1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
|
/* Copyright (c) 2014, David A. Clunie DBA Pixelmed Publishing. All rights reserved. */
package com.pixelmed.codec.jpeg;
import java.awt.Rectangle;
import java.awt.Shape;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.util.HashMap;
import java.util.Map;
import java.util.Vector;
/**
* <p>A JPEG Entropy Coded Segment.</p>
*
* <p>Development of this class was supported by funding from MDDX Research and Informatics.</p>
*
* @author dclunie
*/
public class EntropyCodedSegment {
private static final String identString = "@(#) $Header: /userland/cvs/codec/com/pixelmed/codec/jpeg/EntropyCodedSegment.java,v 1.13 2014/03/29 21:58:47 dclunie Exp $";
private boolean copying;
private ByteArrayOutputStream copiedBytes;
private final int restartinterval;
private final MarkerSegmentSOS sos;
private final MarkerSegmentSOF sof;
private final Map<String,HuffmanTable> htByClassAndIdentifer;
private final Map<String,QuantizationTable> qtByIdentifer;
// copied from com.pixelmed.scpecg.HuffmanDecoder ...
private byte[] bytesToDecompress;
private int availableBytes;
private int byteIndex;
private int bitIndex;
private int currentByte;
private int currentBits;
private int haveBits;
private static final int[] extractBitFromByteMask = { 0x80,0x40,0x20,0x10,0x08,0x04,0x02,0x01 };
private final void getEnoughBits(int wantBits) throws Exception {
while (haveBits < wantBits) {
if (bitIndex > 7) {
if (byteIndex < availableBytes) {
currentByte=bytesToDecompress[byteIndex++];
//System.err.println("currentByte["+byteIndex+"] now = 0x"+Integer.toHexString(currentByte&0xff)+" "+Integer.toBinaryString(currentByte&0xff));
bitIndex=0;
}
else {
throw new Exception("No more bits (having decompressed "+byteIndex+" dec bytes)");
}
}
int newBit = (currentByte & extractBitFromByteMask[bitIndex++]) == 0 ? 0 : 1;
currentBits = (currentBits << 1) + newBit;
++haveBits;
}
//System.err.println("getEnoughBits(): returning "+haveBits+" bits "+Integer.toBinaryString(currentBits)+" (ending at byte "+byteIndex+" bit "+(bitIndex-1)+")");
}
private int writeByte; // only contains meaningful content when writeBitIndex > 0
private int writeBitIndex; // 0 means ready to write 1st (high) bit to writeByte, 7 means ready to write last (low) bit to writeByte, will transiently (inside writeBits only) be 8 to signal new byte needed
private final void initializeWriteBits() {
copiedBytes = new ByteArrayOutputStream();
writeByte = 0;
writeBitIndex = 0; // start writing into 1st (high) bit of writeByte
}
private final void flushWriteBits() {
if (writeBitIndex > 0) {
// bits have been written to writeByte so need to pad it with 1s and write it
while (writeBitIndex < 8) {
writeByte = writeByte | extractBitFromByteMask[writeBitIndex];
++writeBitIndex;
}
copiedBytes.write(writeByte);
if ((writeByte&0xff) == 0xff) {
copiedBytes.write(0); // stuffed zero byte after 0xff to prevent being considered marker
}
writeByte=0;
writeBitIndex=0;
}
// else have not written any bits to writeByte, so do nothing
}
private final void writeBits(int bits,int nBits) {
//System.err.println("writeBits(): writing "+nBits+" bits "+Integer.toBinaryString(bits));
if (nBits > 0) {
for (int i=nBits-1; i>=0; --i) {
final int whichBitMask = 1 << i; // bits are "big endian"
final int bitIsSet = bits & whichBitMask; // zero or not zero
// do not need to check writeBitIndex before "writing" ... will always be "ready"
if (bitIsSet != 0) {
writeByte = writeByte | extractBitFromByteMask[writeBitIndex];
}
++writeBitIndex;
if (writeBitIndex > 7) {
//System.err.println("writeBits(): wrote = 0x"+Integer.toHexString(writeByte&0xff)+" "+Integer.toBinaryString(writeByte&0xff));
copiedBytes.write(writeByte);
if ((writeByte&0xff) == 0xff) {
copiedBytes.write(0); // stuffed zero byte after 0xff to prevent being considered marker
}
writeByte=0;
writeBitIndex=0;
}
}
}
}
private HuffmanTable usingTable = null;
//int counter = 0;
// Use 10918-1 F.2 Figure F.16 decode procedure
/**
* <p>Decode a single value.</p>
*
* @return the decoded value
*/
private final int decode() throws Exception {
final int[] MINCODE = usingTable.getMINCODE();
final int[] MAXCODE = usingTable.getMAXCODE();
final int[] VALPTR = usingTable.getVALPTR();
final int[] HUFFVAL = usingTable.getHUFFVAL();
int I=1;
getEnoughBits(I); // modifies currentBits
int CODE = currentBits;
while (I<MAXCODE.length && CODE > MAXCODE[I]) {
//while (CODE > MAXCODE[I]) {
++I;
//System.err.println("I = "+I);
getEnoughBits(I); // modifies currentBits
CODE = currentBits;
//System.err.println("CODE "+Integer.toBinaryString(CODE));
//System.err.println("compare to MAXCODE[I] "+(I<MAXCODE.length ? Integer.toBinaryString(MAXCODE[I]) : "out of MAXCODE entries"));
}
//System.err.println("Found CODE "+Integer.toBinaryString(CODE));
int VALUE = 0;
if (I<MAXCODE.length) {
int J = VALPTR[I];
//System.err.println("Found VALPTR base "+J);
J = J + CODE - MINCODE[I];
//System.err.println("Found VALPTR offset by code "+J);
VALUE = HUFFVAL[J];
//System.err.println("Found VALUE "+VALUE+" dec (0x"+Integer.toHexString(VALUE)+")");
//System.err.println("HUFF_DECODE: "+VALUE+" COUNTER "+counter);
//++counter;
}
else {
//we have exceeded the maximum coded value specified :(
// copy IJG behavior in this situation from jdhuff.c "With garbage input we may reach the sentinel value l = 17" ... "fake a zero as the safest result"
//System.err.println("Bad Huffman code "+Integer.toBinaryString(CODE)+" so use VALUE "+VALUE+" dec (0x"+Integer.toHexString(VALUE)+")");
}
if (copying) { writeBits(currentBits,haveBits); }
currentBits=0;
haveBits=0;
return VALUE;
}
private final int getValueOfRequestedLength(int wantBits) throws Exception {
getEnoughBits(wantBits); // modifies currentBits
final int value = currentBits;
//System.err.println("getValueOfRequestedLength(): wantBits="+wantBits+" : Got value "+value+" dec (0x"+Integer.toHexString(value)+")");
if (copying) { writeBits(currentBits,haveBits); }
currentBits=0;
haveBits=0;
return value;
}
// values above index 11 only occur for 12 bit process ...
private int[] dcSignBitMask = { 0x00/*na*/,0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x100,0x200,0x400,0x800,0x1000,0x2000,0x4000 /*no entry for 16*/};
private final int convertSignAndAmplitudeBitsToValue(int value,int length) throws Exception {
// see P&M Table 11-1 page 190 and Table 11-4 page 193 (same for DC and AC)
if (length > 0) {
//System.err.println("dcSignBitMask = "+Integer.toHexString(dcSignBitMask[length]));
if ((value & dcSignBitMask[length]) == 0) {
//System.err.println("Have sign bit");
value = - value - 1;
}
}
return value;
}
private final void writeEntropyCodedAllZeroACCoefficients() {
// write a single EOB code, which is rrrrssss = 0x00;
writeBits(usingTable.getEOBCode(),usingTable.getEOBCodeLength());
}
public EntropyCodedSegment(int restartinterval,MarkerSegmentSOS sos,MarkerSegmentSOF sof,Map<String,HuffmanTable> htByClassAndIdentifer,Map<String,QuantizationTable> qtByIdentifer,boolean copying,boolean dumping) {
this.restartinterval = restartinterval;
this.sos = sos;
this.sof = sof;
this.htByClassAndIdentifer = htByClassAndIdentifer;
this.qtByIdentifer = qtByIdentifer;
this.copying = copying;
if (dumping) dumpHuffmanTables();
//dumpQuantizationTables();
}
// A "data unit" is the "smallest logical unit that can be processed", which in the case of DCT-based processes is one 8x8 block of coefficients (P&M page 101)
private final void getOneDCTDataUnit(int dcEntropyCodingTableSelector,int acEntropyCodingTableSelector,boolean redact) throws Exception {
usingTable = htByClassAndIdentifer.get("0+"+Integer.toString(dcEntropyCodingTableSelector));
{
final int ssss = decode(); // number of DC bits encoded next
// see P&M Table 11-1 page 190
int dcValue = 0;
if (ssss == 0) {
dcValue = 0;
}
else if (ssss == 16) { // only occurs for lossless
dcValue = 32768;
}
else {
final int dcBits = getValueOfRequestedLength(ssss);
dcValue = convertSignAndAmplitudeBitsToValue(dcBits,ssss);
}
//System.err.println("Got DC value "+dcValue+" dec (0x"+Integer.toHexString(dcValue)+")");
}
usingTable = htByClassAndIdentifer.get("1+"+Integer.toString(acEntropyCodingTableSelector));
final boolean restoreCopying = copying;
if (redact && copying) {
copying = false;
writeEntropyCodedAllZeroACCoefficients();
}
int i=1;
while (i<64) {
//System.err.println("AC ["+i+"]:");
final int rrrrssss = decode();
if (rrrrssss == 0) {
//System.err.println("AC ["+i+"]: "+"EOB");
break; // EOB
}
else if (rrrrssss == 0xF0) {
//System.err.println("AC ["+i+"]: "+"ZRL: 16 zeroes");
i+=16;
}
else {
// note that ssss of zero is not used for AC (unlike DC) in sequential mode
final int rrrr = rrrrssss >>> 4;
final int ssss = rrrrssss & 0x0f;
//System.err.println("AC ["+i+"]: rrrr="+rrrr+" ssss="+ssss);
final int acBits = getValueOfRequestedLength(ssss);
final int acValue = convertSignAndAmplitudeBitsToValue(acBits,ssss);
//System.err.println("AC ["+i+"]: "+rrrr+" zeroes then value "+acValue);
i+=rrrr; // the number of zeroes
++i; // the value we read (ssss is always non-zero, so we always read something
}
}
copying = restoreCopying;
}
private final boolean redactionDecision(int colMCU,int rowMCU,int thisHorizontalSamplingFactor,int thisVerticalSamplingFactor,int maxHorizontalSamplingFactor,int maxVerticalSamplingFactor,int h,int v,Vector<Shape> redactionShapes) {
final int vMCUSize = 8 * maxVerticalSamplingFactor;
final int hMCUSize = 8 * maxHorizontalSamplingFactor;
//System.err.println("MCUSize in pixels = "+hMCUSize+" * "+vMCUSize);
final int hMCUOffset = colMCU * hMCUSize;
final int vMCUOffset = rowMCU * vMCUSize;
//System.err.println("MCUOffset in pixels = "+hMCUOffset+" * "+vMCUOffset);
final int hBlockSize = 8 * maxHorizontalSamplingFactor/thisHorizontalSamplingFactor;
final int vBlockSize = 8 * maxVerticalSamplingFactor/thisVerticalSamplingFactor;
//System.err.println("BlockSize in pixels = "+hBlockSize+" * "+vBlockSize);
final int xBlock = hMCUOffset + h * hBlockSize;
final int yBlock = vMCUOffset + v * vBlockSize;
Rectangle blockShape = new Rectangle(xBlock,yBlock,hBlockSize,vBlockSize);
//System.err.println("blockShape "+blockShape);
boolean redact = false;
if (redactionShapes != null) {
for (Shape redactionShape : redactionShapes) {
if (redactionShape.intersects(blockShape)) {
redact = true;
break;
}
}
}
return redact;
}
private final void getOneMinimumCodedUnit(int nComponents,int[] DCEntropyCodingTableSelector,int[] ACEntropyCodingTableSelector,int[] HorizontalSamplingFactor,int[] VerticalSamplingFactor,int maxHorizontalSamplingFactor,int maxVerticalSamplingFactor,int colMCU,int rowMCU,Vector<Shape> redactionShapes) throws Exception {
for (int c=0; c<nComponents; ++c) {
// See discussion of interleaving of data units within MCUs in P&M section 7.3.5 pages 101-105; always interleaved in sequential mode
for (int v=0; v<VerticalSamplingFactor[c]; ++v) {
for (int h=0; h<HorizontalSamplingFactor[c]; ++h) {
//System.err.println("Component "+c+" v "+v+" h "+h);
boolean redact = redactionDecision(colMCU,rowMCU,HorizontalSamplingFactor[c],VerticalSamplingFactor[c],maxHorizontalSamplingFactor,maxVerticalSamplingFactor,h,v,redactionShapes);
getOneDCTDataUnit(DCEntropyCodingTableSelector[c],ACEntropyCodingTableSelector[c],redact);
}
}
}
}
private static final int max(int[] a) {
int m = Integer.MIN_VALUE;
for (int i : a) {
if (i > m) m = i;
}
return m;
}
/**
* <p>Decode the supplied bytes that comprise a complete EntropyCodedSeqment and redact or copy them as required.</p>
*
* @param bytesToDecompress the bytes in the EntropyCodedSeqment
* @param mcuCount the number of MCUs encoded by this EntropyCodedSeqment
* @param nMCUHorizontally the number of MCUs in a single row
* @param mcuOffset the number of MCUs that have previously been read for the frame containing this EntropyCodedSeqment
* @param redactionShapes a Vector of Shape that are Rectangle
* @return the bytes in a copy of the EntropyCodedSeqment appropriately redacted
* @exception Exception if bad things happen parsing the EntropyCodedSeqment, like running out of bits, caused by malformed input
* @exception IOException if bad things happen reading or writing the bytes
*/
public final byte[] finish(byte[] bytesToDecompress,int mcuCount,int nMCUHorizontally,int mcuOffset,Vector<Shape> redactionShapes) throws Exception, IOException {
this.bytesToDecompress = bytesToDecompress;
availableBytes = this.bytesToDecompress.length;
byteIndex = 0;
bitIndex = 8; // force fetching byte the first time
haveBits = 0; // don't have any bits to start with
if (copying) {
initializeWriteBits(); // will create a new ByteArrayOutputStream
}
//try {
final int nComponents = sos.getNComponentsPerScan();
final int[] DCEntropyCodingTableSelector = sos.getDCEntropyCodingTableSelector();
final int[] ACEntropyCodingTableSelector = sos.getACEntropyCodingTableSelector();
final int[] HorizontalSamplingFactor = sof.getHorizontalSamplingFactor();
final int[] VerticalSamplingFactor = sof.getVerticalSamplingFactor();
final int maxHorizontalSamplingFactor = max(HorizontalSamplingFactor);
//System.err.println("maxHorizontalSamplingFactor "+maxHorizontalSamplingFactor);
final int maxVerticalSamplingFactor = max(VerticalSamplingFactor);
//System.err.println("maxVerticalSamplingFactor "+maxVerticalSamplingFactor);
for (int mcu=0; mcu<mcuCount; ++mcu) {
int rowMCU = mcuOffset / nMCUHorizontally;
int colMCU = mcuOffset % nMCUHorizontally;
//System.err.println("MCU ("+colMCU+","+rowMCU+")");
getOneMinimumCodedUnit(nComponents,DCEntropyCodingTableSelector,ACEntropyCodingTableSelector,HorizontalSamplingFactor,VerticalSamplingFactor,maxHorizontalSamplingFactor,maxVerticalSamplingFactor,colMCU,rowMCU,redactionShapes);
++mcuOffset;
}
//System.err.println("Finished ...");
//System.err.println("availableBytes = "+availableBytes);
//System.err.println("byteIndex = "+byteIndex);
//System.err.println("bitIndex = "+bitIndex);
//System.err.println("currentByte = "+currentByte);
//System.err.println("currentBits = "+currentBits);
//System.err.println("haveBits = "+haveBits);
//}
//catch (Exception e) {
// e.printStackTrace(System.err);
//}
if (copying) {
flushWriteBits(); // will pad appropriately to byte boundary
}
return copying ? copiedBytes.toByteArray() : null;
}
private final void dumpHuffmanTables() {
System.err.print("\n");
for (HuffmanTable ht : htByClassAndIdentifer.values()) {
System.err.print(ht.toString());
}
}
private final void dumpQuantizationTables() {
System.err.print("\n");
for (QuantizationTable qt : qtByIdentifer.values()) {
System.err.print(qt.toString());
}
}
}
|