1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "utils.h"
/*
* We have a source image filled with solid color, set NORMAL or PAD repeat,
* and some transform which results in nearest neighbour scaling.
*
* The expected result is either that the destination image filled with this solid
* color or, if the transformation is such that we can't composite anything at
* all, that nothing has changed in the destination.
*
* The surrounding memory of the source image is a different solid color so that
* we are sure to get failures if we access it.
*/
static int
run_test (int32_t dst_width,
int32_t dst_height,
int32_t src_width,
int32_t src_height,
int32_t src_x,
int32_t src_y,
int32_t scale_x,
int32_t scale_y,
pixman_filter_t filter,
pixman_repeat_t repeat)
{
pixman_image_t * src_img;
pixman_image_t * dst_img;
pixman_transform_t transform;
uint32_t * srcbuf;
uint32_t * dstbuf;
pixman_color_t color_cc = { 0xcccc, 0xcccc, 0xcccc, 0xcccc };
pixman_image_t * solid;
int result;
int i;
static const pixman_fixed_t kernel[] =
{
#define D(f) (pixman_double_to_fixed (f) + 0x0001)
pixman_int_to_fixed (5),
pixman_int_to_fixed (5),
D(1/25.0), D(1/25.0), D(1/25.0), D(1/25.0), D(1/25.0),
D(1/25.0), D(1/25.0), D(1/25.0), D(1/25.0), D(1/25.0),
D(1/25.0), D(1/25.0), D(1/25.0), D(1/25.0), D(1/25.0),
D(1/25.0), D(1/25.0), D(1/25.0), D(1/25.0), D(1/25.0),
D(1/25.0), D(1/25.0), D(1/25.0), D(1/25.0), D(1/25.0)
};
result = 0;
srcbuf = (uint32_t *)malloc ((src_width + 10) * (src_height + 10) * 4);
dstbuf = (uint32_t *)malloc (dst_width * dst_height * 4);
memset (srcbuf, 0x88, src_width * src_height * 4);
memset (dstbuf, 0x33, dst_width * dst_height * 4);
src_img = pixman_image_create_bits (
PIXMAN_a8r8g8b8, src_width, src_height,
srcbuf + (src_width + 10) * 5 + 5, (src_width + 10) * 4);
solid = pixman_image_create_solid_fill (&color_cc);
pixman_image_composite32 (PIXMAN_OP_SRC, solid, NULL, src_img,
0, 0, 0, 0, 0, 0, src_width, src_height);
pixman_image_unref (solid);
dst_img = pixman_image_create_bits (
PIXMAN_a8r8g8b8, dst_width, dst_height, dstbuf, dst_width * 4);
pixman_transform_init_scale (&transform, scale_x, scale_y);
pixman_image_set_transform (src_img, &transform);
pixman_image_set_repeat (src_img, repeat);
if (filter == PIXMAN_FILTER_CONVOLUTION)
pixman_image_set_filter (src_img, filter, kernel, 27);
else
pixman_image_set_filter (src_img, filter, NULL, 0);
pixman_image_composite (PIXMAN_OP_SRC, src_img, NULL, dst_img,
src_x, src_y, 0, 0, 0, 0, dst_width, dst_height);
pixman_image_unref (src_img);
pixman_image_unref (dst_img);
for (i = 0; i < dst_width * dst_height; i++)
{
if (dstbuf[i] != 0xCCCCCCCC && dstbuf[i] != 0x33333333)
{
result = 1;
break;
}
}
free (srcbuf);
free (dstbuf);
return result;
}
typedef struct filter_info_t filter_info_t;
struct filter_info_t
{
pixman_filter_t value;
char name[28];
};
static const filter_info_t filters[] =
{
{ PIXMAN_FILTER_NEAREST, "NEAREST" },
{ PIXMAN_FILTER_BILINEAR, "BILINEAR" },
{ PIXMAN_FILTER_CONVOLUTION, "CONVOLUTION" },
};
typedef struct repeat_info_t repeat_info_t;
struct repeat_info_t
{
pixman_repeat_t value;
char name[28];
};
static const repeat_info_t repeats[] =
{
{ PIXMAN_REPEAT_PAD, "PAD" },
{ PIXMAN_REPEAT_REFLECT, "REFLECT" },
{ PIXMAN_REPEAT_NORMAL, "NORMAL" }
};
static int
do_test (int32_t dst_size,
int32_t src_size,
int32_t src_offs,
int32_t scale_factor)
{
int i, j;
for (i = 0; i < ARRAY_LENGTH (filters); ++i)
{
for (j = 0; j < ARRAY_LENGTH (repeats); ++j)
{
/* horizontal test */
if (run_test (dst_size, 1,
src_size, 1,
src_offs, 0,
scale_factor, 65536,
filters[i].value,
repeats[j].value) != 0)
{
printf ("Vertical test failed with %s filter and repeat mode %s\n",
filters[i].name, repeats[j].name);
return 1;
}
/* vertical test */
if (run_test (1, dst_size,
1, src_size,
0, src_offs,
65536, scale_factor,
filters[i].value,
repeats[j].value) != 0)
{
printf ("Vertical test failed with %s filter and repeat mode %s\n",
filters[i].name, repeats[j].name);
return 1;
}
}
}
return 0;
}
int
main (int argc, char *argv[])
{
int i;
pixman_disable_out_of_bounds_workaround ();
/* can potentially crash */
assert (do_test (
48000, 32767, 1, 65536 * 128) == 0);
/* can potentially get into a deadloop */
assert (do_test (
16384, 65536, 32, 32768) == 0);
/* can potentially access memory outside source image buffer */
assert (do_test (
10, 10, 0, 1) == 0);
assert (do_test (
10, 10, 0, 0) == 0);
for (i = 0; i < 100; ++i)
{
pixman_fixed_t one_seventh =
(((pixman_fixed_48_16_t)pixman_fixed_1) << 16) / (7 << 16);
assert (do_test (
1, 7, 3, one_seventh + i - 50) == 0);
}
for (i = 0; i < 100; ++i)
{
pixman_fixed_t scale =
(((pixman_fixed_48_16_t)pixman_fixed_1) << 16) / (32767 << 16);
assert (do_test (
1, 32767, 16383, scale + i - 50) == 0);
}
/* can potentially provide invalid results (out of range matrix stuff) */
assert (do_test (
48000, 32767, 16384, 65536 * 128) == 0);
return 0;
}
|