            a        (x) float64 40B [mm] 0.0 250.0 500.0 750.0 1e+03
            b        (x) float64 40B [g] -1e+03 -750.0 -500.0 -250.0 0.0

        Convert coordinates

        >>> ds.pint.to({"u": ureg.ms})
        <xarray.Dataset> Size: 120B
        Dimensions:  (x: 5)
        Coordinates:
            u        (x) float64 40B [ms] 0.0 1e+03 2e+03 3e+03 4e+03
        Dimensions without coordinates: x
        Data variables:
            a        (x) float64 40B [m] 0.0 0.25 0.5 0.75 1.0
            b        (x) float64 40B [kg] -1.0 -0.75 -0.5 -0.25 0.0
        >>> ds.pint.to(u="ms")
        <xarray.Dataset> Size: 120B
        Dimensions:  (x: 5)
        Coordinates:
            u        (x) float64 40B [ms] 0.0 1e+03 2e+03 3e+03 4e+03
        Dimensions without coordinates: x
        Data variables:
            a        (x) float64 40B [m] 0.0 0.25 0.5 0.75 1.0
            b        (x) float64 40B [kg] -1.0 -0.75 -0.5 -0.25 0.0

        Convert both simultaneously

        >>> ds.pint.to(a=ureg.mm, b=ureg.g, u="ms")
        <xarray.Dataset> Size: 120B
        Dimensions:  (x: 5)
        Coordinates:
            u        (x) float64 40B [ms] 0.0 1e+03 2e+03 3e+03 4e+03
        Dimensions without coordinates: x
        Data variables:
            a        (x) float64 40B [mm] 0.0 250.0 500.0 750.0 1e+03
            b        (x) float64 40B [g] -1e+03 -750.0 -500.0 -250.0 0.0
        >>> ds.pint.to({"a": "mm", "b": "g", "u": ureg.ms})
        <xarray.Dataset> Size: 120B
        Dimensions:  (x: 5)
        Coordinates:
            u        (x) float64 40B [ms] 0.0 1e+03 2e+03 3e+03 4e+03
        Dimensions without coordinates: x
        Data variables:
            a        (x) float64 40B [mm] 0.0 250.0 500.0 750.0 1e+03
            b        (x) float64 40B [g] -1e+03 -750.0 -500.0 -250.0 0.0

        Convert homogeneous data

        >>> ds = xr.Dataset(
        ...     data_vars={
        ...         "a": ("x", np.linspace(0, 1, 5) * ureg.kg),
        ...         "b": ("x", np.linspace(-1, 0, 5) * ureg.mg),
        ...     },
        ...     coords={"u": ("x", np.arange(5) * ureg.s)},
        ... )
        >>> ds
        <xarray.Dataset> Size: 120B
        Dimensions:  (x: 5)
        Coordinates:
            u        (x) int64 40B [s] 0 1 2 3 4
        Dimensions without coordinates: x
        Data variables:
            a        (x) float64 40B [kg] 0.0 0.25 0.5 0.75 1.0
            b        (x) float64 40B [mg] -1.0 -0.75 -0.5 -0.25 0.0
        >>> ds.pint.to("g")
        <xarray.Dataset> Size: 120B
        Dimensions:  (x: 5)
        Coordinates:
            u        (x) int64 40B [s] 0 1 2 3 4
        Dimensions without coordinates: x
        Data variables:
            a        (x) float64 40B [g] 0.0 250.0 500.0 750.0 1e+03
            b        (x) float64 40B [g] -0.001 -0.00075 -0.0005 -0.00025 0.0
        """
        if isinstance(units, (str, pint.Unit)):
            unit_kwargs.update(
                {name: units for name in self.ds.keys() if name not in unit_kwargs}
            )
            units = None
        elif units is not None and not is_dict_like(units):
            raise ValueError(
                "units must be either a string, a pint.Unit object or a dict-like,"
                f" but got {units!r}"
            )

        units = either_dict_or_kwargs(units, unit_kwargs, "to")

        return conversion.convert_units(self.ds, units)

    def chunk(self, chunks, name_prefix="xarray-", token=None, lock=False):
        """unit-aware version of chunk

        Like :py:meth:`xarray.Dataset.chunk`, but chunking a quantity will change the
        wrapped type to ``dask``.

        .. note::
            It is recommended to only use this when chunking in-memory arrays. To
            rechunk please use :py:meth:`xarray.Dataset.chunk`.

        See Also
        --------
        xarray.Dataset.chunk
        xarray.DataArray.pint.chunk
        """
        units = conversion.extract_units(self.ds)
        stripped = conversion.strip_units(self.ds)

        chunked = stripped.chunk(
            chunks, name_prefix=name_prefix, token=token, lock=lock
        )
        return conversion.attach_units(chunked, units)

    def reindex(
        self,
        indexers=None,
        method=None,
        tolerance=None,
        copy=True,
        fill_value=NA,
        **indexers_kwargs,
    ):
        """unit-aware version of reindex

        Like :py:meth:`xarray.Dataset.reindex`, except the object's indexes are converted
        to the units of the indexers first.

        .. note::
            ``tolerance`` and ``fill_value`` are not supported, yet. They will be passed through to
            ``Dataset.reindex`` unmodified.

        See Also
        --------
        xarray.DataArray.pint.reindex
        xarray.Dataset.pint.reindex_like
        xarray.Dataset.reindex
        """
        indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "reindex")

        dims = self.ds.dims
        indexer_units = conversion.extract_indexer_units(indexers)
        indexer_units = {
            name: indexer for name, indexer in indexer_units.items() if name in dims
        }

        # TODO: handle tolerance
        # TODO: handle fill_value

        # convert the indexes to the indexer's units
        converted = conversion.convert_units(self.ds, indexer_units)
        converted_units = conversion.extract_units(converted)
        stripped = conversion.strip_units(converted)

        # index
        stripped_indexers = conversion.strip_indexer_units(indexers)
        indexed = stripped.reindex(
            stripped_indexers,
            method=method,
            tolerance=tolerance,
            copy=copy,
            fill_value=fill_value,
        )
        return conversion.attach_units(indexed, converted_units)

    def reindex_like(
        self, other, method=None, tolerance=None, copy=True, fill_value=NA
    ):
        """unit-aware version of reindex_like

        Like :py:meth:`xarray.Dataset.reindex_like`, except the object's indexes are converted
        to the units of the indexers first.

        .. note::
            ``tolerance`` and ``fill_value`` are not supported, yet. They will be passed through to
            ``Dataset.reindex_like`` unmodified.

        See Also
        --------
        xarray.DataArray.pint.reindex_like
        xarray.Dataset.pint.reindex
        xarray.Dataset.reindex_like
        """
        indexer_units = conversion.extract_units(other)

        converted = conversion.convert_units(self.ds, indexer_units)
        units = conversion.extract_units(converted)
        stripped = conversion.strip_units(converted)
        stripped_other = conversion.strip_units(other)

        # TODO: handle tolerance
        # TODO: handle fill_value

        reindexed = stripped.reindex_like(
            stripped_other,
            method=method,
            tolerance=tolerance,
            copy=copy,
            fill_value=fill_value,
        )
        return conversion.attach_units(reindexed, units)

    def interp(
        self,
        coords=None,
        method="linear",
        assume_sorted=False,
        kwargs=None,
        **coords_kwargs,
    ):
        """unit-aware version of interp

        Like :py:meth:`xarray.Dataset.interp`, except the object's indexes are converted
        to the units of the indexers first.

        .. note::
            ``method``, ``assume_sorted`` and ``kwargs`` are passed unmodified to
            ``DataArray.interp``.

        See Also
        --------
        xarray.DataArray.pint.interp
        xarray.Dataset.pint.interp_like
        xarray.Dataset.interp
        """
        indexers = either_dict_or_kwargs(coords, coords_kwargs, "interp")

        dims = self.ds.dims
        indexer_units = conversion.extract_indexer_units(indexers)
        indexer_units = {
            name: indexer for name, indexer in indexer_units.items() if name in dims
        }

        # convert the indexes to the indexer's units
        converted = conversion.convert_units(self.ds, indexer_units)
        units = conversion.extract_units(converted)
        stripped = conversion.strip_units(converted)

        # index
        stripped_indexers = conversion.strip_indexer_units(indexers)
        interpolated = stripped.interp(
            stripped_indexers,
            method=method,
            assume_sorted=assume_sorted,
            kwargs=kwargs,
        )
        return conversion.attach_units(interpolated, units)

    def interp_like(self, other, method="linear", assume_sorted=False, kwargs=None):
        """unit-aware version of interp_like

        Like :py:meth:`xarray.Dataset.interp_like`, except the object's indexes are
        converted to the units of the indexers first.

        .. note::
            ``method``, ``assume_sorted`` and ``kwargs`` are passed unmodified to
            ``DataArray.interp``.

        See Also
        --------
        xarray.DataArray.pint.interp_like
        xarray.Dataset.pint.interp
        xarray.Dataset.interp_like
        """
        indexer_units = conversion.extract_units(other)

        converted = conversion.convert_units(self.ds, indexer_units)
        units = conversion.extract_units(converted)
        stripped = conversion.strip_units(converted)
        stripped_other = conversion.strip_units(other)
        interpolated = stripped.interp_like(
            stripped_other,
            method=method,
            assume_sorted=assume_sorted,
            kwargs=kwargs,
        )
        return conversion.attach_units(interpolated, units)

    def sel(
        self, indexers=None, method=None, tolerance=None, drop=False, **indexers_kwargs
    ):
        """unit-aware version of sel

        Like :py:meth:`xarray.Dataset.sel`, except the object's indexes are converted to
        the units of the indexers first.

        .. note::
            ``tolerance`` is not supported, yet. It will be passed through to
            ``Dataset.sel`` unmodified.

        See Also
        --------
        xarray.DataArray.pint.sel
        xarray.Dataset.sel
        xarray.DataArray.sel
        """
        indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "sel")

        dims = self.ds.dims
        indexer_units = conversion.extract_indexer_units(indexers)
        indexer_units = {
            name: indexer for name, indexer in indexer_units.items() if name in dims
        }

        # TODO: handle tolerance

        # convert the indexes to the indexer's units
        try:
            converted = conversion.convert_units(self.ds, indexer_units)
        except ValueError as e:
            raise KeyError(*e.args) from e

        # index
        stripped_indexers = conversion.strip_indexer_units(indexers)

        stripped = conversion.strip_units(converted)
        converted_units = conversion.extract_units(converted)
        indexed = stripped.sel(
            stripped_indexers,
            method=method,
            tolerance=tolerance,
            drop=drop,
        )

        return conversion.attach_units(indexed, converted_units)

    @property
    def loc(self):
        """Unit-aware attribute for indexing

        Only supports ``__getitem__``.

        .. note::
           Position based indexing (e.g. ``ds.loc[1, 2:]``) is not supported, yet

        See Also
        --------
        xarray.Dataset.loc
        """
        return DatasetLocIndexer(self.ds)

    def drop_sel(self, labels=None, *, errors="raise", **labels_kwargs):
        """unit-aware version of drop_sel

        Just like :py:meth:`xarray.Dataset.drop_sel`, except the indexers are converted
        to the units of the object's indexes first.

        See Also
        --------
        xarray.DataArray.pint.drop_sel
        xarray.Dataset.drop_sel
        xarray.DataArray.drop_sel
        """
        indexers = either_dict_or_kwargs(labels, labels_kwargs, "drop_sel")

        dims = self.ds.dims
        unit_attrs = conversion.extract_unit_attributes(self.ds)
        index_units = {
            name: units for name, units in unit_attrs.items() if name in dims
        }

        # convert the indexers to the indexes units
        try:
            converted_indexers = conversion.convert_indexer_units(indexers, index_units)
        except ValueError as e:
            raise KeyError(*e.args) from e

        # index
        stripped_indexers = conversion.strip_indexer_units(converted_indexers)
        indexed = self.ds.drop_sel(
            stripped_indexers,
            errors=errors,
        )

        return indexed

    def ffill(self, dim, limit=None):
        """unit-aware version of ffill

        Like :py:meth:`xarray.Dataset.ffill` but without stripping the data units.

        See Also
        --------
        xarray.Dataset.ffill
        xarray.Dataset.pint.bfill
        """
        units = conversion.extract_units(self.ds)
        stripped = conversion.strip_units(self.ds)

        filled = stripped.ffill(dim=dim, limit=limit)

        return conversion.attach_units(filled, units)

    def bfill(self, dim, limit=None):
        """unit-aware version of bfill

        Like :py:meth:`xarray.Dataset.bfill` but without stripping the data units.

        See Also
        --------
        xarray.Dataset.bfill
        xarray.Dataset.pint.ffill
        """
        units = conversion.extract_units(self.ds)
        stripped = conversion.strip_units(self.ds)

        filled = stripped.bfill(dim=dim, limit=limit)

        return conversion.attach_units(filled, units)

    def interpolate_na(
        self,
        dim=None,
        method="linear",
        limit=None,
        use_coordinate=True,
        max_gap=None,
        keep_attrs=None,
        **kwargs,
    ):
        """unit-aware version of interpolate_na

        Like :py:meth:`xarray.Dataset.interpolate_na` but without stripping the units on
        data or coordinates.

        .. note::
            ``max_gap`` is not supported, yet, and will be passed through to
            ``Dataset.interpolate_na`` unmodified.

        See Also
        --------
        xarray.DataArray.pint.interpolate_na
        xarray.Dataset.interpolate_na
        """
        units = conversion.extract_units(self.ds)
        stripped = conversion.strip_units(self.ds)

        interpolated = stripped.interpolate_na(
            dim=dim,
            method=method,
            limit=limit,
            use_coordinate=use_coordinate,
            max_gap=max_gap,
            keep_attrs=keep_attrs,
            **kwargs,
        )

        return conversion.attach_units(interpolated, units)