File: formatting.py

package info (click to toggle)
pint-xarray 0.5.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 456 kB
  • sloc: python: 4,477; sh: 10; makefile: 4
file content (206 lines) | stat: -rw-r--r-- 7,333 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from itertools import zip_longest

import numpy as np
from xarray.core.options import OPTIONS


# vendored from xarray.core.formatting
def maybe_truncate(obj, maxlen=500):
    s = str(obj)
    if len(s) > maxlen:
        s = s[: (maxlen - 3)] + "..."
    return s


# vendored from xarray.core.formatting
def pretty_print(x, numchars: int):
    """Given an object `x`, call `str(x)` and format the returned string so
    that it is numchars long, padding with trailing spaces or truncating with
    ellipses as necessary
    """
    s = maybe_truncate(x, numchars)
    return s + " " * max(numchars - len(s), 0)


# vendored from xarray.core.formatting
def _get_indexer_at_least_n_items(shape, n_desired, from_end):
    assert 0 < n_desired <= np.prod(shape)
    cum_items = np.cumprod(shape[::-1])
    n_steps = np.argmax(cum_items >= n_desired)
    stop = int(np.ceil(float(n_desired) / np.r_[1, cum_items][n_steps]))
    indexer = (
        ((-1 if from_end else 0),) * (len(shape) - 1 - n_steps)
        + ((slice(-stop, None) if from_end else slice(stop)),)
        + (slice(None),) * n_steps
    )
    return indexer


# vendored from xarray.core.formatting
def first_n_items(array, n_desired):
    """Returns the first n_desired items of an array"""
    # Unfortunately, we can't just do array.flat[:n_desired] here because it
    # might not be a numpy.ndarray. Moreover, access to elements of the array
    # could be very expensive (e.g. if it's only available over DAP), so go out
    # of our way to get them in a single call to __getitem__ using only slices.
    if n_desired < 1:
        raise ValueError("must request at least one item")

    if array.size == 0:
        # work around for https://github.com/numpy/numpy/issues/5195
        return []

    if n_desired < array.size:
        indexer = _get_indexer_at_least_n_items(array.shape, n_desired, from_end=False)
        array = array[indexer]
    return np.asarray(array).flat[:n_desired]


# vendored from xarray.core.formatting
def last_n_items(array, n_desired):
    """Returns the last n_desired items of an array"""
    # Unfortunately, we can't just do array.flat[-n_desired:] here because it
    # might not be a numpy.ndarray. Moreover, access to elements of the array
    # could be very expensive (e.g. if it's only available over DAP), so go out
    # of our way to get them in a single call to __getitem__ using only slices.
    if (n_desired == 0) or (array.size == 0):
        return []

    if n_desired < array.size:
        indexer = _get_indexer_at_least_n_items(array.shape, n_desired, from_end=True)
        array = array[indexer]
    return np.asarray(array).flat[-n_desired:]


# based on xarray.core.formatting.format_item
def format_item(x, quote_strings=True):
    """Returns a succinct summary of an object as a string"""
    if isinstance(x, (str, bytes)):
        return repr(x) if quote_strings else x
    elif isinstance(x, float):
        return f"{x:.4}"
    elif hasattr(x, "dtype") and np.issubdtype(x.dtype, np.floating):
        return f"{x.item():.4}"
    else:
        return str(x)


# based on xarray.core.formatting.format_item
def format_items(x):
    """Returns a succinct summaries of all items in a sequence as strings"""
    x = np.asarray(x)
    formatted = [format_item(xi) for xi in x]
    return formatted


def summarize_attr(key, value, col_width=None):
    """Summary for __repr__ - use ``X.attrs[key]`` for full value."""
    # Indent key and add ':', then right-pad if col_width is not None
    k_str = f"    {key}:"
    if col_width is not None:
        k_str = pretty_print(k_str, col_width)
    # Replace tabs and newlines, so we print on one line in known width
    v_str = str(value).replace("\t", "\\t").replace("\n", "\\n")
    # Finally, truncate to the desired display width
    return maybe_truncate(f"{k_str} {v_str}", OPTIONS["display_width"])


# adapted from xarray.core.formatting
def _diff_mapping_repr(a_mapping, b_mapping, title, summarizer, col_width=None):
    def extra_items_repr(extra_keys, mapping, ab_side):
        extra_repr = [summarizer(k, mapping[k], col_width) for k in extra_keys]
        if extra_repr:
            header = f"{title} only on the {ab_side} object:"
            return [header] + extra_repr
        else:
            return []

    a_keys = set(a_mapping)
    b_keys = set(b_mapping)

    summary = []

    diff_items = []

    for k in a_keys & b_keys:
        compatible = a_mapping[k] == b_mapping[k]
        if not compatible:
            temp = [
                summarizer(k, vars[k], col_width) for vars in (a_mapping, b_mapping)
            ]

            diff_items += [ab_side + s[1:] for ab_side, s in zip(("L", "R"), temp)]

    if diff_items:
        summary += [f"Differing {title.lower()}:"] + diff_items

    summary += extra_items_repr(a_keys - b_keys, a_mapping, "left")
    summary += extra_items_repr(b_keys - a_keys, b_mapping, "right")

    return "\n".join(summary)


# vendored from xarray.core.formatting
def format_array_flat(array, max_width: int):
    """Return a formatted string for as many items in the flattened version of
    array that will fit within max_width characters.
    """
    # every item will take up at least two characters, but we always want to
    # print at least first and last items
    max_possibly_relevant = min(
        max(array.size, 1), max(int(np.ceil(max_width / 2.0)), 2)
    )
    relevant_front_items = format_items(
        first_n_items(array, (max_possibly_relevant + 1) // 2)
    )
    relevant_back_items = format_items(last_n_items(array, max_possibly_relevant // 2))
    # interleave relevant front and back items:
    #     [a, b, c] and [y, z] -> [a, z, b, y, c]
    relevant_items = sum(
        zip_longest(relevant_front_items, reversed(relevant_back_items)), ()
    )[:max_possibly_relevant]

    cum_len = np.cumsum([len(s) + 1 for s in relevant_items]) - 1
    if (array.size > 2) and (
        (max_possibly_relevant < array.size) or (cum_len > max_width).any()
    ):
        padding = " ... "
        count = min(
            array.size, max(np.argmax(cum_len + len(padding) - 1 > max_width), 2)
        )
    else:
        count = array.size
        padding = "" if (count <= 1) else " "

    num_front = (count + 1) // 2
    num_back = count - num_front
    # note that num_back is 0 <--> array.size is 0 or 1
    #                         <--> relevant_back_items is []
    pprint_str = "".join(
        [
            " ".join(relevant_front_items[:num_front]),
            padding,
            " ".join(relevant_back_items[-num_back:]),
        ]
    )

    # As a final check, if it's still too long even with the limit in values,
    # replace the end with an ellipsis
    # NB: this will still returns a full 3-character ellipsis when max_width < 3
    if len(pprint_str) > max_width:
        pprint_str = pprint_str[: max(max_width - 3, 0)] + "..."

    return pprint_str


def inline_repr(quantity, max_width):
    magnitude = quantity.magnitude
    units = quantity.units

    units_repr = f"{units:~P}"
    if isinstance(magnitude, np.ndarray):
        data_repr = format_array_flat(magnitude, max_width - len(units_repr) - 3)
    else:
        data_repr = maybe_truncate(repr(magnitude), max_width - len(units_repr) - 3)

    return f"[{units_repr}] {data_repr}"