1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
|
/* Copyright (c) 2014-2015, David A. Clunie DBA Pixelmed Publishing. All rights reserved. */
package com.pixelmed.codec.jpeg;
import java.awt.Rectangle;
import java.awt.Shape;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.util.HashMap;
import java.util.Map;
import java.util.Vector;
/**
* <p>A JPEG Entropy Coded Segment.</p>
*
* <p>Development of this class was supported by funding from MDDX Research and Informatics.</p>
*
* @author dclunie
*/
public class EntropyCodedSegment {
private static final String identString = "@(#) $Header: /userland/cvs/codec/com/pixelmed/codec/jpeg/EntropyCodedSegment.java,v 1.24 2016/01/16 13:30:09 dclunie Exp $";
private boolean copying;
private boolean decompressing;
private OutputArrayOrStream[] decompressedOutputPerComponent;
private boolean isHuffman;
private boolean isDCT;
private boolean isLossless;
private ByteArrayOutputStream copiedBytes;
private final MarkerSegmentSOS sos;
private final MarkerSegmentSOF sof;
private final Map<String,HuffmanTable> htByClassAndIdentifer;
private final Map<String,QuantizationTable> qtByIdentifer;
private final int nComponents;
private final int[] DCEntropyCodingTableSelector;
private final int[] ACEntropyCodingTableSelector;
private final int[] HorizontalSamplingFactor;
private final int[] VerticalSamplingFactor;
private final int maxHorizontalSamplingFactor;
private final int maxVerticalSamplingFactor;
private final int nMCUHorizontally;
private final Vector<Shape> redactionShapes;
// stuff for lossless decompression ...
private final int predictorForFirstSample;
private final int[] predictorForComponent;
private final int predictorSelectionValue;
// these are class level and used by getOneLosslessValue() to maintain state (updates them) and initialized by constructor
private int[] rowNumberAtBeginningOfRestartInterval; // indexed by component number, not final since set at beginning of each
private final int[] rowLength; // indexed by component number
private final int[] currentRowNumber; // indexed by component number
private final int[] positionWithinRow; // indexed by component number
private final int[][] previousReconstructedRow; // indexed by component number, positionWithinRow
private final int[][] currentReconstructedRow; // indexed by component number, positionWithinRow
// stuff for bit extraction ...
// copied from com.pixelmed.scpecg.HuffmanDecoder ...
private byte[] bytesToDecompress;
private int availableBytes;
private int byteIndex;
private int bitIndex;
private int currentByte;
private int currentBits;
private int haveBits;
private static final int[] extractBitFromByteMask = { 0x80,0x40,0x20,0x10,0x08,0x04,0x02,0x01 };
private final void getEnoughBits(int wantBits) throws Exception {
while (haveBits < wantBits) {
if (bitIndex > 7) {
if (byteIndex < availableBytes) {
currentByte=bytesToDecompress[byteIndex++];
//System.err.println("currentByte["+byteIndex+"] now = 0x"+Integer.toHexString(currentByte&0xff)+" "+Integer.toBinaryString(currentByte&0xff));
bitIndex=0;
}
else {
throw new Exception("No more bits (having decompressed "+byteIndex+" dec bytes)");
}
}
int newBit = (currentByte & extractBitFromByteMask[bitIndex++]) == 0 ? 0 : 1;
currentBits = (currentBits << 1) + newBit;
++haveBits;
}
//System.err.println("getEnoughBits(): returning "+haveBits+" bits "+Integer.toBinaryString(currentBits)+" (ending at byte "+byteIndex+" bit "+(bitIndex-1)+")");
}
private int writeByte; // only contains meaningful content when writeBitIndex > 0
private int writeBitIndex; // 0 means ready to write 1st (high) bit to writeByte, 7 means ready to write last (low) bit to writeByte, will transiently (inside writeBits only) be 8 to signal new byte needed
private final void initializeWriteBits() {
copiedBytes = new ByteArrayOutputStream();
writeByte = 0;
writeBitIndex = 0; // start writing into 1st (high) bit of writeByte
}
private final void flushWriteBits() {
if (writeBitIndex > 0) {
// bits have been written to writeByte so need to pad it with 1s and write it
while (writeBitIndex < 8) {
writeByte = writeByte | extractBitFromByteMask[writeBitIndex];
++writeBitIndex;
}
copiedBytes.write(writeByte);
if ((writeByte&0xff) == 0xff) {
copiedBytes.write(0); // stuffed zero byte after 0xff to prevent being considered marker
}
writeByte=0;
writeBitIndex=0;
}
// else have not written any bits to writeByte, so do nothing
}
private final void writeBits(int bits,int nBits) {
//System.err.println("writeBits(): writing "+nBits+" bits "+Integer.toBinaryString(bits));
if (nBits > 0) {
for (int i=nBits-1; i>=0; --i) {
final int whichBitMask = 1 << i; // bits are "big endian"
final int bitIsSet = bits & whichBitMask; // zero or not zero
// do not need to check writeBitIndex before "writing" ... will always be "ready"
if (bitIsSet != 0) {
writeByte = writeByte | extractBitFromByteMask[writeBitIndex];
}
++writeBitIndex;
if (writeBitIndex > 7) {
//System.err.println("writeBits(): wrote = 0x"+Integer.toHexString(writeByte&0xff)+" "+Integer.toBinaryString(writeByte&0xff));
copiedBytes.write(writeByte);
if ((writeByte&0xff) == 0xff) {
copiedBytes.write(0); // stuffed zero byte after 0xff to prevent being considered marker
}
writeByte=0;
writeBitIndex=0;
}
}
}
}
private HuffmanTable usingTable = null;
//int counter = 0;
// Use 10918-1 F.2 Figure F.16 decode procedure
/**
* <p>Decode a single value.</p>
*
* @return the decoded value
*/
private final int decode() throws Exception {
final int[] MINCODE = usingTable.getMINCODE();
final int[] MAXCODE = usingTable.getMAXCODE();
final int[] VALPTR = usingTable.getVALPTR();
final int[] HUFFVAL = usingTable.getHUFFVAL();
int I=1;
getEnoughBits(I); // modifies currentBits
int CODE = currentBits;
while (I<MAXCODE.length && CODE > MAXCODE[I]) {
//while (CODE > MAXCODE[I]) {
++I;
//System.err.println("I = "+I);
getEnoughBits(I); // modifies currentBits
CODE = currentBits;
//System.err.println("CODE "+Integer.toBinaryString(CODE));
//System.err.println("compare to MAXCODE[I] "+(I<MAXCODE.length ? Integer.toBinaryString(MAXCODE[I]) : "out of MAXCODE entries"));
}
//System.err.println("Decoded CODE "+Integer.toBinaryString(CODE)+" of length "+I);
int VALUE = 0;
if (I<MAXCODE.length) {
int J = VALPTR[I];
//System.err.println("Found VALPTR base "+J);
J = J + CODE - MINCODE[I];
//System.err.println("Found VALPTR offset by code "+J);
VALUE = HUFFVAL[J];
//System.err.println("Found VALUE "+VALUE+" dec (0x"+Integer.toHexString(VALUE)+")");
//System.err.println("HUFF_DECODE: "+VALUE+" COUNTER "+counter);
//++counter;
}
else {
//we have exceeded the maximum coded value specified :(
// copy IJG behavior in this situation from jdhuff.c "With garbage input we may reach the sentinel value l = 17" ... "fake a zero as the safest result"
//System.err.println("Bad Huffman code "+Integer.toBinaryString(CODE)+" so use VALUE "+VALUE+" dec (0x"+Integer.toHexString(VALUE)+")");
}
if (copying) { writeBits(currentBits,haveBits); }
currentBits=0;
haveBits=0;
return VALUE;
}
private final void encode(int VALUE) {
//System.err.println("Given VALUE "+VALUE+" dec (0x"+Integer.toHexString(VALUE)+")");
final int[] EFUFCO = usingTable.getEFUFCO();
final int[] EFUFSI = usingTable.getEFUFSI();
int CODE = EFUFCO[VALUE];
int size = EFUFSI[VALUE];
//System.err.println("Encoding CODE "+Integer.toBinaryString(CODE)+" of length "+size);
writeBits(CODE,size);
}
private final int getValueOfRequestedLength(int wantBits) throws Exception {
getEnoughBits(wantBits); // modifies currentBits
final int value = currentBits;
//System.err.println("getValueOfRequestedLength(): wantBits="+wantBits+" : Got value "+value+" dec (0x"+Integer.toHexString(value)+")");
if (copying) { writeBits(currentBits,haveBits); }
currentBits=0;
haveBits=0;
return value;
}
// values above index 11 only occur for 12 bit process ...
private int[] dcSignBitMask = { 0x00/*na*/,0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x100,0x200,0x400,0x800,0x1000,0x2000,0x4000 /*no entry for 16*/};
private int[] maxAmplitude = { 0/*na*/,0x02-1,0x04-1,0x08-1,0x10-1,0x20-1,0x40-1,0x80-1,0x100-1,0x200-1,0x400-1,0x800-1,0x1000-1,0x2000-1,0x4000-1,0x8000-1 /*no entry for 16*/};
private final int convertSignAndAmplitudeBitsToValue(int value,int length) throws Exception {
// see P&M Table 11-1 page 190 and Table 11-4 page 193 (same for DC and AC)
if (length > 0) {
//System.err.println("dcSignBitMask = "+Integer.toHexString(dcSignBitMask[length]));
if ((value & dcSignBitMask[length]) == 0) {
//System.err.println("Have sign bit");
value = value - maxAmplitude[length];
}
}
return value;
}
private final int getNumberOfSignBits(int value) {
int ssss = 0;
if (value < 0) {
value = - value;
}
while (value > 0) {
++ssss;
value = value >> 1;
}
return ssss;
}
private final int getBits(int value,int ssss) {
int bits = 0;
if (ssss > 0) {
if (value < 0) { // "if ... -ve, subtract 1 ... and append the SSSS low-order bits of this result" P&M p191
--value;
}
// else "if ... +ve, append the SSSS low-order bits" P&M p191
bits = value & maxAmplitude[ssss];
}
return bits;
}
private final void writeEntropyCodedAllZeroACCoefficients() {
// write a single EOB code, which is rrrrssss = 0x00;
writeBits(usingTable.getEOBCode(),usingTable.getEOBCodeLength());
}
/**
* <p>Set up the environment to decode an EntropyCodedSeqment to dump, redact or copy as required.</p>
*
* @param sos SOS marker segment contents
* @param sof SOF marker segment contents
* @param htByClassAndIdentifer Huffman tables
* @param qtByIdentifer quantization tables
* @param nMCUHorizontally the number of MCUs in a single row
* @param redactionShapes a Vector of Shape that are Rectangle
* @param copying true if copying
* @param dumping true if dumping
* @param decompressing true if decompressing
* @param decompressedOutput the decompressed output (with specified or default endianness if precision > 8)
* @throws Exception if JPEG process not supported
*/
public EntropyCodedSegment(MarkerSegmentSOS sos,MarkerSegmentSOF sof,Map<String,HuffmanTable> htByClassAndIdentifer,Map<String,QuantizationTable> qtByIdentifer,int nMCUHorizontally,Vector<Shape> redactionShapes,boolean copying,boolean dumping,boolean decompressing,Parse.DecompressedOutput decompressedOutput) throws Exception {
this.sos = sos;
this.sof = sof;
this.htByClassAndIdentifer = htByClassAndIdentifer;
this.qtByIdentifer = qtByIdentifer;
this.nMCUHorizontally = nMCUHorizontally;
this.redactionShapes = redactionShapes;
this.copying = copying;
// dumping is not used other than in this constructor
this.decompressing = decompressing;
this.decompressedOutputPerComponent = decompressedOutput == null ? null : decompressedOutput.getDecompressedOutputPerComponent();
this.isHuffman = Markers.isHuffman(sof.getMarker());
if (!isHuffman) {
throw new Exception("Only Huffman processes supported (not "+Markers.getAbbreviation(sof.getMarker())+" "+Markers.getDescription(sof.getMarker())+")");
}
this.isDCT = Markers.isDCT(sof.getMarker());
this.isLossless = Markers.isLossless(sof.getMarker());
nComponents = sos.getNComponentsPerScan();
DCEntropyCodingTableSelector = sos.getDCEntropyCodingTableSelector();
ACEntropyCodingTableSelector = sos.getACEntropyCodingTableSelector();
HorizontalSamplingFactor = sof.getHorizontalSamplingFactor();
VerticalSamplingFactor = sof.getVerticalSamplingFactor();
maxHorizontalSamplingFactor = max(HorizontalSamplingFactor);
//System.err.println("maxHorizontalSamplingFactor "+maxHorizontalSamplingFactor);
maxVerticalSamplingFactor = max(VerticalSamplingFactor);
//System.err.println("maxVerticalSamplingFactor "+maxVerticalSamplingFactor);
if (isLossless && decompressing) {
//System.err.println("SamplePrecision "+sof.getSamplePrecision());
//System.err.println("SuccessiveApproximationBitPositionLowOrPointTransform "+sos.getSuccessiveApproximationBitPositionLowOrPointTransform());
predictorForFirstSample = 1 << (sof.getSamplePrecision() - sos.getSuccessiveApproximationBitPositionLowOrPointTransform() - 1);
//System.err.println("predictorForFirstSample "+predictorForFirstSample+" dec");
predictorForComponent = new int[nComponents];
predictorSelectionValue = sos.getStartOfSpectralOrPredictorSelection();
//System.err.println("predictorSelectionValue "+predictorSelectionValue);
rowLength = new int[nComponents];
currentRowNumber = new int[nComponents];
positionWithinRow = new int[nComponents];
rowNumberAtBeginningOfRestartInterval = new int[nComponents];
previousReconstructedRow = new int[nComponents][];
currentReconstructedRow = new int[nComponents][];
for (int c=0; c<nComponents; ++c) {
//rowLength[c] = sof.getNSamplesPerLine()/sof.getHorizontalSamplingFactor()[c];
rowLength[c] = (sof.getNSamplesPerLine()-1)/sof.getHorizontalSamplingFactor()[c]+1; // account for sampling of row lengths not an exact multiple of sampling factor ... hmmm :(
//System.err.println("rowLength["+c+"] "+rowLength[c]);
currentRowNumber[c] = 0;
positionWithinRow[c] = 0;
rowNumberAtBeginningOfRestartInterval[c] = 0;
previousReconstructedRow[c] = new int[rowLength[c]];
currentReconstructedRow[c] = new int[rowLength[c]];
}
}
else {
predictorForFirstSample = 0; // silence uninitialized warnings
predictorForComponent = null;
predictorSelectionValue = 0;
rowLength = null;
currentRowNumber = null;
positionWithinRow = null;
rowNumberAtBeginningOfRestartInterval = null;
previousReconstructedRow = null;
currentReconstructedRow = null;
}
if (dumping) dumpHuffmanTables();
//dumpQuantizationTables();
}
private final int getOneLosslessValue(int c,int dcEntropyCodingTableSelector,int colMCU,int rowMCU) throws Exception {
// per P&M page 492 (DIS H-2)
int prediction = 0;
if (decompressing) {
if (currentRowNumber[c] == rowNumberAtBeginningOfRestartInterval[c]) { // will be true for first row since all rowNumberAtBeginningOfRestartInterval entries are initialized to zero
if (positionWithinRow[c] == 0) { // first sample of first row
//System.err.println("Component "+c+" first sample of first row or first row after beginning of restart interval ... use predictorForFirstSample");
prediction = predictorForFirstSample;
}
else {
//System.err.println("Component "+c+" other than first sample of first row or first row after beginning of restart interval ... use Ra (previous sample in row)");
prediction = currentReconstructedRow[c][positionWithinRow[c]-1]; // Ra
}
}
else if (positionWithinRow[c] == 0) { // first sample of subsequent rows
//System.err.println("Component "+c+" first sample of subsequent rows");
prediction = previousReconstructedRow[c][0]; // Rb for position 0
}
else {
switch(predictorSelectionValue) {
case 1: prediction = currentReconstructedRow[c][positionWithinRow[c]-1]; // Ra
break;
case 2: prediction = previousReconstructedRow[c][positionWithinRow[c]]; // Rb
break;
case 3: prediction = previousReconstructedRow[c][positionWithinRow[c]-1]; // Rc
break;
case 4: prediction = currentReconstructedRow[c][positionWithinRow[c]-1] + previousReconstructedRow[c][positionWithinRow[c]] - previousReconstructedRow[c][positionWithinRow[c]-1]; // Ra + Rb - Rc
break;
case 5: prediction = currentReconstructedRow[c][positionWithinRow[c]-1] + ((previousReconstructedRow[c][positionWithinRow[c]] - previousReconstructedRow[c][positionWithinRow[c]-1])>>1); // Ra + (Rb - Rc)/2
break;
case 6: prediction = previousReconstructedRow[c][positionWithinRow[c]] + ((currentReconstructedRow[c][positionWithinRow[c]-1] - previousReconstructedRow[c][positionWithinRow[c]-1])>>1); // Rb + (Ra - Rc)/2
break;
case 7: prediction = (currentReconstructedRow[c][positionWithinRow[c]-1] + previousReconstructedRow[c][positionWithinRow[c]])>>1; // (Ra+Rb)/2
break;
default:
throw new Exception("Unrecognized predictor selection value "+predictorSelectionValue);
}
}
//System.err.println("prediction ["+currentRowNumber[c]+","+positionWithinRow[c]+"] = "+prediction+" dec (0x"+Integer.toHexString(prediction)+")");
}
usingTable = htByClassAndIdentifer.get("0+"+Integer.toString(dcEntropyCodingTableSelector));
final int ssss = decode(); // number of DC bits encoded next
// see P&M Table 11-1 page 190
int dcValue = 0;
if (ssss == 0) {
dcValue = 0;
}
else if (ssss == 16) { // only occurs for lossless
dcValue = 32768;
}
else {
final int dcBits = getValueOfRequestedLength(ssss);
dcValue = convertSignAndAmplitudeBitsToValue(dcBits,ssss);
}
//System.err.println("encoded difference value ["+currentRowNumber[c]+","+positionWithinRow[c]+"] = "+dcValue+" dec (0x"+Integer.toHexString(dcValue)+")");
int reconstructedValue = 0;
if (decompressing) {
reconstructedValue = (dcValue + prediction) & 0x0000ffff;
//System.err.println("reconstructedValue value ["+currentRowNumber[c]+","+positionWithinRow[c]+"] = "+reconstructedValue+" dec (0x"+Integer.toHexString(reconstructedValue)+")");
currentReconstructedRow[c][positionWithinRow[c]] = reconstructedValue;
++positionWithinRow[c];
if (positionWithinRow[c] >= rowLength[c]) {
//System.err.println("Component "+c+" starting next row");
positionWithinRow[c] = 0;
++currentRowNumber[c];
int[] holdRow = previousReconstructedRow[c];
previousReconstructedRow[c] = currentReconstructedRow[c];
currentReconstructedRow[c] = holdRow; // values do not matter, will be overwritten, saves deallocating and reallocating
}
}
return reconstructedValue; // meaingless unless decompressing, but still need to have absorbed bits from input to stay in sync
}
// A "data unit" is the "smallest logical unit that can be processed", which in the case of DCT-based processes is one 8x8 block of coefficients (P&M page 101)
// returns updated accumulatedDCDifferenceDuringRedaction
private final int getOneDCTDataUnit(int dcEntropyCodingTableSelector,int acEntropyCodingTableSelector,boolean redact,int accumulatedDCDifferenceDuringRedaction) throws Exception {
usingTable = htByClassAndIdentifer.get("0+"+Integer.toString(dcEntropyCodingTableSelector));
{
final boolean wasCopying = copying;
copying = false;
{
final int ssss = decode(); // number of DC bits encoded next
// see P&M Table 11-1 page 190
int dcDIFF = 0;
int dcBits = 0; // only need up here for later comparison with new computed values
if (ssss == 0) {
dcDIFF = 0;
}
else if (ssss == 16) { // only occurs for lossless
dcDIFF = 32768;
}
else {
dcBits = getValueOfRequestedLength(ssss);
dcDIFF = convertSignAndAmplitudeBitsToValue(dcBits,ssss);
}
//System.err.println("Got encoded DC DIFF "+dcDIFF+" dec (0x"+Integer.toHexString(dcDIFF)+")");
//System.err.println("accumulatedDCDifferenceDuringRedaction was "+accumulatedDCDifferenceDuringRedaction+" dec (0x"+Integer.toHexString(accumulatedDCDifferenceDuringRedaction)+")");
if (redact) {
System.err.println("Redacting this DCTDataUnit - to accumulatedDCDifferenceDuringRedaction "+accumulatedDCDifferenceDuringRedaction+" so far, adding this redacted dcDIFF "+dcDIFF);
accumulatedDCDifferenceDuringRedaction += dcDIFF; // track it
dcDIFF = 0;
}
else {
System.err.println("Not redacting this DCTDataUnit - applying accumulatedDCDifferenceDuringRedaction "+accumulatedDCDifferenceDuringRedaction+" to this non-redacted dcDIFF "+dcDIFF);
dcDIFF += accumulatedDCDifferenceDuringRedaction; // apply it
accumulatedDCDifferenceDuringRedaction = 0;
}
//System.err.println("accumulatedDCDifferenceDuringRedaction now "+accumulatedDCDifferenceDuringRedaction+" dec (0x"+Integer.toHexString(accumulatedDCDifferenceDuringRedaction)+")");
//System.err.println("Writing DC DIFF "+dcDIFF+" dec (0x"+Integer.toHexString(dcDIFF)+")");
{
final int newSSSS = getNumberOfSignBits(dcDIFF);
final int newDCBits = getBits(dcDIFF,newSSSS);
//if (newSSSS != ssss || newDCBits != dcBits) {
System.err.println("For DC value "+dcDIFF+" dec (0x"+Integer.toHexString(dcDIFF)+") SSSS was "+ssss+" is "+newSSSS+", DCBits was "+dcBits+" dec (0x"+Integer.toHexString(dcBits)+") is "+newDCBits+" dec (0x"+Integer.toHexString(newDCBits)+")");
//}
if (wasCopying) {
encode(ssss);
if (ssss > 0 && ssss < 16) {
writeBits(newDCBits,ssss);
}
}
}
}
copying = wasCopying;
}
usingTable = htByClassAndIdentifer.get("1+"+Integer.toString(acEntropyCodingTableSelector));
{
final boolean wasCopying = copying;
if (redact && copying) {
copying = false;
writeEntropyCodedAllZeroACCoefficients();
}
int i=1;
while (i<64) {
//System.err.println("AC ["+i+"]:");
final int rrrrssss = decode();
if (rrrrssss == 0) {
//System.err.println("AC ["+i+"]: "+"EOB");
break; // EOB
}
else if (rrrrssss == 0xF0) {
//System.err.println("AC ["+i+"]: "+"ZRL: 16 zeroes");
i+=16;
}
else {
// note that ssss of zero is not used for AC (unlike DC) in sequential mode
final int rrrr = rrrrssss >>> 4;
final int ssss = rrrrssss & 0x0f;
//System.err.println("AC ["+i+"]: rrrr="+rrrr+" ssss="+ssss);
final int acBits = getValueOfRequestedLength(ssss);
final int acValue = convertSignAndAmplitudeBitsToValue(acBits,ssss);
//System.err.println("AC ["+i+"]: "+rrrr+" zeroes then value "+acValue);
i+=rrrr; // the number of zeroes
++i; // the value we read (ssss is always non-zero, so we always read something
}
}
copying = wasCopying;
}
return accumulatedDCDifferenceDuringRedaction;
}
private final boolean redactionDecision(int colMCU,int rowMCU,int thisHorizontalSamplingFactor,int thisVerticalSamplingFactor,int maxHorizontalSamplingFactor,int maxVerticalSamplingFactor,int h,int v,Vector<Shape> redactionShapes) {
// only invoked for DCT so block size is always 8
final int vMCUSize = 8 * maxVerticalSamplingFactor;
final int hMCUSize = 8 * maxHorizontalSamplingFactor;
//System.err.println("MCUSize in pixels = "+hMCUSize+" * "+vMCUSize);
final int hMCUOffset = colMCU * hMCUSize;
final int vMCUOffset = rowMCU * vMCUSize;
//System.err.println("MCUOffset in pixels = "+hMCUOffset+" * "+vMCUOffset);
final int hBlockSize = 8 * maxHorizontalSamplingFactor/thisHorizontalSamplingFactor;
final int vBlockSize = 8 * maxVerticalSamplingFactor/thisVerticalSamplingFactor;
//System.err.println("BlockSize in pixels = "+hBlockSize+" * "+vBlockSize);
final int xBlock = hMCUOffset + h * hBlockSize;
final int yBlock = vMCUOffset + v * vBlockSize;
Rectangle blockShape = new Rectangle(xBlock,yBlock,hBlockSize,vBlockSize);
//System.err.println("blockShape "+blockShape);
boolean redact = false;
if (redactionShapes != null) {
for (Shape redactionShape : redactionShapes) {
if (redactionShape.intersects(blockShape)) {
redact = true;
break;
}
}
}
return redact;
}
private final void writeDecompressedPixel(int c,int decompressedPixel) throws IOException {
if (sof.getSamplePrecision() <= 8) {
decompressedOutputPerComponent[c].writeByte(decompressedPixel);
}
else {
// endianness handled by OutputArrayOrStream
decompressedOutputPerComponent[c].writeShort(decompressedPixel);
}
}
private final void getOneMinimumCodedUnit(int nComponents,int[] DCEntropyCodingTableSelector,int[] ACEntropyCodingTableSelector,int[] HorizontalSamplingFactor,int[] VerticalSamplingFactor,int maxHorizontalSamplingFactor,int maxVerticalSamplingFactor,int colMCU,int rowMCU,int[] accumulatedDCDifferenceDuringRedaction,Vector<Shape> redactionShapes) throws Exception, IOException {
for (int c=0; c<nComponents; ++c) {
// See discussion of interleaving of data units within MCUs in P&M section 7.3.5 pages 101-105; always interleaved in sequential mode
for (int v=0; v<VerticalSamplingFactor[c]; ++v) {
for (int h=0; h<HorizontalSamplingFactor[c]; ++h) {
//System.err.println("Component "+c+" v "+v+" h "+h);
boolean redact = redactionDecision(colMCU,rowMCU,HorizontalSamplingFactor[c],VerticalSamplingFactor[c],maxHorizontalSamplingFactor,maxVerticalSamplingFactor,h,v,redactionShapes);
if (isDCT) {
accumulatedDCDifferenceDuringRedaction[c] = getOneDCTDataUnit(DCEntropyCodingTableSelector[c],ACEntropyCodingTableSelector[c],redact,accumulatedDCDifferenceDuringRedaction[c]);
}
else if (isLossless) {
int decompressedPixel = getOneLosslessValue(c,DCEntropyCodingTableSelector[c],colMCU,rowMCU);
if (decompressing) {
writeDecompressedPixel(c,decompressedPixel);
}
}
else {
throw new Exception("Only DCT or Lossless processes supported (not "+Markers.getAbbreviation(sof.getMarker())+" "+Markers.getDescription(sof.getMarker())+")");
}
}
}
}
}
private static final int max(int[] a) {
int m = Integer.MIN_VALUE;
for (int i : a) {
if (i > m) m = i;
}
return m;
}
/**
* <p>Decode the supplied bytes that comprise a complete EntropyCodedSeqment and redact or copy them as required.</p>
*
* @param bytesToDecompress the bytes in the EntropyCodedSeqment
* @param mcuCount the number of MCUs encoded by this EntropyCodedSeqment
* @param mcuOffset the number of MCUs that have previously been read for the frame containing this EntropyCodedSeqment
* @return the bytes in a copy of the EntropyCodedSeqment appropriately redacted
* @throws Exception if bad things happen parsing the EntropyCodedSeqment, like running out of bits, caused by malformed input
* @throws IOException if bad things happen reading or writing the bytes
*/
public final byte[] finish(byte[] bytesToDecompress,int mcuCount,int mcuOffset) throws Exception, IOException {
//System.err.println("****** EntropyCodedSeqment.finish()");
this.bytesToDecompress = bytesToDecompress;
availableBytes = this.bytesToDecompress.length;
byteIndex = 0;
bitIndex = 8; // force fetching byte the first time
haveBits = 0; // don't have any bits to start with
if (copying) {
initializeWriteBits(); // will create a new ByteArrayOutputStream
}
if (rowNumberAtBeginningOfRestartInterval != null) { // do not need to do this unless decompressing lossless
for (int c=0; c<nComponents; ++c) {
//System.err.println("Setting rowNumberAtBeginningOfRestartInterval["+c+"] to "+currentRowNumber[c]);
rowNumberAtBeginningOfRestartInterval[c] = currentRowNumber[c]; // for lossless decompression predictor selection
}
}
int[] accumulatedDCDifferenceDuringRedaction = new int[nComponents];
for (int c=0; c<nComponents; ++c) {
accumulatedDCDifferenceDuringRedaction[c] = 0; // P&M p171 "At the beginning of the scan and ... each restart interval, PRED is initialized to 0 (is actually a neutral gray)"
}
//try {
for (int mcu=0; mcu<mcuCount; ++mcu) {
int rowMCU = mcuOffset / nMCUHorizontally;
int colMCU = mcuOffset % nMCUHorizontally;
//System.err.println("MCU ("+rowMCU+","+colMCU+")");
getOneMinimumCodedUnit(nComponents,DCEntropyCodingTableSelector,ACEntropyCodingTableSelector,HorizontalSamplingFactor,VerticalSamplingFactor,maxHorizontalSamplingFactor,maxVerticalSamplingFactor,colMCU,rowMCU,accumulatedDCDifferenceDuringRedaction,redactionShapes);
++mcuOffset;
}
//System.err.println("Finished ...");
//System.err.println("availableBytes = "+availableBytes);
//System.err.println("byteIndex = "+byteIndex);
//System.err.println("bitIndex = "+bitIndex);
//System.err.println("currentByte = "+currentByte);
//System.err.println("currentBits = "+currentBits);
//System.err.println("haveBits = "+haveBits);
//}
//catch (Exception e) {
// e.printStackTrace(System.err);
//}
if (copying) {
flushWriteBits(); // will pad appropriately to byte boundary
}
return copying ? copiedBytes.toByteArray() : null;
}
private final void dumpHuffmanTables() {
System.err.print("\n");
for (HuffmanTable ht : htByClassAndIdentifer.values()) {
System.err.print(ht.toString());
}
}
private final void dumpQuantizationTables() {
System.err.print("\n");
for (QuantizationTable qt : qtByIdentifer.values()) {
System.err.print(qt.toString());
}
}
}
|