1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
|
# -*- coding: utf-8; -*-
"""
Copyright (c) 2018 Rolf Hempel, rolf6419@gmx.de
This file is part of the PlanetarySystemStacker tool (PSS).
https://github.com/Rolf-Hempel/PlanetarySystemStacker
PSS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PSS. If not, see <http://www.gnu.org/licenses/>.
"""
from glob import glob
from itertools import chain
from time import time
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from math import ceil
from numpy import float32, zeros, empty, int32, uint8, uint16, clip, histogram
from cv2 import imwrite, moments, threshold, THRESH_BINARY, Laplacian, CV_32F, minMaxLoc
from configuration import Configuration
from exceptions import WrongOrderingError, NotSupportedError, InternalError, ArgumentError, Error
from frames import Frames
from miscellaneous import Miscellaneous
from rank_frames import RankFrames
class AlignFrames(object):
"""
Based on a list of frames and a (parallel) list of frame quality values, an averaged
reference frame is created and all frames are aligned with this frame. The alignment is
performed on a small rectangular area where structure is optimal in both x and y directions.
"""
def __init__(self, frames, rank_frames, configuration, progress_signal=None):
"""
Initialize the AlignFrames object with info from the objects "frames" and "rank_frames".
:param frames: Frames object with all video frames
:param rank_frames: RankFrames object with global quality ranks (between 0. and 1.,
1. being optimal) for all frames
:param configuration: Configuration object with parameters
:param progress_signal: Either None (no progress signalling), or a signal with the signature
(str, int) with the current activity (str) and the progress in
percent (int).
"""
self.frames = frames
self.rank_frames = rank_frames
self.shape = frames.shape
self.alignment_rect_qualities = None
self.alignment_rect_bounds = None
self.frame_shifts = None
self.intersection_shape = None
self.intersection_shape_original = None
self.mean_frame = None
self.mean_frame_original = None
self.quality_loss_percent = None
self.cog_mean_frame = None
self.configuration = configuration
self.progress_signal = progress_signal
self.signal_step_size = max(int(self.frames.number / 10), 1)
self.x_low_opt = self.x_high_opt = self.y_low_opt = self.y_high_opt = None
self.dy = self.dx = None
self.y_low_opt = self.y_high_opt = self.x_low_opt = self.x_high_opt = None
self.dy_original = self.dx_original = None
self.ROI_set = False
self.dev_table = empty((2 * self.configuration.align_frames_search_width,
2 * self.configuration.align_frames_search_width), dtype=float32)
def compute_alignment_rect(self, scale_factor):
"""
Using the frame with the highest rank (sharpest image), compute the rectangular patch
where structure is best in both x and y directions. The size of the patch is the size of the
frame divided by "scale_factor" in both coordinate directions.
:param scale_factor: Ratio of the size of the frame and the alignment patch in both
coordinate directions
:return: A four tuple (y_low, y_high, x_low, x_high) with pixel coordinates of the
optimal patch
"""
dim_y, dim_x = self.shape[0:2]
# Compute the extensions of the alignment rectangle in y and x directions. Take into account
# a border and the search radius for frame shifts.
border_width = self.configuration.align_frames_border_width + \
self.configuration.align_frames_search_width
rect_y = int((dim_y - 2 * border_width) / scale_factor)
rect_y_2 = int(rect_y / 2)
rect_x = int((dim_x - 2 * border_width) / scale_factor)
rect_x_2 = int(rect_x / 2)
# Initialize lists which for each location store the quality measure and the index bounds.
self.alignment_rect_qualities = []
self.alignment_rect_bounds = []
# Compute for all locations in the frame the "quality measure" and store the location
# and quality measure in above lists.
best_frame_mono_blurred = self.frames.frames_mono_blurred(self.rank_frames.frame_ranks_max_index)
x_low = border_width
x_high = x_low + rect_x
while x_high <= dim_x - border_width:
y_low = border_width
y_high = y_low + rect_y
while y_high <= dim_y - border_width:
# new_quality = Miscellaneous.local_contrast(
# self.frames_mono_blurred[self.frame_ranks_max_index][y_low:y_high,
# x_low:x_high], self.configuration.quality_area_pixel_stride)
self.alignment_rect_qualities.append(
Miscellaneous.quality_measure_threshold_weighted(
best_frame_mono_blurred[y_low:y_high, x_low:x_high],
stride=self.configuration.align_frames_rectangle_stride,
black_threshold=self.configuration.align_frames_rectangle_black_threshold,
min_fraction=self.configuration.align_frames_rectangle_min_fraction))
self.alignment_rect_bounds.append((y_low, y_high, x_low, x_high))
y_low += rect_y_2
y_high += rect_y_2
x_low += rect_x_2
x_high += rect_x_2
try:
# Sort lists by quality.
arq, arb = zip(*sorted(zip(self.alignment_rect_qualities, self.alignment_rect_bounds),
reverse=True))
self.alignment_rect_qualities = list(arq)
self.alignment_rect_bounds = list(arb)
# Set the optimal coordinates and return them as a tuple.
(self.y_low_opt, self.y_high_opt, self.x_low_opt, self.x_high_opt) = \
self.alignment_rect_bounds[0]
return self.alignment_rect_bounds[0]
except:
raise ArgumentError("The frame is too small for alignment parameters chosen")
def select_alignment_rect(self, index):
"""
Select an alignment patch from the list computed in "compute_aligment_rect" to be used
for frame aligment.
:param index: index of the alignment patch in the list in decreasing quality order.
:return: True, if successful. Otherwise return False.
"""
if index < 0 or index > len(self.alignment_rect_bounds):
return False
else:
self.y_low_opt, self.y_high_opt, self.x_low_opt, self.x_high_opt = \
self.alignment_rect_bounds[index]
return True
def set_alignment_rect(self, y_low_opt, y_high_opt, x_low_opt, x_high_opt):
"""
As an alternative to "select_alignment_rect", the rectangular patch can be set explicitly
:param y_low_opt: Lower y pixel coordinate of patch
:param y_high_opt: Upper y pixel coordinate of patch
:param x_low_opt: Lower x pixel coordinate of patch
:param x_high_opt: Upper x pixel coordinate of patch
:return: -
"""
self.y_low_opt = y_low_opt
self.y_high_opt = y_high_opt
self.x_low_opt = x_low_opt
self.x_high_opt = x_high_opt
# If the user has set the patch manually, set the lists to this single element.
self.alignment_rect_qualities = [1.]
self.alignment_rect_bounds = [(self.y_low_opt, self.y_high_opt, self.x_low_opt,
self.x_high_opt)]
def align_frames(self):
"""
Compute the displacement of all frames relative to the sharpest frame using the alignment
rectangle.
:return: -
"""
if self.configuration.align_frames_mode == "Surface":
# For "Surface" mode the alignment rectangle has to be selected first.
if self.x_low_opt is None:
raise WrongOrderingError(
"Method 'align_frames' is called before 'select_alignment_rect'")
# From the sharpest frame cut out the alignment rectangle. The shifts of all other frames
# will be computed relativ to this patch.
if self.configuration.align_frames_method == "MultiLevelCorrelation":
# MultiLevelCorrelation uses two reference windows with different resolution. Also,
# please note that the data type is float32 in this case.
reference_frame = self.frames.frames_mono_blurred(
self.rank_frames.frame_ranks_max_index).astype(float32)
self.reference_window = reference_frame[self.y_low_opt:self.y_high_opt,
self.x_low_opt:self.x_high_opt]
# For the first phase a box with half the resolution is constructed.
self.reference_window_first_phase = self.reference_window[::2, ::2]
else:
# For all other methods, the reference window is of type int32.
reference_frame = self.frames.frames_mono_blurred(
self.rank_frames.frame_ranks_max_index).astype(int32)
self.reference_window = reference_frame[
self.y_low_opt:self.y_high_opt,
self.x_low_opt:self.x_high_opt]
self.reference_window_shape = self.reference_window.shape
elif self.configuration.align_frames_mode == "Planet":
# For "Planetary" mode compute the center of gravity for the reference image.
cog_reference_y, cog_reference_x = AlignFrames.center_of_gravity(
self.frames.frames_mono_blurred(self.rank_frames.frame_ranks_max_index))
else:
raise NotSupportedError(
"Frame alignment mode '" + self.configuration.align_frames_mode +
"' not supported")
# Initialize a list which for each frame contains the shifts in y and x directions.
self.frame_shifts = [None] * self.frames.number
# Initialize a counter of processed frames for progress bar signalling. It is set to one
# because in the loop below the optimal frame is not counted.
number_processed = 1
# Loop over all frames. Begin with the sharpest (reference) frame
for idx in chain(reversed(range(self.rank_frames.frame_ranks_max_index + 1)),
range(self.rank_frames.frame_ranks_max_index, self.frames.number)):
if idx == self.rank_frames.frame_ranks_max_index:
# For the sharpest frame the displacement is 0 because it is used as the reference.
self.frame_shifts[idx] = [0, 0]
# Initialize two variables which keep the shift values of the previous step as
# the starting point for the next step. This reduces the search radius if frames are
# drifting.
dy_min_cum = dx_min_cum = 0
# For all other frames: Compute the global shift, using the "blurred" monochrome image.
else:
# After every "signal_step_size"th frame, send a progress signal to the main GUI.
if self.progress_signal is not None and number_processed % self.signal_step_size == 1:
self.progress_signal.emit("Align all frames",
int(round(10*number_processed / self.frames.number) * 10))
frame = self.frames.frames_mono_blurred(idx)
# In Planetary mode the shift of the "center of gravity" of the image is computed.
# This algorithm cannot fail.
if self.configuration.align_frames_mode == "Planet":
cog_frame = AlignFrames.center_of_gravity(frame)
self.frame_shifts[idx] = [cog_reference_y - cog_frame[0],
cog_reference_x - cog_frame[1]]
# In Surface mode various methods can be used to measure the shift from one frame
# to the next. The method "Translation" is special: Using phase correlation it is
# the only method not based on a local search algorithm. It is treated differently
# here because it does not require a re-shifting of the alignment patch.
elif self.configuration.align_frames_method == "Translation":
# The shift is computed with cross-correlation. Cut out the alignment patch and
# compute its translation relative to the reference.
frame_window = self.frames.frames_mono_blurred(idx)[
self.y_low_opt:self.y_high_opt, self.x_low_opt:self.x_high_opt]
self.frame_shifts[idx] = Miscellaneous.translation(self.reference_window,
frame_window,
self.reference_window_shape)
# Now treat all "Surface" mode cases using local search algorithms. In each case
# the result is the shift vector [dy_min, dx_min]. The search can fail (if within
# the search radius no optimum is found). If that happens for at least one frame,
# an exception is raised. The workflow thread then tries again using another
# alignment patch.
else:
if self.configuration.align_frames_method == "MultiLevelCorrelation":
# The shift is computed in two phases: First on a coarse pixel grid,
# and then on the original grid in a small neighborhood around the optimum
# found in the first phase.
shift_y_local_first_phase, shift_x_local_first_phase, \
success_first_phase, shift_y_local_second_phase, \
shift_x_local_second_phase, success_second_phase = \
Miscellaneous.multilevel_correlation(
self.reference_window_first_phase, frame,
self.configuration.frames_gauss_width,
self.reference_window, self.y_low_opt - dy_min_cum,
self.y_high_opt - dy_min_cum,
self.x_low_opt - dx_min_cum,
self.x_high_opt - dx_min_cum,
self.configuration.align_frames_search_width,
weight_matrix_first_phase=None)
success = success_first_phase and success_second_phase
if success:
[dy_min, dx_min] = [
shift_y_local_first_phase + shift_y_local_second_phase,
shift_x_local_first_phase + shift_x_local_second_phase]
elif self.configuration.align_frames_method == "RadialSearch":
# Spiral out from the shift position of the previous frame and search for the
# local optimum.
[dy_min, dx_min], dev_r = Miscellaneous.search_local_match(
self.reference_window, frame, self.y_low_opt - dy_min_cum,
self.y_high_opt - dy_min_cum,
self.x_low_opt - dx_min_cum,
self.x_high_opt - dx_min_cum,
self.configuration.align_frames_search_width,
self.configuration.align_frames_sampling_stride, sub_pixel=False)
# The search was not successful if a zero shift was reported after more
# than two search cycles.
success = len(dev_r) <= 2 or dy_min != 0 or dx_min != 0
elif self.configuration.align_frames_method == "SteepestDescent":
# Spiral out from the shift position of the previous frame and search for the
# local optimum.
[dy_min, dx_min], dev_r = Miscellaneous.search_local_match_gradient(
self.reference_window, frame, self.y_low_opt - dy_min_cum,
self.y_high_opt - dy_min_cum,
self.x_low_opt - dx_min_cum,
self.x_high_opt - dx_min_cum,
self.configuration.align_frames_search_width,
self.configuration.align_frames_sampling_stride, self.dev_table)
# The search was not successful if a zero shift was reported after more
# than two search cycles.
success = len(dev_r) <= 2 or dy_min != 0 or dx_min != 0
else:
raise NotSupportedError(
"Frame alignment method " + configuration.align_frames_method +
" not supported")
# If the local search was unsuccessful, quit the frame loop with an error.
if not success:
raise InternalError("frame " + str(idx))
# Update the cumulative shift values to be used as starting point for the
# next frame.
dy_min_cum += dy_min
dx_min_cum += dx_min
self.frame_shifts[idx] = [dy_min_cum, dx_min_cum]
# If the alignment window gets too close to a frame edge, move it away from
# that edge by half the border width. First check if the reference window still
# fits into the shifted frame.
if self.shape[0] - abs(
dy_min_cum) - 2 * self.configuration.align_frames_search_width - \
self.configuration.align_frames_border_width < \
self.reference_window_shape[0] or self.shape[1] - abs(
dx_min_cum) - 2 * self.configuration.align_frames_search_width - \
self.configuration.align_frames_border_width < \
self.reference_window_shape[1]:
raise ArgumentError("Frame stabilization window does not fit into"
" intersection")
new_reference_window = False
# Start with the lower y edge.
while self.y_low_opt - dy_min_cum < \
self.configuration.align_frames_search_width + \
self.configuration.align_frames_border_width / 2:
self.y_low_opt += ceil(self.configuration.align_frames_border_width / 2.)
self.y_high_opt += ceil(self.configuration.align_frames_border_width / 2.)
new_reference_window = True
# Now the upper y edge.
while self.y_high_opt - dy_min_cum > self.shape[
0] - self.configuration.align_frames_search_width - \
self.configuration.align_frames_border_width / 2:
self.y_low_opt -= ceil(self.configuration.align_frames_border_width / 2.)
self.y_high_opt -= ceil(self.configuration.align_frames_border_width / 2.)
new_reference_window = True
# Now the lower x edge.
while self.x_low_opt - dx_min_cum < \
self.configuration.align_frames_search_width + \
self.configuration.align_frames_border_width / 2:
self.x_low_opt += ceil(self.configuration.align_frames_border_width / 2.)
self.x_high_opt += ceil(self.configuration.align_frames_border_width / 2.)
new_reference_window = True
# Now the upper x edge.
while self.x_high_opt - dx_min_cum > self.shape[
1] - self.configuration.align_frames_search_width - \
self.configuration.align_frames_border_width / 2:
self.x_low_opt -= ceil(self.configuration.align_frames_border_width / 2.)
self.x_high_opt -= ceil(self.configuration.align_frames_border_width / 2.)
new_reference_window = True
# If the window was moved, update the "reference window(s)".
if new_reference_window:
if self.configuration.align_frames_method == "MultiLevelCorrelation":
self.reference_window = reference_frame[self.y_low_opt:self.y_high_opt,
self.x_low_opt:self.x_high_opt]
# For the first phase a box with half the resolution is constructed.
self.reference_window_first_phase = self.reference_window[::2, ::2]
else:
self.reference_window = reference_frame[self.y_low_opt:self.y_high_opt,
self.x_low_opt:self.x_high_opt]
# This frame is processed, go to next one.
number_processed += 1
if self.progress_signal is not None:
self.progress_signal.emit("Align all frames", 100)
# Compute the shape of the area contained in all frames in the form [[y_low, y_high],
# [x_low, x_high]]
self.intersection_shape = [[max(b[0] for b in self.frame_shifts),
min(b[0] for b in self.frame_shifts) + self.shape[0]],
[max(b[1] for b in self.frame_shifts),
min(b[1] for b in self.frame_shifts) + self.shape[1]]]
@staticmethod
def center_of_gravity(frame):
"""
Comppute (y, x) pixel coordinates of the center of gravity for a given monochrome frame.
Raise an error if the computed cog is outside the frame index bounds.
:param frame: Monochrome frame (2D numpy array)
:return: Integer pixel coordinates (center_y, center_x) of center of gravity
"""
# The following is the old algorithm (up to Version 0.8.5). It does not work well for
# planets on a bright sky background.
#
# Convert the grayscale image to binary image, where all pixels
# brighter than half the maximum image brightness are set to 1,
# and all others are set to 0.
# thresh = threshold(frame, frame.max()/2, 1, THRESH_BINARY)[1]
# This new code sets the threshold between the minimal brightness (background) and
# the maximal brightness (object). The hope is that this way the threshold is far away from
# background noise. Also, no binary image is created, but brightness variations are allowed
# to influence the center of gravity. This gives brighter parts of the image more weight,
# which results in a slightly better precision.
minVal, maxVal, minLoc, maxLoc = minMaxLoc(frame)
brightness_threshold = int((minVal+maxVal)/2)
thresh = clip(frame, brightness_threshold, None)[:,:]-brightness_threshold
# Calculate moments of binary image
M = moments(thresh)
# Calculate coordinates for center of gravity and round pixel
# coordinates to the nearest integers.
cog_x = round(M["m10"] / M["m00"])
cog_y = round(M["m01"] / M["m00"])
# If the computed center of gravity is outside the frame bounds, raise an error (should be
# impossible).
if not 0 < cog_y < frame.shape[0] or not 0 < cog_x < frame.shape[1]:
raise InternalError(
"Center of gravity coordinates [" + str(cog_y) + ", " + str(
cog_x) + "] of reference frame are out of bounds")
return cog_y, cog_x
def average_frame(self, average_frame_number=None, color=False):
"""
Compute an averaged frame from the best (monochrome) frames.
:param average_frame_number: Number of best frames to be averaged. If None, the number is
computed from the configuration parameter
"align_frames_average_frame_percent"
:param color: If True, compute an average of the original (color) images. Otherwise use the
monochrome frame versions.
:return: The averaged frame
"""
if self.intersection_shape is None:
raise WrongOrderingError("Method 'average_frames' is called before 'align_frames'")
# Compute global offsets of current frame relative to intersection frame. Start with
# Initializing lists which for each frame give the dy and dx displacements between the
# reference frame and current frame.
self.dy = [self.intersection_shape[0][0] - self.frame_shifts[idx][0] for idx in range(self.frames.number)]
self.dx = [self.intersection_shape[1][0] - self.frame_shifts[idx][1] for idx in range(self.frames.number)]
# If the number of frames is not specified explicitly, compute it from configuration.
if average_frame_number is not None:
self.average_frame_number = average_frame_number
else:
self.average_frame_number = max(
ceil(self.frames.number * self.configuration.align_frames_average_frame_percent / 100.), 1)
# If the object is changing fast (Jupiter, Sun), restrict interval from which frames are
# taken for computing the reference frame.
if self.configuration.align_frames_fast_changing_object:
window_size = min(
self.average_frame_number *
self.configuration.align_frames_best_frames_window_extension,
self.frames.number)
average_frame_indices, self.quality_loss_percent, self.cog_mean_frame = \
self.rank_frames.find_best_frames(self.average_frame_number, window_size)
else:
average_frame_indices = self.rank_frames.quality_sorted_indices[:self.average_frame_number]
# Create an empty numpy buffer. The first and second dimensions are the y and x
# coordinates. For color frames add a third dimension. Add all frames to the buffer.
if color:
self.mean_frame = zeros([self.intersection_shape[0][1] - self.intersection_shape[0][0],
self.intersection_shape[1][1] - self.intersection_shape[1][0], 3], dtype=float32)
for frame_index in average_frame_indices:
shift = self.frame_shifts[frame_index]
self.mean_frame += self.frames.frames(frame_index) \
[self.intersection_shape[0][0] - shift[0]:
self.intersection_shape[0][1] - shift[0],
self.intersection_shape[1][0] - shift[1]:
self.intersection_shape[1][1] - shift[1], :]
else:
self.mean_frame = zeros([self.intersection_shape[0][1] - self.intersection_shape[0][0],
self.intersection_shape[1][1] - self.intersection_shape[1][0]],
dtype=float32)
for frame_index in average_frame_indices:
shift = self.frame_shifts[frame_index]
self.mean_frame += self.frames.frames_mono(frame_index) \
[self.intersection_shape[0][0] - shift[0]:
self.intersection_shape[0][1] - shift[0],
self.intersection_shape[1][0] - shift[1]:
self.intersection_shape[1][1] - shift[1]]
# Compute the mean frame by dividing by the number of frames, and convert values to 16bit.
if self.frames.dt0 == uint8:
scaling = 256. / self.average_frame_number
elif self.frames.dt0 == uint16:
scaling = 1. / self.average_frame_number
else:
raise NotSupportedError("Attempt to compute the reference frame from images with type"
" neither uint8 nor uint16")
self.mean_frame = (self.mean_frame*scaling).astype(int32)
return self.mean_frame
def set_roi(self, y_min, y_max, x_min, x_max):
"""
Make the stacking region snmaller than the intersection size. Be careful: The pixel
indices in this method refer to the shape of the intersection of all frames, i.e., the
shape of the full mean frame. In general, the original frames are somewhat larger.
If all four index bounds are zero, set the ROI to the full frame.
:param y_min: Lower y pixel bound
:param y_max: Upper y pixel bound
:param x_min: Lower x pixel bound
:param x_max: Upper x pixel bound
:return: The new averaged frame, restricted to the ROI
"""
if self.intersection_shape is None:
raise WrongOrderingError("Method 'set_roi' is called before 'align_frames'")
# On the first call, keep a copy of the full mean frame and original intersection shape.
if not self.ROI_set:
self.mean_frame_original = self.mean_frame.copy()
self.intersection_shape_original = self.intersection_shape.copy()
if y_min == 0 and y_max == 0 and x_min == 0 and x_max == 0:
y_min = 0
y_max = self.intersection_shape_original[0][1] - \
self.intersection_shape_original[0][0]
x_min = 0
x_max = self.intersection_shape_original[1][1] - \
self.intersection_shape_original[1][0]
elif y_min < 0 or y_max > self.intersection_shape_original[0][1] - \
self.intersection_shape_original[0][0] or \
x_min < 0 or x_max > self.intersection_shape_original[1][1] - \
self.intersection_shape_original[1][0] or \
y_min >= y_max or x_min >= x_max:
raise ArgumentError("Invalid ROI index bounds specified")
# Reduce the intersection shape and mean frame to the ROI.
self.intersection_shape = [[y_min+self.intersection_shape_original[0][0],
y_max+self.intersection_shape_original[0][0]],
[x_min+self.intersection_shape_original[1][0],
x_max+self.intersection_shape_original[1][0]]]
# Re-compute global offsets of current frame relative to reference frame.
self.dy = [self.intersection_shape[0][0] - self.frame_shifts[idx][0] for idx in range(self.frames.number)]
self.dx = [self.intersection_shape[1][0] - self.frame_shifts[idx][1] for idx in range(self.frames.number)]
self.ROI_set = True
self.mean_frame = self.mean_frame_original[y_min:y_max, x_min:x_max]
return self.mean_frame
def reset_roi(self):
"""
After a ROI has been set, reset the ROI to the full frame. Restore the mean frame and
the intersection shape to their original values. If no ROI has been set, do nothing.
:return: -
"""
if self.ROI_set:
self.mean_frame = self.mean_frame_original
self.intersection_shape = self.intersection_shape_original
def write_stabilized_video(self, name, fps, stabilized=True):
"""
Write out a stabilized videos. For all frames the part common to all frames is extracted
and written into a video file.
:param name: File name of the video output
:param fps: Frames per second of video
:param stabilized: if False, switch off image stabilization. Write original frames.
:return: -
"""
# Initialize lists of stabilized frames and index strings.
frames_mono_stabilized = []
frame_indices = []
if stabilized:
# For each frame: cut out the shifted window with the intersection of all frames.
# Append it to the list, and add its index to the list of index strings.
for idx in range(self.frames.number):
frame_mono = self.frames.frames_mono(idx)
frames_mono_stabilized.append(frame_mono[
self.intersection_shape[0][0] -
self.frame_shifts[idx][0]:
self.intersection_shape[0][1] -
self.frame_shifts[idx][0],
self.intersection_shape[1][0] -
self.frame_shifts[idx][1]:
self.intersection_shape[1][1] -
self.frame_shifts[idx][1]])
frame_indices.append(str(idx))
Miscellaneous.write_video(name, frames_mono_stabilized, frame_indices, 5)
else:
# Write the original frames (not stabilized) with index number insertions.
frames_mono = []
for idx in range(self.frames.number):
frame_indices.append(str(idx))
frames_mono.append(self.frames.frames_mono(idx))
Miscellaneous.write_video(name, frames_mono, frame_indices, 5)
if __name__ == "__main__":
# Images can either be extracted from a video file or a batch of single photographs. Select
# the example for the test run.
type = 'video'
if type == 'image':
names = glob(
'Images/2012*.tif')
# names = glob.glob('Images/Moon_Tile-031*ap85_8b.tif')
# names = glob.glob('Images/Example-3*.jpg')
else:
# file = 'Moon_Tile-013_205538_short'
# file = 'another_short_video'
# file = 'Moon_Tile-024_043939'
# file = 'Moon_Tile-013_205538'
file = "Venus_06_01"
names = 'Videos/' + file + '.avi'
print(names)
# Get configuration parameters.
configuration = Configuration()
configuration.initialize_configuration()
try:
# In creating the Frames object the images are read from the specified file(s).
frames = Frames(configuration, names, type=type)
print("Number of images read: " + str(frames.number))
print("Image shape: " + str(frames.shape))
except Error as e:
print("Error: " + str(e))
exit()
# Rank the frames by their overall local contrast.
rank_frames = RankFrames(frames, configuration)
rank_frames.frame_score()
print("Best frame index: " + str(rank_frames.frame_ranks_max_index))
output_file = 'Images/' + file + '.jpg'
imwrite(output_file, frames.frames_mono(rank_frames.frame_ranks_max_index))
# Initialize the frame alignment object.
align_frames = AlignFrames(frames, rank_frames, configuration)
if configuration.align_frames_mode == "Surface":
# Select the local rectangular patch in the image where the L gradient is highest in both x
# and y direction. The scale factor specifies how much smaller the patch is compared to the
# whole image frame.
(y_low_opt, y_high_opt, x_low_opt, x_high_opt) = align_frames.compute_alignment_rect(
configuration.align_frames_rectangle_scale_factor)
# Alternative: Set the alignment rectangle by hand.
# (align_frames.x_low_opt, align_frames.x_high_opt, align_frames.y_low_opt,
# align_frames.y_high_opt) = (x_low_opt, x_high_opt, y_low_opt, y_high_opt) = (
# 650, 950, 550, 750)
print("optimal alignment rectangle, x_low: " + str(x_low_opt) + ", x_high: " + str(
x_high_opt) + ", y_low: " + str(y_low_opt) + ", y_high: " + str(y_high_opt))
frame = frames.frames_mono_blurred(rank_frames.frame_ranks_max_index).copy()
frame[y_low_opt, x_low_opt:x_high_opt] = frame[y_high_opt - 1, x_low_opt:x_high_opt] = 255
frame[y_low_opt:y_high_opt, x_low_opt] = frame[y_low_opt:y_high_opt, x_high_opt - 1] = 255
plt.imshow(frame, cmap='Greys_r')
plt.show()
# Align all frames globally relative to the frame with the highest score.
try:
align_frames.align_frames()
except NotSupportedError as e:
print("Error: " + e.message)
exit()
except InternalError as e:
print("Warning: " + e.message)
print("Frame shifts: " + str(align_frames.frame_shifts))
print("Intersection: " + str(align_frames.intersection_shape))
# Compute the reference frame by averaging the best frames.
average = align_frames.average_frame()
plt.imshow(average, cmap='Greys_r')
plt.show()
# Write video with stabilized frames, annotated with their frame indices.
stabilized = True
if stabilized:
name = 'Videos/stabilized_video_with_frame_numbers.avi'
else:
name = 'Videos/not_stabilized_video_with_frame_numbers.avi'
align_frames.write_stabilized_video(name, 5, stabilized=stabilized)
# print ("Setting ROI and computing new average frame")
# average = align_frames.set_roi(300, 600, 500, 1000)
# plt.imshow(average, cmap='Greys_r')
# plt.show()
|