File: pkannogr.cc

package info (click to toggle)
pktools 2.6.7.6%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 9,056 kB
  • sloc: cpp: 33,451; xml: 10,955; python: 1,601; makefile: 142; sh: 58; ansic: 24
file content (916 lines) | stat: -rw-r--r-- 43,935 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
/**********************************************************************
pkannogr.cc: classify vector dataset using Artificial Neural Network
Copyright (C) 2008-2017 Pieter Kempeneers

This file is part of pktools

pktools is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

pktools is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with pktools.  If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/
#include <stdlib.h>
#include <vector>
#include <map>
#include <algorithm>
#include "imageclasses/ImgReaderGdal.h"
#include "imageclasses/ImgWriterGdal.h"
#include "imageclasses/ImgReaderOgr.h"
#include "imageclasses/ImgWriterOgr.h"
#include "base/Optionpk.h"
#include "base/PosValue.h"
#include "algorithms/ConfusionMatrix.h"
#include "floatfann.h"
#include "algorithms/myfann_cpp.h"

/******************************************************************************/
/*! \page pkannogr pkannogr
  classify vector dataset using Artificial Neural Network
  ## SYNOPSIS

  <code>
  Usage: pkannogr -t training [-i input -o output] [-cv value]
  </code>

  <code>


  Options: [-tln layer]* [-c name -r value]* [-of GDALformat|-f OGRformat] [-co NAME=VALUE]* [-ct filename] [-label attribute] [-prior value]* [-nn number]* [-m filename ] [-nodata value]

  Advanced options:
  [-b band] [-sband band -eband band]* [-bal size]* [-min] [-bag value] [-bs value] [-comb rule] [-cb filename] [-pim priorimage] [--offset value] [--scale value] [--connection 0|1] [-w weights]* [--learning rate] [--maxit number]
  </code>

  \section pkannogr_description Description

  The utility pkannogr implements an artificial neural network (ANN) to solve a supervised classification problem. The implementation is based on the open source C++ library <a href="http://leenissen.dk/fann/wp/">fann</a>). Both raster and vector files are supported as input. The output will contain the classification result, either in raster or vector format, corresponding to the format of the input. A training sample must be provided as an OGR vector dataset that contains the class labels and the features for each training point. The point locations are not considered in the training step. You can use the same training sample for classifying different images, provided the number of bands of the images are identical. Use the utility \ref pkextract "pkextract" to create a suitable training sample, based on a sample of points or polygons. For raster output maps you can attach a color table using the option -ct.

  \section pkannogr_options Options
  - use either `-short` or `--long` options (both `--long=value` and `--long value` are supported)
  - short option `-h` shows basic options only, long option `--help` shows all options
  |short|long|type|default|description|
  |-----|----|----|-------|-----------|
  | i      | input                | std::string |       |input image |
  | t      | training             | std::string |       |training vector file. A single vector file contains all training features (must be set as: B0, B1, B2,...) for all classes (class numbers identified by label option). Use multiple training files for bootstrap aggregation (alternative to the bag and bsize options, where a random subset is taken from a single training file) |
  | tln    | tln                  | std::string |       |training layer name(s) |
  | label  | label                | std::string | label |identifier for class label in training vector file. |
  | bal    | balance              | unsigned int | 0     |balance the input data to this number of samples for each class |
  | min    | min                  | int  | 0     |if number of training pixels is less then min, do not take this class into account (0: consider all classes) |
  | b      | band                 | short |       |band index (starting from 0, either use band option or use start to end) |
  | sband  | startband            | unsigned short |      |Start band sequence number |
  | eband  | endband              | unsigned short |      |End band sequence number   |
  |        | offset               | double | 0     |offset value for each spectral band input features: refl[band]=(DN[band]-offset[band])/scale[band] |
  | scale  | scale                | double | 0     |scale value for each spectral band input features: refl=(DN[band]-offset[band])/scale[band] (use 0 if scale min and max in each band to -1.0 and 1.0) |
  | a      | aggreg               | unsigned short | 1     |how to combine aggregated classifiers, see also rc option (1: sum rule, 2: max rule). |
  | prior  | prior                | double | 0     |prior probabilities for each class (e.g., -p 0.3 -p 0.3 -p 0.2 ) |
  | pim    | priorimg             | std::string |       |prior probability image (multi-band img with band for each class |
  | cv     | cv                   | unsigned short | 0     |n-fold cross validation mode |
  | cmf    | cmf                  | std::string | ascii |Format for confusion matrix (ascii or latex) |
  | nn     | nneuron              | unsigned int | 5     |number of neurons in hidden layers in neural network (multiple hidden layers are set by defining multiple number of neurons: -n 15 -n 1, default is one hidden layer with 5 neurons) |
  |        | connection           | float | 1     |connection reate (default: 1.0 for a fully connected network) |
  | w      | weights              | float | 0     |weights for neural network. Apply to fully connected network only, starting from first input neuron to last output neuron, including the bias neurons (last neuron in each but last layer) |
  | l      | learning             | float | 0.7   |learning rate (default: 0.7) |
  |        | maxit                | unsigned int | 500   |number of maximum iterations (epoch) (default: 500) |
  | comb   | comb                 | unsigned short | 0     |how to combine bootstrap aggregation classifiers (0: sum rule, 1: product rule, 2: max rule). Also used to aggregate classes with rc option. Default is sum rule (0) |
  | bag    | bag                  | unsigned short | 1     |Number of bootstrap aggregations (default is no bagging: 1) |
  | bs     | bsize                | int  | 100   |Percentage of features used from available training features for each bootstrap aggregation (one size for all classes, or a different size for each class respectively |
  | cb     | classbag             | std::string |       |output for each individual bootstrap aggregation (default is blank) |
  | m      | mask                 | std::string |       |Only classify within specified mask (vector or raster). |
  | nodata | nodata               | unsigned short | 0     |nodata value to put where image is masked as nodata |
  | o      | output               | std::string |       |output classification image |
  | ot     | otype                | std::string |       |Data type for output image ({Byte/Int16/UInt16/UInt32/Int32/Float32/Float64/CInt16/CInt32/CFloat32/CFloat64}). Empty string: inherit type from input image |
  | ct     | ct                   | std::string |       |colour table in ASCII format having 5 columns: id R G B ALFA (0: transparent, 255: solid) |
  | co     | co                   | std::string |       |Creation option for output file. Multiple options can be specified. |
  | f      | f                    | std::string | SQLite |Output ogr format for active training sample |
  | na     | nactive              | unsigned int | 1     |number of active training points |
  | c      | class                | std::string |       |list of class names. |
  | r      | reclass              | short |       |list of class values (use same order as in class opt). |

  Usage: pkannogr -t training [-i input -o output] [-cv value]


  Examples
  ========
**/

using namespace std;

int main(int argc, char *argv[])
{
  vector<double> priors;

  //--------------------------- command line options ------------------------------------
  Optionpk<string> input_opt("i", "input", "input image");
  Optionpk<string> training_opt("t", "training", "training vector file. A single vector file contains all training features (must be set as: B0, B1, B2,...) for all classes (class numbers identified by label option). Use multiple training files for bootstrap aggregation (alternative to the bag and bsize options, where a random subset is taken from a single training file)");
  Optionpk<string> tlayer_opt("tln", "tln", "training layer name(s)");
  Optionpk<string> label_opt("label", "label", "identifier for class label in training vector file.","label");
  Optionpk<unsigned int> balance_opt("bal", "balance", "balance the input data to this number of samples for each class", 0);
  Optionpk<bool> random_opt("random", "random", "in case of balance, randomize input data", true,2);
  Optionpk<int> minSize_opt("min", "min", "if number of training pixels is less then min, do not take this class into account (0: consider all classes)", 0);
  Optionpk<unsigned short> band_opt("b", "band", "band index (starting from 0, either use band option or use start to end)");
  Optionpk<unsigned short> bstart_opt("sband", "startband", "Start band sequence number");
  Optionpk<unsigned short> bend_opt("eband", "endband", "End band sequence number");
  Optionpk<double> offset_opt("offset", "offset", "offset value for each spectral band input features: refl[band]=(DN[band]-offset[band])/scale[band]", 0.0);
  Optionpk<double> scale_opt("scale", "scale", "scale value for each spectral band input features: refl=(DN[band]-offset[band])/scale[band] (use 0 if scale min and max in each band to -1.0 and 1.0)", 0.0);
  Optionpk<unsigned short> aggreg_opt("a", "aggreg", "how to combine aggregated classifiers, see also rc option (1: sum rule, 2: max rule).",1);
  Optionpk<double> priors_opt("prior", "prior", "prior probabilities for each class (e.g., -p 0.3 -p 0.3 -p 0.2 )", 0.0);
  Optionpk<string> priorimg_opt("pim", "priorimg", "prior probability image (multi-band img with band for each class","",2);
  Optionpk<unsigned short> cv_opt("cv", "cv", "n-fold cross validation mode",0);
  Optionpk<string> cmformat_opt("cmf","cmf","Format for confusion matrix (ascii or latex)","ascii");
  Optionpk<unsigned int> nneuron_opt("nn", "nneuron", "number of neurons in hidden layers in neural network (multiple hidden layers are set by defining multiple number of neurons: -n 15 -n 1, default is one hidden layer with 5 neurons)", 5);
  Optionpk<float> connection_opt("\0", "connection", "connection reate (default: 1.0 for a fully connected network)", 1.0);
  Optionpk<float> learning_opt("l", "learning", "learning rate (default: 0.7)", 0.7);
  Optionpk<float> weights_opt("w", "weights", "weights for neural network. Apply to fully connected network only, starting from first input neuron to last output neuron, including the bias neurons (last neuron in each but last layer)", 0.0);
  Optionpk<unsigned int> maxit_opt("\0", "maxit", "number of maximum iterations (epoch) (default: 500)", 500);
  Optionpk<unsigned short> comb_opt("comb", "comb", "how to combine bootstrap aggregation classifiers (0: sum rule, 1: product rule, 2: max rule). Also used to aggregate classes with rc option. Default is sum rule (0)",0);
  Optionpk<unsigned short> bag_opt("bag", "bag", "Number of bootstrap aggregations (default is no bagging: 1)", 1);
  Optionpk<int> bagSize_opt("bs", "bsize", "Percentage of features used from available training features for each bootstrap aggregation (one size for all classes, or a different size for each class respectively", 100);
  Optionpk<string> classBag_opt("cb", "classbag", "output for each individual bootstrap aggregation (default is blank)");
  Optionpk<string> mask_opt("m", "mask", "Only classify within specified mask (vector or raster).");
  Optionpk<unsigned short> nodata_opt("nodata", "nodata", "nodata value to put where image is masked as nodata", 0);
  Optionpk<string> output_opt("o", "output", "output classification image");
  Optionpk<string>  otype_opt("ot", "otype", "Data type for output image ({Byte/Int16/UInt16/UInt32/Int32/Float32/Float64/CInt16/CInt32/CFloat32/CFloat64}). Empty string: inherit type from input image");
  Optionpk<string> option_opt("co", "co", "Creation option for output file. Multiple options can be specified.");
  Optionpk<string> colorTable_opt("ct", "ct", "colour table in ASCII format having 5 columns: id R G B ALFA (0: transparent, 255: solid)");
  Optionpk<string> entropy_opt("entropy", "entropy", "entropy image (measure for uncertainty of classifier output","",2);
  Optionpk<string> active_opt("active", "active", "ogr output for active training sample.","",2);
  Optionpk<string> ogrformat_opt("f", "f", "Output ogr format for active training sample","SQLite");
  Optionpk<unsigned int> nactive_opt("na", "nactive", "number of active training points",1);
  Optionpk<string> classname_opt("c", "class", "list of class names.");
  Optionpk<short> classvalue_opt("r", "reclass", "list of class values (use same order as in class opt).");
  Optionpk<short> verbose_opt("v", "verbose", "set to: 0 (results only), 1 (confusion matrix), 2 (debug)",0,2);

  option_opt.setHide(1);
  band_opt.setHide(1);
  bstart_opt.setHide(1);
  bend_opt.setHide(1);
  balance_opt.setHide(1);
  minSize_opt.setHide(1);
  bag_opt.setHide(1);
  bagSize_opt.setHide(1);
  comb_opt.setHide(1);
  classBag_opt.setHide(1);
  minSize_opt.setHide(1);
  priorimg_opt.setHide(1);
  minSize_opt.setHide(1);
  offset_opt.setHide(1);
  scale_opt.setHide(1);
  connection_opt.setHide(1);
  weights_opt.setHide(1);
  maxit_opt.setHide(1);
  learning_opt.setHide(1);

  verbose_opt.setHide(2);

  bool doProcess;//stop process when program was invoked with help option (-h --help)
  try{
    doProcess=input_opt.retrieveOption(argc,argv);
    training_opt.retrieveOption(argc,argv);
    tlayer_opt.retrieveOption(argc,argv);
    label_opt.retrieveOption(argc,argv);
    balance_opt.retrieveOption(argc,argv);
    random_opt.retrieveOption(argc,argv);
    minSize_opt.retrieveOption(argc,argv);
    band_opt.retrieveOption(argc,argv);
    bstart_opt.retrieveOption(argc,argv);
    bend_opt.retrieveOption(argc,argv);
    offset_opt.retrieveOption(argc,argv);
    scale_opt.retrieveOption(argc,argv);
    aggreg_opt.retrieveOption(argc,argv);
    priors_opt.retrieveOption(argc,argv);
    priorimg_opt.retrieveOption(argc,argv);
    cv_opt.retrieveOption(argc,argv);
    cmformat_opt.retrieveOption(argc,argv);
    nneuron_opt.retrieveOption(argc,argv);
    connection_opt.retrieveOption(argc,argv);
    weights_opt.retrieveOption(argc,argv);
    learning_opt.retrieveOption(argc,argv);
    maxit_opt.retrieveOption(argc,argv);
    comb_opt.retrieveOption(argc,argv);
    bag_opt.retrieveOption(argc,argv);
    bagSize_opt.retrieveOption(argc,argv);
    classBag_opt.retrieveOption(argc,argv);
    mask_opt.retrieveOption(argc,argv);
    nodata_opt.retrieveOption(argc,argv);
    output_opt.retrieveOption(argc,argv);
    otype_opt.retrieveOption(argc,argv);
    colorTable_opt.retrieveOption(argc,argv);
    option_opt.retrieveOption(argc,argv);
    entropy_opt.retrieveOption(argc,argv);
    active_opt.retrieveOption(argc,argv);
    ogrformat_opt.retrieveOption(argc,argv);
    nactive_opt.retrieveOption(argc,argv);
    classname_opt.retrieveOption(argc,argv);
    classvalue_opt.retrieveOption(argc,argv);
    verbose_opt.retrieveOption(argc,argv);
  }
  catch(string predefinedString){
    std::cout << predefinedString << std::endl;
    exit(0);
  }
  if(!doProcess){
    cout << endl;
    cout << "Usage: pkannogr -t training [-i input -o output] [-cv value]" << endl;
    cout << endl;
    cout << "short option -h shows basic options only, use long option --help to show all options" << endl;
    exit(0);//help was invoked, stop processing
  }

  if(entropy_opt[0]=="")
    entropy_opt.clear();
  if(active_opt[0]=="")
    active_opt.clear();
  if(priorimg_opt[0]=="")
    priorimg_opt.clear();

  if(verbose_opt[0]>=1){
    if(input_opt.size())
      cout << "image filename: " << input_opt[0] << endl;
    if(mask_opt.size())
      cout << "mask filename: " << mask_opt[0] << endl;
    if(training_opt.size()){
      cout << "training vector file: " << endl;
      for(int ifile=0;ifile<training_opt.size();++ifile)
        cout << training_opt[ifile] << endl;
    }
    else
      cerr << "no training file set!" << endl;
    cout << "verbose: " << verbose_opt[0] << endl;
  }
  unsigned short nbag=(training_opt.size()>1)?training_opt.size():bag_opt[0];
  if(verbose_opt[0]>=1)
    cout << "number of bootstrap aggregations: " << nbag << endl;

  ImgReaderOgr extentReader;
  OGRLayer  *readLayer;

  double ulx=0;
  double uly=0;
  double lrx=0;
  double lry=0;

  bool maskIsVector=false;
  if(mask_opt.size()){
    try{
      extentReader.open(mask_opt[0]);
      maskIsVector=true;
      readLayer = extentReader.getDataSource()->GetLayer(0);
      if(!(extentReader.getExtent(ulx,uly,lrx,lry))){
        cerr << "Error: could not get extent from " << mask_opt[0] << endl;
        exit(1);
      }
    }
    catch(string errorString){
      maskIsVector=false;
    }
  }

  ImgWriterOgr activeWriter;
  if(active_opt.size()){
    ImgReaderOgr trainingReader(training_opt[0]);
    activeWriter.open(active_opt[0],ogrformat_opt[0]);
    activeWriter.createLayer(active_opt[0],trainingReader.getProjection(),wkbPoint,NULL);
    activeWriter.copyFields(trainingReader);
  }
  vector<PosValue> activePoints(nactive_opt[0]);
  for(int iactive=0;iactive<activePoints.size();++iactive){
    activePoints[iactive].value=1.0;
    activePoints[iactive].posx=0.0;
    activePoints[iactive].posy=0.0;
  }

  unsigned int totalSamples=0;
  unsigned int nactive=0;
  vector<FANN::neural_net> net(nbag);//the neural network

  unsigned int nclass=0;
  int nband=0;
  int startBand=2;//first two bands represent X and Y pos

  if(priors_opt.size()>1){//priors from argument list
    priors.resize(priors_opt.size());
    double normPrior=0;
    for(int iclass=0;iclass<priors_opt.size();++iclass){
      priors[iclass]=priors_opt[iclass];
      normPrior+=priors[iclass];
    }
    //normalize
    for(int iclass=0;iclass<priors_opt.size();++iclass)
      priors[iclass]/=normPrior;
  }

  //convert start and end band options to vector of band indexes
  try{
    if(bstart_opt.size()){
      if(bend_opt.size()!=bstart_opt.size()){
        string errorstring="Error: options for start and end band indexes must be provided as pairs, missing end band";
        throw(errorstring);
      }
      band_opt.clear();
      for(int ipair=0;ipair<bstart_opt.size();++ipair){
        if(bend_opt[ipair]<=bstart_opt[ipair]){
          string errorstring="Error: index for end band must be smaller then start band";
          throw(errorstring);
        }
        for(int iband=bstart_opt[ipair];iband<=bend_opt[ipair];++iband)
          band_opt.push_back(iband);
      }
    }
  }
  catch(string error){
    cerr << error << std::endl;
    exit(1);
  }
  //sort bands
  if(band_opt.size())
    std::sort(band_opt.begin(),band_opt.end());

  map<string,short> classValueMap;
  vector<std::string> nameVector;
  if(classname_opt.size()){
    assert(classname_opt.size()==classvalue_opt.size());
    for(int iclass=0;iclass<classname_opt.size();++iclass)
      classValueMap[classname_opt[iclass]]=classvalue_opt[iclass];
  }
  //----------------------------------- Training -------------------------------
  confusionmatrix::ConfusionMatrix cm;
  vector< vector<double> > offset(nbag);
  vector< vector<double> > scale(nbag);
  map<string,Vector2d<float> > trainingMap;
  vector< Vector2d<float> > trainingPixels;//[class][sample][band]
  vector<string> fields;
  for(int ibag=0;ibag<nbag;++ibag){
    //organize training data
    if(ibag<training_opt.size()){//if bag contains new training pixels
      trainingMap.clear();
      trainingPixels.clear();
      if(verbose_opt[0]>=1)
        cout << "reading imageVector file " << training_opt[0] << endl;
      try{
        ImgReaderOgr trainingReaderBag(training_opt[ibag]);
        if(band_opt.size())
          totalSamples=trainingReaderBag.readDataImageOgr(trainingMap,fields,band_opt,label_opt[0],tlayer_opt);
        else
          totalSamples=trainingReaderBag.readDataImageOgr(trainingMap,fields,0,0,label_opt[0],tlayer_opt);
        if(trainingMap.size()<2){
          string errorstring="Error: could not read at least two classes from training file, did you provide class labels in training sample (see option label)?";
          throw(errorstring);
        }
        trainingReaderBag.close();
      }
      catch(string error){
        cerr << error << std::endl;
        exit(1);
      }
      catch(...){
        cerr << "error caught" << std::endl;
        exit(1);
      }
      //delete class 0 ?
      // if(verbose_opt[0]>=1)
      //   std::cout << "erasing class 0 from training set (" << trainingMap[0].size() << " from " << totalSamples << ") samples" << std::endl;
      // totalSamples-=trainingMap[0].size();
      // trainingMap.erase(0);
      //convert map to vector
      if(verbose_opt[0]>1)
        std::cout << "training pixels: " << std::endl;
      map<string,Vector2d<float> >::iterator mapit=trainingMap.begin();
      while(mapit!=trainingMap.end()){
        //delete small classes
        if((mapit->second).size()<minSize_opt[0]){
          trainingMap.erase(mapit);
          continue;
        }
        trainingPixels.push_back(mapit->second);
        if(verbose_opt[0]>1)
          std::cout << mapit->first << ": " << (mapit->second).size() << " samples" << std::endl;
        ++mapit;
      }
      if(!ibag){
        nclass=trainingPixels.size();
        if(classname_opt.size())
          assert(nclass==classname_opt.size());
        nband=(training_opt.size())?trainingPixels[0][0].size()-2:trainingPixels[0][0].size();//X and Y
      }
      else{
        assert(nclass==trainingPixels.size());
        assert(nband==(training_opt.size())?trainingPixels[0][0].size()-2:trainingPixels[0][0].size());
      }

      //do not remove outliers here: could easily be obtained through ogr2ogr -where 'B2<110' output.shp input.shp
      //balance training data
      if(balance_opt[0]>0){
        while(balance_opt.size()<nclass)
          balance_opt.push_back(balance_opt.back());
        if(random_opt[0])
          srand(time(NULL));
        totalSamples=0;
        for(int iclass=0;iclass<nclass;++iclass){
          if(trainingPixels[iclass].size()>balance_opt[iclass]){
            while(trainingPixels[iclass].size()>balance_opt[iclass]){
              int index=rand()%trainingPixels[iclass].size();
              trainingPixels[iclass].erase(trainingPixels[iclass].begin()+index);
            }
          }
          else{
            int oldsize=trainingPixels[iclass].size();
            for(int isample=trainingPixels[iclass].size();isample<balance_opt[iclass];++isample){
              int index = rand()%oldsize;
              trainingPixels[iclass].push_back(trainingPixels[iclass][index]);
            }
          }
          totalSamples+=trainingPixels[iclass].size();
        }
      }

      //set scale and offset
      offset[ibag].resize(nband);
      scale[ibag].resize(nband);
      if(offset_opt.size()>1)
        assert(offset_opt.size()==nband);
      if(scale_opt.size()>1)
        assert(scale_opt.size()==nband);
      for(int iband=0;iband<nband;++iband){
        if(verbose_opt[0]>=1)
          cout << "scaling for band" << iband << endl;
        offset[ibag][iband]=(offset_opt.size()==1)?offset_opt[0]:offset_opt[iband];
        scale[ibag][iband]=(scale_opt.size()==1)?scale_opt[0]:scale_opt[iband];
        //search for min and maximum
        if(scale[ibag][iband]<=0){
          float theMin=trainingPixels[0][0][iband+startBand];
          float theMax=trainingPixels[0][0][iband+startBand];
          for(int iclass=0;iclass<nclass;++iclass){
            for(int isample=0;isample<trainingPixels[iclass].size();++isample){
              if(theMin>trainingPixels[iclass][isample][iband+startBand])
                theMin=trainingPixels[iclass][isample][iband+startBand];
              if(theMax<trainingPixels[iclass][isample][iband+startBand])
                theMax=trainingPixels[iclass][isample][iband+startBand];
            }
          }
          offset[ibag][iband]=theMin+(theMax-theMin)/2.0;
          scale[ibag][iband]=(theMax-theMin)/2.0;
          if(verbose_opt[0]>=1){
            std::cout << "Extreme image values for band " << iband << ": [" << theMin << "," << theMax << "]" << std::endl;
            std::cout << "Using offset, scale: " << offset[ibag][iband] << ", " << scale[ibag][iband] << std::endl;
            std::cout << "scaled values for band " << iband << ": [" << (theMin-offset[ibag][iband])/scale[ibag][iband] << "," << (theMax-offset[ibag][iband])/scale[ibag][iband] << "]" << std::endl;
          }
        }
      }
    }
    else{//use same offset and scale
      offset[ibag].resize(nband);
      scale[ibag].resize(nband);
      for(int iband=0;iband<nband;++iband){
        offset[ibag][iband]=offset[0][iband];
        scale[ibag][iband]=scale[0][iband];
      }
    }

    if(!ibag){
      if(priors_opt.size()==1){//default: equal priors for each class
        priors.resize(nclass);
        for(int iclass=0;iclass<nclass;++iclass)
          priors[iclass]=1.0/nclass;
      }
      assert(priors_opt.size()==1||priors_opt.size()==nclass);

      //set bagsize for each class if not done already via command line
      while(bagSize_opt.size()<nclass)
        bagSize_opt.push_back(bagSize_opt.back());

      if(verbose_opt[0]>=1){
        std::cout << "number of bands: " << nband << std::endl;
        std::cout << "number of classes: " << nclass << std::endl;
        std::cout << "priors:";
        if(priorimg_opt.empty()){
          for(int iclass=0;iclass<nclass;++iclass)
            std::cout << " " << priors[iclass];
          std::cout << std::endl;
        }
      }
      map<string,Vector2d<float> >::iterator mapit=trainingMap.begin();
      bool doSort=true;
      while(mapit!=trainingMap.end()){
        nameVector.push_back(mapit->first);
        if(classValueMap.size()){
          //check if name in training is covered by classname_opt (values can not be 0)
          if(classValueMap[mapit->first]>0){
            if(cm.getClassIndex(type2string<short>(classValueMap[mapit->first]))<0)
              cm.pushBackClassName(type2string<short>(classValueMap[mapit->first]),doSort);
          }
          else{
            std::cerr << "Error: names in classname option are not complete, please check names in training vector and make sure classvalue is > 0" << std::endl;
            exit(1);
          }
        }
        else
          cm.pushBackClassName(mapit->first,doSort);
        ++mapit;
      }
      if(classname_opt.empty()){
        //std::cerr << "Warning: no class name and value pair provided for all " << nclass << " classes, using string2type<int> instead!" << std::endl;
        for(int iclass=0;iclass<nclass;++iclass){
          if(verbose_opt[0])
            std::cout << iclass << " " << cm.getClass(iclass) << " -> " << string2type<short>(cm.getClass(iclass)) << std::endl;
          classValueMap[cm.getClass(iclass)]=string2type<short>(cm.getClass(iclass));
        }
      }
      if(priors_opt.size()==nameVector.size()){
        std::cerr << "Warning: please check if priors are provided in correct order!!!" << std::endl;
        for(int iclass=0;iclass<nameVector.size();++iclass)
          std::cerr << nameVector[iclass] << " " << priors_opt[iclass] << std::endl;
      }
    }//if(!ibag)

    //Calculate features of training set
    vector< Vector2d<float> > trainingFeatures(nclass);
    for(int iclass=0;iclass<nclass;++iclass){
      int nctraining=0;
      if(verbose_opt[0]>=1)
        cout << "calculating features for class " << iclass << endl;
      if(random_opt[0])
        srand(time(NULL));
      nctraining=(bagSize_opt[iclass]<100)? trainingPixels[iclass].size()/100.0*bagSize_opt[iclass] : trainingPixels[iclass].size();//bagSize_opt[iclass] given in % of training size
      if(nctraining<=0)
        nctraining=1;
      assert(nctraining<=trainingPixels[iclass].size());
      int index=0;
      if(bagSize_opt[iclass]<100)
        random_shuffle(trainingPixels[iclass].begin(),trainingPixels[iclass].end());

      trainingFeatures[iclass].resize(nctraining);
      for(int isample=0;isample<nctraining;++isample){
        //scale pixel values according to scale and offset!!!
        for(int iband=0;iband<nband;++iband){
          float value=trainingPixels[iclass][isample][iband+startBand];
          trainingFeatures[iclass][isample].push_back((value-offset[ibag][iband])/scale[ibag][iband]);
        }
      }
      assert(trainingFeatures[iclass].size()==nctraining);
    }

    unsigned int nFeatures=trainingFeatures[0][0].size();
    unsigned int ntraining=0;
    for(int iclass=0;iclass<nclass;++iclass)
      ntraining+=trainingFeatures[iclass].size();

    const unsigned int num_layers = nneuron_opt.size()+2;
    const float desired_error = 0.0003;
    const unsigned int iterations_between_reports = (verbose_opt[0])? maxit_opt[0]+1:0;
    if(verbose_opt[0]>=1){
      cout << "number of features: " << nFeatures << endl;
      cout << "creating artificial neural network with " << nneuron_opt.size() << " hidden layer, having " << endl;
      for(int ilayer=0;ilayer<nneuron_opt.size();++ilayer)
        cout << nneuron_opt[ilayer] << " ";
      cout << "neurons" << endl;
      cout << "connection_opt[0]: " << connection_opt[0] << std::endl;
      cout << "num_layers: " << num_layers << std::endl;
      cout << "nFeatures: " << nFeatures << std::endl;
      cout << "nneuron_opt[0]: " << nneuron_opt[0] << std::endl;
      cout << "number of classes (nclass): " << nclass << std::endl;
    }
    switch(num_layers){
    case(3):{
      // net[ibag].create_sparse(connection_opt[0],num_layers, nFeatures, nneuron_opt[0], nclass);//replace all create_sparse with create_sparse_array due to bug in FANN!
      unsigned int layers[3];
      layers[0]=nFeatures;
      layers[1]=nneuron_opt[0];
      layers[2]=nclass;
      net[ibag].create_sparse_array(connection_opt[0],num_layers,layers);
      break;
    }
    case(4):{
      unsigned int layers[4];
      layers[0]=nFeatures;
      layers[1]=nneuron_opt[0];
      layers[2]=nneuron_opt[1];
      layers[3]=nclass;
      // layers.push_back(nFeatures);
      // for(int ihidden=0;ihidden<nneuron_opt.size();++ihidden)
      //  layers.push_back(nneuron_opt[ihidden]);
      // layers.push_back(nclass);
      net[ibag].create_sparse_array(connection_opt[0],num_layers,layers);
      break;
    }
    default:
      cerr << "Only 1 or 2 hidden layers are supported!" << endl;
      exit(1);
      break;
    }
    if(verbose_opt[0]>=1)
      cout << "network created" << endl;

    net[ibag].set_learning_rate(learning_opt[0]);

    //   net.set_activation_steepness_hidden(1.0);
    //   net.set_activation_steepness_output(1.0);

    net[ibag].set_activation_function_hidden(FANN::SIGMOID_SYMMETRIC_STEPWISE);
    net[ibag].set_activation_function_output(FANN::SIGMOID_SYMMETRIC_STEPWISE);

    // Set additional properties such as the training algorithm
    //   net.set_training_algorithm(FANN::TRAIN_QUICKPROP);

    // Output network type and parameters
    if(verbose_opt[0]>=1){
      cout << endl << "Network Type                         :  ";
      switch (net[ibag].get_network_type())
        {
        case FANN::LAYER:
          cout << "LAYER" << endl;
          break;
        case FANN::SHORTCUT:
          cout << "SHORTCUT" << endl;
          break;
        default:
          cout << "UNKNOWN" << endl;
          break;
        }
      net[ibag].print_parameters();
    }

    if(cv_opt[0]>1){
      if(verbose_opt[0])
        std::cout << "cross validation" << std::endl;
      vector<unsigned short> referenceVector;
      vector<unsigned short> outputVector;
      float rmse=net[ibag].cross_validation(trainingFeatures,
                                            ntraining,
                                            cv_opt[0],
                                            maxit_opt[0],
                                            desired_error,
                                            referenceVector,
                                            outputVector,
                                            verbose_opt[0]);
      map<string,Vector2d<float> >::iterator mapit=trainingMap.begin();
      for(int isample=0;isample<referenceVector.size();++isample){
        string refClassName=nameVector[referenceVector[isample]];
        string className=nameVector[outputVector[isample]];
        if(classValueMap.size())
          cm.incrementResult(type2string<short>(classValueMap[refClassName]),type2string<short>(classValueMap[className]),1.0/nbag);
        else
          cm.incrementResult(cm.getClass(referenceVector[isample]),cm.getClass(outputVector[isample]),1.0/nbag);
      }
    }

    if(verbose_opt[0]>=1)
      cout << endl << "Set training data" << endl;

    if(verbose_opt[0]>=1)
      cout << endl << "Training network" << endl;

    if(verbose_opt[0]>=1){
      cout << "Max Epochs " << setw(8) << maxit_opt[0] << ". "
           << "Desired Error: " << left << desired_error << right << endl;
    }
    if(weights_opt.size()==net[ibag].get_total_connections()){//no new training needed (same training sample)
      vector<fann_connection> convector;
      net[ibag].get_connection_array(convector);
      for(int i_connection=0;i_connection<net[ibag].get_total_connections();++i_connection)
        convector[i_connection].weight=weights_opt[i_connection];
      net[ibag].set_weight_array(convector);
    }
    else{
      bool initWeights=true;
      net[ibag].train_on_data(trainingFeatures,ntraining,initWeights, maxit_opt[0],
                              iterations_between_reports, desired_error);
    }


    if(verbose_opt[0]>=2){
      net[ibag].print_connections();
      vector<fann_connection> convector;
      net[ibag].get_connection_array(convector);
      for(int i_connection=0;i_connection<net[ibag].get_total_connections();++i_connection)
        cout << "connection " << i_connection << ": " << convector[i_connection].weight << endl;

    }
  }//for ibag
  if(cv_opt[0]>1){
    assert(cm.nReference());
    cm.setFormat(cmformat_opt[0]);
    cm.reportSE95(false);
    std::cout << cm << std::endl;
    cout << "class #samples userAcc prodAcc" << endl;
    double se95_ua=0;
    double se95_pa=0;
    double se95_oa=0;
    double dua=0;
    double dpa=0;
    double doa=0;
    for(int iclass=0;iclass<cm.nClasses();++iclass){
      dua=cm.ua_pct(cm.getClass(iclass),&se95_ua);
      dpa=cm.pa_pct(cm.getClass(iclass),&se95_pa);
      cout << cm.getClass(iclass) << " " << cm.nReference(cm.getClass(iclass)) << " " << dua << " (" << se95_ua << ")" << " " << dpa << " (" << se95_pa << ")" << endl;
    }
    std::cout << "Kappa: " << cm.kappa() << std::endl;
    doa=cm.oa_pct(&se95_oa);
    std::cout << "Overall Accuracy: " << doa << " (" << se95_oa << ")"  << std::endl;
  }
  //--------------------------------- end of training -----------------------------------
  if(input_opt.empty())
    exit(0);

  const char* pszMessage;
  void* pProgressArg=NULL;
  GDALProgressFunc pfnProgress=GDALTermProgress;
  float progress=0;
  //-------------------------------- open image file ------------------------------------
  bool inputIsRaster=false;
  ImgReaderOgr imgReaderOgr;
  try{
    imgReaderOgr.open(input_opt[0]);
    imgReaderOgr.close();
  }
  catch(string errorString){
    inputIsRaster=true;
  }
  if(!inputIsRaster){//classify vector file
    cm.clearResults();
    //notice that fields have already been set by readDataImageOgr (taking into account appropriate bands)
    for(int ivalidation=0;ivalidation<input_opt.size();++ivalidation){
      if(output_opt.size())
        assert(output_opt.size()==input_opt.size());
      if(verbose_opt[0])
        cout << "opening img reader " << input_opt[ivalidation] << endl;
      imgReaderOgr.open(input_opt[ivalidation]);
      ImgWriterOgr imgWriterOgr;

      if(output_opt.size()){
        if(verbose_opt[0])
          std::cout << "opening img writer and copying fields from img reader" << output_opt[ivalidation] << std::endl;
        imgWriterOgr.open(output_opt[ivalidation],imgReaderOgr);
      }
      if(verbose_opt[0])
        cout << "number of layers in input ogr file: " << imgReaderOgr.getLayerCount() << endl;
      for(int ilayer=0;ilayer<imgReaderOgr.getLayerCount();++ilayer){
        if(verbose_opt[0])
          cout << "processing input layer " << ilayer << endl;
        if(output_opt.size()){
          if(verbose_opt[0])
            std::cout << "creating field class" << std::endl;
          if(classValueMap.size())
            imgWriterOgr.createField("class",OFTInteger,ilayer);
          else
            imgWriterOgr.createField("class",OFTString,ilayer);
        }
        unsigned int nFeatures=imgReaderOgr.getFeatureCount(ilayer);
        unsigned int ifeature=0;
        progress=0;
        pfnProgress(progress,pszMessage,pProgressArg);
        OGRFeature *poFeature;
        while( (poFeature = imgReaderOgr.getLayer(ilayer)->GetNextFeature()) != NULL ){
          if(verbose_opt[0]>1)
            cout << "feature " << ifeature << endl;
          if( poFeature == NULL ){
            cout << "Warning: could not read feature " << ifeature << " in layer " << imgReaderOgr.getLayerName(ilayer) << endl;
            continue;
          }
          OGRFeature *poDstFeature = NULL;
          if(output_opt.size()){
            poDstFeature=imgWriterOgr.createFeature(ilayer);
            if( poDstFeature->SetFrom( poFeature, TRUE ) != OGRERR_NONE ){
              CPLError( CE_Failure, CPLE_AppDefined,
                        "Unable to translate feature %d from layer %s.\n",
                        poFeature->GetFID(), imgWriterOgr.getLayerName(ilayer).c_str() );
              OGRFeature::DestroyFeature( poFeature );
              OGRFeature::DestroyFeature( poDstFeature );
            }
          }
          vector<float> validationPixel;
          vector<float> validationFeature;

          imgReaderOgr.readData(validationPixel,OFTReal,fields,poFeature,ilayer);
          assert(validationPixel.size()==nband);
          vector<float> probOut(nclass);//posterior prob for each class
          for(int iclass=0;iclass<nclass;++iclass)
            probOut[iclass]=0;
          for(int ibag=0;ibag<nbag;++ibag){
            for(int iband=0;iband<nband;++iband){
              validationFeature.push_back((validationPixel[iband]-offset[ibag][iband])/scale[ibag][iband]);
              if(verbose_opt[0]==2)
                std:: cout << " " << validationFeature.back();
            }
            if(verbose_opt[0]==2)
              std::cout << std:: endl;
            vector<float> result(nclass);
            result=net[ibag].run(validationFeature);

            if(verbose_opt[0]>1){
              for(int iclass=0;iclass<result.size();++iclass)
                std::cout << result[iclass] << " ";
              std::cout << std::endl;
            }
            //calculate posterior prob of bag
            for(int iclass=0;iclass<nclass;++iclass){
              result[iclass]=(result[iclass]+1.0)/2.0;//bring back to scale [0,1]
              switch(comb_opt[0]){
              default:
              case(0)://sum rule
                probOut[iclass]+=result[iclass]*priors[iclass];//add probabilities for each bag
              break;
              case(1)://product rule
                probOut[iclass]*=pow(static_cast<float>(priors[iclass]),static_cast<float>(1.0-nbag)/nbag)*result[iclass];//multiply probabilities for each bag
                break;
              case(2)://max rule
                if(priors[iclass]*result[iclass]>probOut[iclass])
                  probOut[iclass]=priors[iclass]*result[iclass];
                break;
              }
            }
          }//for ibag
          //search for max class prob
          float maxBag=0;
          float normBag=0;
          string classOut="Unclassified";
          for(int iclass=0;iclass<nclass;++iclass){
            if(verbose_opt[0]>1)
              std::cout << probOut[iclass] << " ";
            if(probOut[iclass]>maxBag){
              maxBag=probOut[iclass];
              classOut=nameVector[iclass];
            }
          }
          //look for class name
          if(verbose_opt[0]>1){
            if(classValueMap.size())
              std::cout << "->" << classValueMap[classOut] << std::endl;
            else
              std::cout << "->" << classOut << std::endl;
          }
          if(output_opt.size()){
            if(classValueMap.size())
              poDstFeature->SetField("class",classValueMap[classOut]);
            else
              poDstFeature->SetField("class",classOut.c_str());
            poDstFeature->SetFID( poFeature->GetFID() );
          }
          int labelIndex=poFeature->GetFieldIndex(label_opt[0].c_str());
          if(labelIndex>=0){
            string classRef=poFeature->GetFieldAsString(labelIndex);
            if(classRef!="0"){
              if(classValueMap.size())
                cm.incrementResult(type2string<short>(classValueMap[classRef]),type2string<short>(classValueMap[classOut]),1);
              else
                cm.incrementResult(classRef,classOut,1);
            }
          }
          CPLErrorReset();
          if(output_opt.size()){
            if(imgWriterOgr.createFeature(poDstFeature,ilayer) != OGRERR_NONE){
              CPLError( CE_Failure, CPLE_AppDefined,
                        "Unable to translate feature %d from layer %s.\n",
                        poFeature->GetFID(), imgWriterOgr.getLayerName(ilayer).c_str() );
              OGRFeature::DestroyFeature( poDstFeature );
              OGRFeature::DestroyFeature( poDstFeature );
            }
          }
          ++ifeature;
          if(!verbose_opt[0]){
            progress=static_cast<float>(ifeature+1.0)/nFeatures;
            pfnProgress(progress,pszMessage,pProgressArg);
          }
          OGRFeature::DestroyFeature( poFeature );
          OGRFeature::DestroyFeature( poDstFeature );
        }//get next feature
      }//next layer
      imgReaderOgr.close();
      if(output_opt.size())
        imgWriterOgr.close();
    }
    if(cm.nReference()){
      std::cout << cm << std::endl;
      // cout << "class #samples userAcc prodAcc" << endl;
      // double se95_ua=0;
      // double se95_pa=0;
      // double se95_oa=0;
      // double dua=0;
      // double dpa=0;
      // double doa=0;
      // for(short iclass=0;iclass<cm.nClasses();++iclass){
      //  dua=cm.ua_pct(cm.getClass(iclass),&se95_ua);
      //  dpa=cm.pa_pct(cm.getClass(iclass),&se95_pa);
      //  cout << cm.getClass(iclass) << " " << cm.nReference(cm.getClass(iclass)) << " " << dua << " (" << se95_ua << ")" << " " << dpa << " (" << se95_pa << ")" << endl;
      // }
      // std::cout << "Kappa: " << cm.kappa() << std::endl;
      // doa=cm.oa_pct(&se95_oa);
      // std::cout << "Overall Accuracy: " << doa << " (" << se95_oa << ")"  << std::endl;
    }
  }
  try{
    if(active_opt.size())
      activeWriter.close();
  }
  catch(string errorString){
    std::cerr << "Error: errorString" << std::endl;
  }
  return 0;
}