1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
from itertools import zip_longest
import numpy as np
from xarray.core.options import OPTIONS
# vendored from xarray.core.formatting
def maybe_truncate(obj, maxlen=500):
s = str(obj)
if len(s) > maxlen:
s = s[: (maxlen - 3)] + "..."
return s
# vendored from xarray.core.formatting
def pretty_print(x, numchars: int):
"""Given an object `x`, call `str(x)` and format the returned string so
that it is numchars long, padding with trailing spaces or truncating with
ellipses as necessary
"""
s = maybe_truncate(x, numchars)
return s + " " * max(numchars - len(s), 0)
# vendored from xarray.core.formatting
def _get_indexer_at_least_n_items(shape, n_desired, from_end):
assert 0 < n_desired <= np.prod(shape)
cum_items = np.cumprod(shape[::-1])
n_steps = np.argmax(cum_items >= n_desired)
stop = int(np.ceil(float(n_desired) / np.r_[1, cum_items][n_steps]))
indexer = (
((-1 if from_end else 0),) * (len(shape) - 1 - n_steps)
+ ((slice(-stop, None) if from_end else slice(stop)),)
+ (slice(None),) * n_steps
)
return indexer
# vendored from xarray.core.formatting
def first_n_items(array, n_desired):
"""Returns the first n_desired items of an array"""
# Unfortunately, we can't just do array.flat[:n_desired] here because it
# might not be a numpy.ndarray. Moreover, access to elements of the array
# could be very expensive (e.g. if it's only available over DAP), so go out
# of our way to get them in a single call to __getitem__ using only slices.
if n_desired < 1:
raise ValueError("must request at least one item")
if array.size == 0:
# work around for https://github.com/numpy/numpy/issues/5195
return []
if n_desired < array.size:
indexer = _get_indexer_at_least_n_items(array.shape, n_desired, from_end=False)
array = array[indexer]
return np.asarray(array).flat[:n_desired]
# vendored from xarray.core.formatting
def last_n_items(array, n_desired):
"""Returns the last n_desired items of an array"""
# Unfortunately, we can't just do array.flat[-n_desired:] here because it
# might not be a numpy.ndarray. Moreover, access to elements of the array
# could be very expensive (e.g. if it's only available over DAP), so go out
# of our way to get them in a single call to __getitem__ using only slices.
if (n_desired == 0) or (array.size == 0):
return []
if n_desired < array.size:
indexer = _get_indexer_at_least_n_items(array.shape, n_desired, from_end=True)
array = array[indexer]
return np.asarray(array).flat[-n_desired:]
# based on xarray.core.formatting.format_item
def format_item(x, quote_strings=True):
"""Returns a succinct summary of an object as a string"""
if isinstance(x, (str, bytes)):
return repr(x) if quote_strings else x
elif isinstance(x, float):
return f"{x:.4}"
elif hasattr(x, "dtype") and np.issubdtype(x.dtype, np.floating):
return f"{x.item():.4}"
else:
return str(x)
# based on xarray.core.formatting.format_item
def format_items(x):
"""Returns a succinct summaries of all items in a sequence as strings"""
x = np.asarray(x)
formatted = [format_item(xi) for xi in x]
return formatted
def summarize_attr(key, value, col_width=None):
"""Summary for __repr__ - use ``X.attrs[key]`` for full value."""
# Indent key and add ':', then right-pad if col_width is not None
k_str = f" {key}:"
if col_width is not None:
k_str = pretty_print(k_str, col_width)
# Replace tabs and newlines, so we print on one line in known width
v_str = str(value).replace("\t", "\\t").replace("\n", "\\n")
# Finally, truncate to the desired display width
return maybe_truncate(f"{k_str} {v_str}", OPTIONS["display_width"])
# adapted from xarray.core.formatting
def _diff_mapping_repr(a_mapping, b_mapping, title, summarizer, col_width=None):
def extra_items_repr(extra_keys, mapping, ab_side):
extra_repr = [summarizer(k, mapping[k], col_width) for k in extra_keys]
if extra_repr:
header = f"{title} only on the {ab_side} object:"
return [header] + extra_repr
else:
return []
a_keys = set(a_mapping)
b_keys = set(b_mapping)
summary = []
diff_items = []
for k in a_keys & b_keys:
compatible = a_mapping[k] == b_mapping[k]
if not compatible:
temp = [
summarizer(k, vars[k], col_width) for vars in (a_mapping, b_mapping)
]
diff_items += [ab_side + s[1:] for ab_side, s in zip(("L", "R"), temp)]
if diff_items:
summary += [f"Differing {title.lower()}:"] + diff_items
summary += extra_items_repr(a_keys - b_keys, a_mapping, "left")
summary += extra_items_repr(b_keys - a_keys, b_mapping, "right")
return "\n".join(summary)
# vendored from xarray.core.formatting
def format_array_flat(array, max_width: int):
"""Return a formatted string for as many items in the flattened version of
array that will fit within max_width characters.
"""
# every item will take up at least two characters, but we always want to
# print at least first and last items
max_possibly_relevant = min(
max(array.size, 1), max(int(np.ceil(max_width / 2.0)), 2)
)
relevant_front_items = format_items(
first_n_items(array, (max_possibly_relevant + 1) // 2)
)
relevant_back_items = format_items(last_n_items(array, max_possibly_relevant // 2))
# interleave relevant front and back items:
# [a, b, c] and [y, z] -> [a, z, b, y, c]
relevant_items = sum(
zip_longest(relevant_front_items, reversed(relevant_back_items)), ()
)[:max_possibly_relevant]
cum_len = np.cumsum([len(s) + 1 for s in relevant_items]) - 1
if (array.size > 2) and (
(max_possibly_relevant < array.size) or (cum_len > max_width).any()
):
padding = " ... "
count = min(
array.size, max(np.argmax(cum_len + len(padding) - 1 > max_width), 2)
)
else:
count = array.size
padding = "" if (count <= 1) else " "
num_front = (count + 1) // 2
num_back = count - num_front
# note that num_back is 0 <--> array.size is 0 or 1
# <--> relevant_back_items is []
pprint_str = "".join(
[
" ".join(relevant_front_items[:num_front]),
padding,
" ".join(relevant_back_items[-num_back:]),
]
)
# As a final check, if it's still too long even with the limit in values,
# replace the end with an ellipsis
# NB: this will still returns a full 3-character ellipsis when max_width < 3
if len(pprint_str) > max_width:
pprint_str = pprint_str[: max(max_width - 3, 0)] + "..."
return pprint_str
def inline_repr(quantity, max_width):
magnitude = quantity.magnitude
units = quantity.units
units_repr = f"{units:~P}"
if isinstance(magnitude, np.ndarray):
data_repr = format_array_flat(magnitude, max_width - len(units_repr) - 3)
else:
data_repr = maybe_truncate(repr(magnitude), max_width - len(units_repr) - 3)
return f"[{units_repr}] {data_repr}"
|