1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
|
# -*- coding: utf-8; -*-
"""
Copyright (c) 2018 Rolf Hempel, rolf6419@gmx.de
This file is part of the PlanetarySystemStacker tool (PSS).
https://github.com/Rolf-Hempel/PlanetarySystemStacker
PSS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PSS. If not, see <http://www.gnu.org/licenses/>.
"""
from glob import glob
from time import time
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from math import ceil
from numpy import arange, amax, stack, amin, float32, uint8, zeros, sqrt, empty, int32, uint16
from scipy import ndimage
try:
from skimage.registration import phase_cross_correlation
except ImportError:
from skimage.feature import register_translation as phase_cross_correlation
from cv2 import meanStdDev, GaussianBlur
from align_frames import AlignFrames
from configuration import Configuration
from exceptions import NotSupportedError, Error
from frames import Frames
from miscellaneous import Miscellaneous
from rank_frames import RankFrames
class AlignmentPoints(object):
"""
Create a rectangular grid of potential places for alignment points. For each location
create a small "alignment box" around it. For each alignment box test if there is enough
structure and brightness in the picture to use it as an alignment point. For all
alignment points in all frames, compute the local shifts relative to the mean frame.
"""
def __init__(self, configuration, frames, rank_frames, align_frames, progress_signal=None):
"""
Initialize the AlignmentPoints object and compute the mean frame.
:param configuration: Configuration object with parameters
:param frames: Frames object with all video frames
:param rank_frames: RankFrames object with global quality ranks (between 0. and 1.,
1. being optimal) for all frames
:param align_frames: AlignFrames object with global shift information for all frames
:param progress_signal: Either None (no progress signalling), or a signal with the signature
(str, int) with the current activity (str) and the progress in
percent (int).
"""
self.configuration = configuration
self.frames = frames
self.rank_frames = rank_frames
self.align_frames = align_frames
self.progress_signal = progress_signal
# Apply a low-pass filter on the mean frame as a preparation for shift detection.
self.mean_frame = GaussianBlur(align_frames.mean_frame.astype(uint16),
(self.configuration.frames_gauss_width,
self.configuration.frames_gauss_width), 0).astype(int32)
self.num_pixels_y = self.mean_frame.shape[0]
self.num_pixels_x = self.mean_frame.shape[1]
self.alignment_points_dropped_dim = None
self.alignment_points_dropped_structure = None
# Initialize counters for APs which are dropped because
# they do not satisfy the brightness or structure condition.
self.alignment_points = []
self.alignment_points_dropped_dim = 0
self.alignment_points_dropped_structure = 0
# Initialize the number of frames to be stacked at each AP.
self.stack_size = None
self.dev_table = empty((2 * self.configuration.alignment_points_search_width + 1,
2 * self.configuration.alignment_points_search_width + 1), dtype=float32)
@staticmethod
def ap_locations(num_pixels, min_boundary_distance, step_size, even):
"""
Compute optimal alignment patch coordinates in one coordinate direction. Place boundary
neighbors as close as possible to the boundary.
:param num_pixels: Number of pixels in the given coordinate direction
:param min_boundary_distance: Minimum distance of an AP from the boundary
:param step_size: Distance of alignment boxes
:param even: If True, compute locations for even row indices. Otherwise, for odd ones.
:return: List of alignment point coordinates in the given direction
"""
# Initialize list of locations.
locations = []
# If the frame size is too small for the AP size chosen, no AP locations can be computed.
# In this case an empty list is returned.
try:
# The number of interior alignment boxes in general is not an integer. Round to the next
# higher number.
num_interior_odd = int(ceil((num_pixels - 2 * min_boundary_distance) / step_size))
# Because alignment points are arranged in a staggered grid, in even rows there is one point
# more.
num_interior_even = num_interior_odd + 1
# The precise distance between alignment points will differ slightly from the specified
# step_size. Compute the exact distance. Integer locations will be rounded later.
distance_corrected = (num_pixels - 2 * min_boundary_distance) / num_interior_odd
# Compute the AP locations, separately for even and odd rows.
if even:
locations = [int(min_boundary_distance + i * distance_corrected) for i in range(num_interior_even)]
else:
locations = [int(min_boundary_distance + 0.5 * distance_corrected +
i * distance_corrected) for i in range(num_interior_odd)]
except:
pass
return locations
def create_ap_grid(self):
"""
Create a 2D staggered grid of alignment points. For each AP compute its center coordinates,
and the coordinate limits of its alignment box and alignment patch. Only alignment points
which satisfy the conditions on brightness, contrast and structure are eventually added to
the list.
:return: List of alignment points.
"""
# The alignment patch is the area which is stacked after a rigid displacement.
half_patch_width = self.configuration.alignment_points_half_patch_width
# The alignment box is the object on which the displacement computation is performed.
half_box_width = self.configuration.alignment_points_half_box_width
# Number of pixels in one coordinate direction between alignment points
step_size = self.configuration.alignment_points_step_size
# Maximum displacement searched for in the alignment process.
search_width = self.configuration.alignment_points_search_width
# Minimum structure value for an alignment point (between 0. and 1.)
structure_threshold = self.configuration.alignment_points_structure_threshold
# The brightest pixel must be brighter than this value (0 < value <256). Please note that
# brightness and contrast values are converted to 16bit resolution.
brightness_threshold = self.configuration.alignment_points_brightness_threshold * 256
# The difference between the brightest and darkest pixel values must be larger than this
# value (0 < value < 256)
contrast_threshold = self.configuration.alignment_points_contrast_threshold * 256
# Reset the alignment point list, and initialize counters for APs which are dropped because
# they do not satisfy the brightness or structure condition.
self.alignment_points = []
self.alignment_points_dropped_dim = 0
self.alignment_points_dropped_structure = 0
# Compute the minimum distance of an AP from the boundary.
min_boundary_distance = max(half_box_width + search_width, half_patch_width)
# Compute y and x coordinate locations of alignment points. Note that the grid is staggered.
ap_locations_y = self.ap_locations(self.num_pixels_y, min_boundary_distance,
step_size, True)
ap_locations_x_even = self.ap_locations(self.num_pixels_x, min_boundary_distance,
step_size, True)
ap_locations_x_odd = self.ap_locations(self.num_pixels_x, min_boundary_distance,
step_size, False)
# If no AP coordinates fit into the frame, no APs are created.
if not ap_locations_y or not ap_locations_x_even or not ap_locations_x_odd:
return
# Compute the minimum distance of an AP center from the frame boundary.
min_boundary_distance = max(
self.configuration.alignment_points_half_box_width + \
self.configuration.alignment_points_search_width,
self.configuration.alignment_points_half_patch_width)
# Create alignment point rows, start with an even one.
even = True
for index_y, y in enumerate(ap_locations_y):
# For the first row extend the patch to the upper frame border, and for the last row
# to the lower frame border.
extend_y_low = (index_y == 0)
extend_y_high = (index_y == len(ap_locations_y)-1)
# Create x coordinate, depending on the y row being even or odd (staggered grid).
if even:
ap_locations_x = ap_locations_x_even
else:
ap_locations_x = ap_locations_x_odd
# For each location create an alignment point.
for index_x, x in enumerate(ap_locations_x):
# For the first point in a row, extend the patch to the left frame border, and for
# the last point in a row to the right frame border.
extend_x_low = (index_x == 0)
extend_x_high = (index_x == len(ap_locations_x) - 1)
alignment_point = self.new_alignment_point(y, x, extend_x_low, extend_x_high,
extend_y_low, extend_y_high)
# Compute structure and brightness information for the alignment box.
max_brightness = amax(alignment_point['reference_box'])
min_brightness = amin(alignment_point['reference_box'])
# If the alignment box satisfies the brightness conditions, add the AP to the list.
if max_brightness > brightness_threshold and max_brightness - \
min_brightness > contrast_threshold:
# Check if the fraction of dark pixels exceeds a threshold.
box = alignment_point['reference_box']
fraction = (box < brightness_threshold).sum() / (box.shape[0] * box.shape[1])
if fraction > self.configuration.alignment_points_dim_fraction_threshold:
# Compute the center of mass of the brightness distribution within the box,
# and shift the box center to this location.
com = ndimage.measurements.center_of_mass(box)
y_adapted = y + int(com[0]) - half_box_width
x_adapted = x + int(com[1]) - half_box_width
y_adapted = max(y_adapted, min_boundary_distance)
y_adapted = min(y_adapted, self.num_pixels_y - min_boundary_distance)
x_adapted = max(x_adapted, min_boundary_distance)
x_adapted = min(x_adapted, self.num_pixels_x - min_boundary_distance)
# Replace the alignment point with a new one, using the updated
# coordinates.
alignment_point = self.new_alignment_point(y_adapted, x_adapted,
extend_x_low, extend_x_high,
extend_y_low, extend_y_high)
alignment_point['structure'] = Miscellaneous.quality_measure(
alignment_point['reference_box'])
self.alignment_points.append(alignment_point)
else:
# If a point does not satisfy the conditions, increase the counter.
self.alignment_points_dropped_dim += 1
# Switch between even and odd rows.
even = not even
# Normalize the structure information for all alignment point boxes by dividing by the
# maximum value.
if self.alignment_points:
structure_max = max(
alignment_point['structure'] for alignment_point in self.alignment_points)
alignment_points_dropped_structure_indices = []
for alignment_point_index, alignment_point in enumerate(self.alignment_points):
alignment_point['structure'] /= structure_max
# Remove alignment points with too little structure and increment the counter.
if alignment_point['structure'] < structure_threshold:
alignment_points_dropped_structure_indices.append(alignment_point_index)
self.alignment_points_dropped_structure += 1
# Remove alignment points which do not satisfy the structure condition, if there is any.
if alignment_points_dropped_structure_indices:
alignment_points_new = []
dropped_index = 0
for alignment_point_index, alignment_point in enumerate(self.alignment_points):
if alignment_point_index != alignment_points_dropped_structure_indices[
dropped_index]:
alignment_points_new.append(alignment_point)
elif dropped_index < len(alignment_points_dropped_structure_indices) - 1:
dropped_index += 1
self.alignment_points = alignment_points_new
def new_alignment_point(self, y, x, extend_x_low, extend_x_high, extend_y_low, extend_y_high):
"""
Create a new alignment point. This method is called in creating the initial alignment point
grid. Later it can be invoked by the user to add single alignment points.
:param y: y coordinate of alignment point center
:param x: x coordinate of alignment point center
:param extend_x_low: True, if patch is to be extended to the left frame boundary.
False otherwise.
:param extend_x_high: True, if patch is to be extended to the right frame boundary.
False otherwise.
:param extend_y_low: True, if patch is to be extended to the upper frame boundary.
False otherwise.
:param extend_y_high: True, if patch is to be extended to the lower frame boundary.
False otherwise.
:return: If successful, the alignment point object is returned; otherwise None.
"""
# If the patch does not fit into the frame, or the AP box is too close to the border,
# the AP cannot be created at this place.
min_boundary_distance = max(self.configuration.alignment_points_half_box_width + \
self.configuration.alignment_points_search_width,
self.configuration.alignment_points_half_patch_width)
if y<min_boundary_distance or y>self.num_pixels_y-min_boundary_distance or \
x<min_boundary_distance or x>self.num_pixels_x-min_boundary_distance:
return None
alignment_point = {}
alignment_point['y'] = y
alignment_point['x'] = x
alignment_point['half_box_width'] = self.configuration.alignment_points_half_box_width
alignment_point['box_y_low'] = y - self.configuration.alignment_points_half_box_width
alignment_point['box_y_high'] = y + self.configuration.alignment_points_half_box_width
alignment_point['box_x_low'] = x - self.configuration.alignment_points_half_box_width
alignment_point['box_x_high'] = x + self.configuration.alignment_points_half_box_width
alignment_point['patch_y_low'] = y - self.configuration.alignment_points_half_patch_width
alignment_point['patch_y_high'] = y + self.configuration.alignment_points_half_patch_width
if extend_y_low:
alignment_point['patch_y_low'] = 0
elif extend_y_high:
alignment_point['patch_y_high'] = self.num_pixels_y
alignment_point['patch_x_low'] = x - self.configuration.alignment_points_half_patch_width
alignment_point['patch_x_high'] = x + self.configuration.alignment_points_half_patch_width
if extend_x_low:
alignment_point['patch_x_low'] = 0
elif extend_x_high:
alignment_point['patch_x_high'] = self.num_pixels_x
# Initialize the reference to the corresponding widget in the AP viewer scene.
alignment_point['graphics_item'] = None
# Allocate buffers and fill alignment point box with mean frame.
AlignmentPoints.set_reference_box(alignment_point, self.mean_frame)
return alignment_point
def add_alignment_point(self, ap):
"""
Add an alignment point to the list.
:param ap: AP to be added
:return: -
"""
self.alignment_points.append(ap)
def remove_alignment_points(self, ap_list):
"""
Remove a list of alignment points from the current list.
:param ap_list: List of point objects to be removed
:return: -
"""
# Create list with unique identifiers of all items on the list.
ap_list_ids = [id(ap_list_item) for ap_list_item in ap_list]
# Replace the original AP list with the reduced one.
# If the identifier of an alignment point does not match any list item, keep it.
self.alignment_points = [ap for ap in self.alignment_points if id(ap) not in ap_list_ids]
def replace_alignment_point(self, ap_old, ap_new):
"""
Replace an alignment point with a new one.
:param ap_old: Existing alignment point to be replaced
:param ap_new: New alignment point to replace the old one
:return: True if successful, False otherwise
"""
ap_old_id = id(ap_old)
for index, ap in enumerate(self.alignment_points):
if id(ap) == ap_old_id:
self.alignment_points[index] = ap_new
return True
return False
def move_alignment_point(self, ap, y_new, x_new):
"""
Move an existing AP to a different position.
:param ap: Esisting alignment point to be moved
:param y_new: New y coordinate of AP center
:param x_new: New x coordinate of AP center
:return: The updated AP; or None, if unsuccessful
"""
# Try to do the changes. If unsuccessful, return None.
return self.change_alignment_point(ap, y_new, x_new, ap['half_box_width'])
def resize_alignment_point(self, ap, factor):
"""
Change the size of an existing alignment point.
:param ap: Esisting alignment point to be resized
:param factor: Factor by which the size is to be changed
:return: The resized alignment point; or None, if unsuccessful
"""
half_box_width_new = ap['half_box_width'] * factor
# Try to do the changes. If unsuccessful, return None.
return self.change_alignment_point(ap, ap["y"], ap["x"], half_box_width_new)
def change_alignment_point(self, ap, y, x, half_box_width):
"""
Try to fit a resized or moved AP into the frame.
:param ap: AP to be resized or moved
:param y: New y coordinate of center
:param x: New x coordinate of center
:param half_box_width: New half width of AP box
:return: The resized / moved AP; or None, if unsuccessful
"""
# Test if the AP box is too small.
if half_box_width < self.configuration.alignment_points_min_half_box_width:
return None
# Compute new values for patch and box sizes.
half_patch_width_new_int = round(half_box_width *
self.configuration.alignment_points_half_patch_width /
self.configuration.alignment_points_half_box_width)
half_box_width_new_int = round(half_box_width)
# Compute resized patch bounds. If resizing hits the image boundary on at least one side,
# the operation is aborted.
patch_y_low = y - half_patch_width_new_int
if patch_y_low < 0:
return None
patch_y_high = y + half_patch_width_new_int
if patch_y_high > self.num_pixels_y:
return None
patch_x_low = x - half_patch_width_new_int
if patch_x_low < 0:
return None
patch_x_high = x + half_patch_width_new_int
if patch_x_high > self.num_pixels_x:
return None
# Compute resized box bounds. If resizing moves the box closer to the frame border than
# the search width on at least one side, the operation is aborted.
box_y_low = y - half_box_width_new_int
if box_y_low < self.configuration.alignment_points_search_width:
return None
box_y_high = y + half_box_width_new_int
if box_y_high > self.num_pixels_y - self.configuration.alignment_points_search_width:
return None
box_x_low = x - half_box_width_new_int
if box_x_low < self.configuration.alignment_points_search_width:
return None
box_x_high = x + half_box_width_new_int
if box_x_high > self.num_pixels_x - self.configuration.alignment_points_search_width:
return None
# Perform the changes.
ap['y'] = y
ap['x'] = x
ap['patch_y_low'] = patch_y_low
ap['patch_y_high'] = patch_y_high
ap['patch_x_low'] = patch_x_low
ap['patch_x_high'] = patch_x_high
ap['box_y_low'] = box_y_low
ap['box_y_high'] = box_y_high
ap['box_x_low'] = box_x_low
ap['box_x_high'] = box_x_high
ap['half_box_width'] = half_box_width
# Invalidate buffers. To save computing time, they are not re-computed at every wheel
# event.
ap['graphics_item'] = None
ap['reference_box'] = None
ap['stacking_buffer'] = None
return ap
@staticmethod
def set_reference_box(alignment_point, mean_frame):
"""
For APs which have been changed in the AP editor, buffers have been invalidated. They have
to be re-computed after AP editing is done.
:param alignment_point: Alignment_point object
:param mean_frame: Average frame
:return: -
"""
# Cut out the reference box from the mean frame, used in alignment.
box = mean_frame[alignment_point['box_y_low']:alignment_point['box_y_high'],
alignment_point['box_x_low']:alignment_point['box_x_high']]
alignment_point['reference_box'] = box
def set_reference_boxes_correlation(self):
"""
This method is used if multilevel-correlation AP matching is selected. In this case two
reference boxes with different resolution are constructed. The box used in the first phase
contains only every second pixel of the original frame in each coordinate direction. The box
used in the second phase has the same resolution as the original frame.
This method is invoked when all APs are set, just before stacking.
:return: -
"""
for ap_index, alignment_point in enumerate(self.alignment_points):
# Cut the reference box for this alignment point from the mean frame.
window_second_phase = self.align_frames.mean_frame[
alignment_point['box_y_low']:
alignment_point['box_y_high'],
alignment_point['box_x_low']:
alignment_point['box_x_high']].astype(float32)
# The reference box with the full resolution is used in the second phase.
alignment_point['reference_box_second_phase'] = window_second_phase
# In the first phase a box with half the resolution is constructed.
alignment_point['reference_box_first_phase'] = window_second_phase[::2, ::2]
@staticmethod
def initialize_ap_stacking_buffer(alignment_point, drizzle_factor, color):
"""
In the stacking initialization, for each AP a stacking buffer has to be allocated. At the
same time, drizzled patch index bounds are computed.
:param alignment_point: Alignment_point object
:param drizzle_factor: Drizzle factor (integer: 1, 2 or 3)
:param color: True, if stacking is to be done for color frames. False for monochrome case.
:return: -
"""
# Compute drizzled patch coordinates and index bounds.
alignment_point['y_drizzled'] = alignment_point['y'] * drizzle_factor
alignment_point['x_drizzled'] = alignment_point['x'] * drizzle_factor
alignment_point['patch_y_low_drizzled'] = alignment_point['patch_y_low'] * drizzle_factor
alignment_point['patch_y_high_drizzled'] = alignment_point['patch_y_high'] * drizzle_factor
alignment_point['patch_x_low_drizzled'] = alignment_point['patch_x_low'] * drizzle_factor
alignment_point['patch_x_high_drizzled'] = alignment_point['patch_x_high'] * drizzle_factor
# Allocate space for the stacking buffer.
if color:
alignment_point['stacking_buffer'] = zeros(
[alignment_point['patch_y_high_drizzled'] - alignment_point['patch_y_low_drizzled'],
alignment_point['patch_x_high_drizzled'] - alignment_point['patch_x_low_drizzled'],
3],
dtype=float32)
else:
alignment_point['stacking_buffer'] = zeros(
[alignment_point['patch_y_high_drizzled'] - alignment_point['patch_y_low_drizzled'],
alignment_point['patch_x_high_drizzled'] - alignment_point[
'patch_x_low_drizzled']], dtype=float32)
def find_alignment_points(self, y_low, y_high, x_low, x_high):
"""
Find all alignment points the centers of which are within given (y, x) bounds.
:param y_low: Lower y pixel coordinate bound
:param y_high: Upper y pixel coordinate bound
:param x_low: Lower x pixel coordinate bound
:param x_high: Upper x pixel coordinate bound
:return: List of all alignment points with centers within the given coordinate bounds.
If no AP satisfies the condition, return an empty list.
"""
return [ap for ap in self.alignment_points if y_low <= ap['y'] <= y_high and
x_low <= ap['x'] <= x_high]
@staticmethod
def find_neighbor(ap_y, ap_x, alignment_points):
"""
For a given (y, x) position find the closest "real" alignment point.
:param ap_y: y cocrdinate of location of interest
:param ap_x: x cocrdinate of location of interest
:param alignment_points: List of alignment points to be searched
:return: Alignment point object of closest AP, and distance in pixels. If the list of
alignment points is empty, (None, None) is returned.
"""
# If no APs have been created yet, return None for both results.
if not alignment_points:
return None, None
# Start with an impossibly large distance, and find the closest AP on the list.
min_distance_squared = 1.e30
ap_neighbor = None
for ap in alignment_points:
distance_squared = (ap['y'] - ap_y) ** 2 + (ap['x'] - ap_x) ** 2
if distance_squared < min_distance_squared:
ap_neighbor = ap
min_distance_squared = distance_squared
return ap_neighbor, sqrt(min_distance_squared)
def compute_frame_qualities(self):
"""
For each alignment point compute a ranking of best frames. Store the list in the
alignment point dictionary with the key 'best_frame_indices'.
Consider the special case that sampled-down Laplacians have been stored for frame ranking.
In this case they can be re-used for ranking the boxes around alignment points (but only
if "Laplace" has been selected for alignment point ranking).
:return: -
"""
# If the user has entered a value for the number of frames, use it.
if self.configuration.alignment_points_frame_number > 0:
self.stack_size = self.configuration.alignment_points_frame_number
# Otherwise compute the stack size from the given percentage. Take at least one frame.
else:
self.stack_size = max(int(ceil(
self.frames.number * self.configuration.alignment_points_frame_percent / 100.)), 1)
# Select the ranking method.
if self.configuration.alignment_points_rank_method == "xy gradient":
method = Miscellaneous.local_contrast
elif self.configuration.alignment_points_rank_method == "Laplace":
method = Miscellaneous.local_contrast_laplace
elif self.configuration.alignment_points_rank_method == "Sobel":
method = Miscellaneous.local_contrast_sobel
else:
raise NotSupportedError(
"Ranking method " + self.configuration.alignment_points_rank_method +
" not supported")
# Compute the frequency of progress signals in the computational loop.
if self.progress_signal is not None:
self.signal_loop_length = max(self.frames.number, 1)
self.signal_step_size = max(round(self.frames.number / 10), 1)
# Initialize a list which for each AP contains the qualities of all frames at this point.
for alignment_point in self.alignment_points:
alignment_point['frame_qualities'] = []
if self.configuration.rank_frames_method != "Laplace" or \
self.configuration.alignment_points_rank_method != "Laplace":
# There are no stored Laplacians, or they cannot be used for the specified method.
# Cycle through all frames and alignment points:
for frame_index in range(self.frames.number):
frame = self.frames.frames_mono_blurred(frame_index)
# After every "signal_step_size"th frame, send a progress signal to the main GUI.
if self.progress_signal is not None and frame_index % self.signal_step_size == 1:
self.progress_signal.emit("Rank frames at APs",
int(round(10 * frame_index / self.signal_loop_length) * 10))
for ap_index, alignment_point in enumerate(self.alignment_points):
# Compute patch bounds within the current frame.
y_low = max(0,
alignment_point['patch_y_low'] + self.align_frames.dy[frame_index])
y_high = min(self.frames.shape[0],
alignment_point['patch_y_high'] + self.align_frames.dy[
frame_index])
x_low = max(0,
alignment_point['patch_x_low'] + self.align_frames.dx[frame_index])
x_high = min(self.frames.shape[1],
alignment_point['patch_x_high'] + self.align_frames.dx[
frame_index])
# Compute the frame quality and append it to the list for this alignment point.
if self.configuration.frames_normalization:
alignment_point['frame_qualities'].append(
method(frame[y_low:y_high, x_low:x_high],
self.configuration.alignment_points_rank_pixel_stride) /
self.frames.average_brightness(frame_index))
else:
alignment_point['frame_qualities'].append(
method(frame[y_low:y_high, x_low:x_high],
self.configuration.alignment_points_rank_pixel_stride))
else:
# Sampled-down Laplacians of all blurred frames have been computed in
# "frames.frames_mono_blurred_laplacian". Cut out boxes around alignment points from
# those objects, rather than computing new Laplacians. Cycle through all frames and
# alignment points. Use the blurred monochrome image for ranking.
for frame_index in range(self.frames.number):
frame = self.frames.frames_mono_blurred_laplacian(frame_index)
# After every "signal_step_size"th frame, send a progress signal to the main GUI.
if self.progress_signal is not None and frame_index % self.signal_step_size == 1:
self.progress_signal.emit("Rank frames at APs",
int(round(10 * frame_index / self.signal_loop_length) * 10))
for ap_index, alignment_point in enumerate(self.alignment_points):
# Compute patch bounds within the current frame.
y_low = int(max(0, alignment_point['patch_y_low'] + self.align_frames.dy[
frame_index]) / self.configuration.align_frames_sampling_stride)
y_high = int(min(self.frames.shape[0],
alignment_point['patch_y_high'] + self.align_frames.dy[
frame_index]) / self.configuration.align_frames_sampling_stride)
x_low = int(max(0, alignment_point['patch_x_low'] + self.align_frames.dx[
frame_index]) / self.configuration.align_frames_sampling_stride)
x_high = int(min(self.frames.shape[1],
alignment_point['patch_x_high'] + self.align_frames.dx[
frame_index]) / self.configuration.align_frames_sampling_stride)
# Compute the frame quality and append it to the list for this alignment point.
if self.configuration.frames_normalization:
alignment_point['frame_qualities'].append(
meanStdDev(frame[y_low:y_high, x_low:x_high])[1][0][0] /
self.frames.average_brightness(frame_index))
else:
alignment_point['frame_qualities'].append(
meanStdDev(frame[y_low:y_high, x_low:x_high])[1][0][0])
if self.progress_signal is not None:
self.progress_signal.emit("Rank frames at APs", 100)
# Initialize the alignment point lists for all frames.
self.frames.reset_alignment_point_lists()
# For each alignment point sort the computed quality ranks in descending order.
for alignment_point_index, alignment_point in enumerate(self.alignment_points):
# Truncate the list to the number of frames to be stacked for each alignmeent point.
alignment_point['best_frame_indices'] = sorted(range(len(alignment_point['frame_qualities'])),
key=alignment_point['frame_qualities'].__getitem__, reverse=True)[:self.stack_size]
# Add this alignment point to the AP lists of those frames where the AP is to be used.
for frame_index in alignment_point['best_frame_indices']:
self.frames.used_alignment_points[frame_index].append(alignment_point_index)
def compute_shift_alignment_point(self, frame_mono_blurred, frame_index, alignment_point_index,
de_warp=True, weight_matrix_first_phase=None,
subpixel_solve=False):
"""
Compute the [y, x] pixel shift vector at a given alignment point relative to the mean frame.
Four different methods can be used to compute the shift values:
- a multilevel cross correlation algorithm (miscellaneous.multilevel_correlation). This
method was implemented after PSS had shown bad performance for planetary videos captured
with bad seeing. Pixel shifts can be computed with subpixel accuracy, as specified with
the parameter "subpixel_solve". This is needed for drizzling.
- a subpixel algorithm from "skimage.feature"
- a phase correlation algorithm (miscellaneous.translation)
- a local search algorithm (spiralling outwards), see method "search_local_match",
optionally with subpixel accuracy.
- a local search algorithm, based on steepest descent, see method
"search_local_match_gradient". This method is faster than the previous one, but it has no
subpixel option.
Be careful with the sign of the local shift values. For the first two methods, a positive
value means that the current frame has to be shifted in the positive coordinate direction
in order to make objects in the frame match with their counterparts in the reference frame.
In other words: If the shift is positive, an object in the current frame is at lower pixel
coordinates as compared to the reference. This is very counter-intuitive, but to make the
three methods consistent, the same approach was followed in the implementation of the third
method "search_local_match", contained in this module. There, a pixel box around an
alignment point in the current frame is moved until the content of the box matches with the
corresponding box in the reference frame. If at this point the box is shifted towards a
higher coordinate value, this value is returned with a negative sign as the local shift.
:param frame_mono_blurred: Gaussian-blurred version of the frame with index "frame_index"
:param frame_index: Index of the selected frame in the list of frames
:param alignment_point_index: Index of the selected alignment point
:param de_warp: If True, include local warp shift computation. If False, only apply
global frame shift.
:param weight_matrix_first_phase: This parameter is only used by the alignment method
"MultiLevelCorrelation". If not None it defines a
weighting array by which the cross correlation results are
multiplied before the maximum value is determined. The
size of this 2D array in each coordinate direction is that
of the reference_box_first_phase plus two times the first
phase search width.
:param subpixel_solve: Used only for alignment method "MultiLevelCorrelation". If True,
in the second phase the optimum is computed with sub-pixel accuracy
(i.e. the returned shifts are not integer). If False, shifts are
computed as integer values.
:return: [shift_y, shift_x], success with: [shift_y, shift_x]: Local shift vector
success: True, if computation successful; False, otherwise.
"""
# Initialize the "success" return value.
success = True
alignment_point = self.alignment_points[alignment_point_index]
y_low = alignment_point['box_y_low']
y_high = alignment_point['box_y_high']
x_low = alignment_point['box_x_low']
x_high = alignment_point['box_x_high']
# The offsets dy and dx are caused by two effects: First, the mean frame is smaller
# than the original frames. It only contains their intersection. And second, because the
# given frame is globally shifted as compared to the mean frame.
dy = self.align_frames.dy[frame_index]
dx = self.align_frames.dx[frame_index]
if de_warp:
# Use a two-level algorithm based on (weighted) cross correlation. The user-supplied
# noise level parameter is used as the blurring factor for the first correlation phase.
if self.configuration.alignment_points_method == 'MultiLevelCorrelation':
shift_y_local_first_phase, shift_x_local_first_phase, success_first_phase, \
shift_y_local_second_phase, shift_x_local_second_phase, success_second_phase = \
Miscellaneous.multilevel_correlation(
alignment_point['reference_box_first_phase'],
frame_mono_blurred, self.configuration.frames_gauss_width,
alignment_point['reference_box_second_phase'],
y_low + dy, y_high + dy, x_low + dx, x_high + dx,
self.configuration.alignment_points_search_width,
weight_matrix_first_phase=weight_matrix_first_phase,
subpixel_solve=subpixel_solve)
# Compute the combined warp shifts from both phases.
shift_pixel = [shift_y_local_first_phase + shift_y_local_second_phase,
shift_x_local_first_phase + shift_x_local_second_phase]
success = success_second_phase
# Use subpixel registration from skimage.feature, with accuracy 1/10 pixels.
elif self.configuration.alignment_points_method == 'Subpixel':
# Cut out the alignment box from the given frame. Take into account the offsets
# explained above.
box_in_frame = frame_mono_blurred[y_low + dy:y_high + dy,
x_low + dx:x_high + dx]
# The following use of "phase_cross_correlation" replaces the original call to
# "register_translation" which seems not to be in the package anymore. If this
# replacement really works has not been tested.
shift_pixel, error, diffphase = phase_cross_correlation(
alignment_point['reference_box'], box_in_frame, upsample_factor=10)
# Use a simple phase shift computation (contained in module "miscellaneous").
elif self.configuration.alignment_points_method == 'CrossCorrelation':
# Cut out the alignment box from the given frame. Take into account the offsets
# explained above.
box_in_frame = frame_mono_blurred[y_low + dy:y_high + dy,
x_low + dx:x_high + dx]
shift_pixel = Miscellaneous.translation(alignment_point['reference_box'],
box_in_frame, box_in_frame.shape)
# Use a local search (see method "search_local_match" below.
elif self.configuration.alignment_points_method == 'RadialSearch':
shift_pixel, dev_r = Miscellaneous.search_local_match(alignment_point['reference_box'],
frame_mono_blurred, y_low + dy, y_high + dy, x_low + dx, x_high + dx,
self.configuration.alignment_points_search_width,
self.configuration.alignment_points_sampling_stride,
sub_pixel=self.configuration.alignment_points_local_search_subpixel)
# If a zero shift was returned after a search with radius>2, thie means that
# the search was not successfu.
success = len(dev_r)<=2 or shift_pixel!=[0, 0]
# Use the steepest descent search method.
elif self.configuration.alignment_points_method == 'SteepestDescent':
shift_pixel, dev_r = Miscellaneous.search_local_match_gradient(
alignment_point['reference_box'],
frame_mono_blurred, y_low + dy, y_high + dy, x_low + dx, x_high + dx,
self.configuration.alignment_points_search_width,
self.configuration.alignment_points_sampling_stride, self.dev_table)
success = len(dev_r)<=2 or shift_pixel!=[0, 0]
else:
raise NotSupportedError("The point shift computation method " +
self.configuration.alignment_points_method +
" is not implemented")
# Return the computed shift vector.
return shift_pixel, success
else:
# If no de-warping is computed, just return the zero vector.
return [0, 0], success
def show_alignment_points(self, image):
"""
Create an RGB version of a monochrome image and insert red crosses at all alignment
point locations. Draw green alignment point boxes and white alignment point patches.
:return: 8-bit RGB image with annotations.
"""
if len(image.shape) == 3:
color_image = image.astype(uint8)
else:
# Expand the monochrome reference frame to RGB
color_image = stack((image.astype(uint8),) * 3, -1)
# For all alignment boxes insert a color-coded cross.
cross_half_len = 5
for alignment_point in (self.alignment_points):
y_center = alignment_point['y']
x_center = alignment_point['x']
Miscellaneous.insert_cross(color_image, y_center,
x_center, cross_half_len, 'red')
box_y_low = max(alignment_point['box_y_low'], 0)
box_y_high = min(alignment_point['box_y_high'], image.shape[0]) - 1
box_x_low = max(alignment_point['box_x_low'], 0)
box_x_high = min(alignment_point['box_x_high'], image.shape[1]) - 1
for y in arange(box_y_low, box_y_high):
color_image[y, box_x_low] = [255, 255, 255]
color_image[y, box_x_high] = [255, 255, 255]
for x in arange(box_x_low, box_x_high):
color_image[box_y_low, x] = [255, 255, 255]
color_image[box_y_high, x] = [255, 255, 255]
patch_y_low = max(alignment_point['patch_y_low'], 0)
patch_y_high = min(alignment_point['patch_y_high'], image.shape[0]) - 1
patch_x_low = max(alignment_point['patch_x_low'], 0)
patch_x_high = min(alignment_point['patch_x_high'], image.shape[1]) - 1
for y in arange(patch_y_low, patch_y_high):
color_image[y, patch_x_low] = [0, int(
(255 + color_image[y, patch_x_low][1]) / 2.), 0]
color_image[y, patch_x_high] = [0, int(
(255 + color_image[y, patch_x_high][1]) / 2.), 0]
for x in arange(patch_x_low, patch_x_high):
color_image[patch_y_low, x] = [0, int(
(255 + color_image[patch_y_low, x][1]) / 2.), 0]
color_image[patch_y_high, x] = [0, int(
(255 + color_image[patch_y_high, x][1]) / 2.), 0]
return color_image
if __name__ == "__main__":
# Images can either be extracted from a video file or a batch of single photographs. Select
# the example for the test run.
type = 'video'
if type == 'image':
names = glob('Images/2012*.tif')
# names = glob.glob('Images/Moon_Tile-031*ap85_8b.tif')
# names = glob.glob('Images/Example-3*.jpg')
else:
names = 'Videos/short_video.avi'
print(names)
# Get configuration parameters.
configuration = Configuration()
configuration.initialize_configuration()
try:
frames = Frames(configuration, names, type=type)
print("Number of images read: " + str(frames.number))
print("Image shape: " + str(frames.shape))
except Error as e:
print("Error: " + e.message)
exit()
# Rank the frames by their overall local contrast.
rank_frames = RankFrames(frames, configuration)
start = time()
rank_frames.frame_score()
end = time()
print('Elapsed time in ranking images: {}'.format(end - start))
print("Index of maximum: " + str(rank_frames.frame_ranks_max_index))
print("Frame scores: " + str(rank_frames.frame_ranks))
print("Frame scores (sorted): " + str(
[rank_frames.frame_ranks[i] for i in rank_frames.quality_sorted_indices]))
print("Sorted index list: " + str(rank_frames.quality_sorted_indices))
# Initialize the frame alignment object.
align_frames = AlignFrames(frames, rank_frames, configuration)
if configuration.align_frames_mode == "Surface":
start = time()
# Select the local rectangular patch in the image where the L gradient is highest in both x
# and y direction. The scale factor specifies how much smaller the patch is compared to the
# whole image frame.
(y_low_opt, y_high_opt, x_low_opt, x_high_opt) = align_frames.compute_alignment_rect(
configuration.align_frames_rectangle_scale_factor)
end = time()
print('Elapsed time in computing optimal alignment rectangle: {}'.format(end - start))
print("optimal alignment rectangle, x_low: " + str(x_low_opt) + ", x_high: " + str(
x_high_opt) + ", y_low: " + str(y_low_opt) + ", y_high: " + str(y_high_opt))
reference_frame_with_alignment_points = frames.frames_mono(
align_frames.frame_ranks_max_index).copy()
reference_frame_with_alignment_points[y_low_opt,
x_low_opt:x_high_opt] = reference_frame_with_alignment_points[y_high_opt - 1,
x_low_opt:x_high_opt] = 255
reference_frame_with_alignment_points[y_low_opt:y_high_opt,
x_low_opt] = reference_frame_with_alignment_points[y_low_opt:y_high_opt,
x_high_opt - 1] = 255
# plt.imshow(reference_frame_with_alignment_points, cmap='Greys_r')
# plt.show()
# Align all frames globally relative to the frame with the highest score.
start = time()
align_frames.align_frames()
end = time()
print('Elapsed time in aligning all frames: {}'.format(end - start))
print("Frame shifts: " + str(align_frames.frame_shifts))
print("Intersection: " + str(align_frames.intersection_shape))
start = time()
# Compute the reference frame by averaging the best frames.
average = align_frames.average_frame()
# Initialize the AlignmentPoints object. This includes the computation of the average frame
# against which the alignment point shifts are measured.
alignment_points = AlignmentPoints(configuration, frames, rank_frames, align_frames)
end = time()
print('Elapsed time in computing reference frame: {}'.format(end - start))
print("Reference frame computed from the best " + str(
align_frames.average_frame_number) + " frames.")
# plt.imshow(align_frames.mean_frame, cmap='Greys_r')
# plt.show()
# Create alignment points, and show alignment point boxes and patches.
alignment_points.create_ap_grid()
print("Number of alignment points created: " + str(len(alignment_points.alignment_points)) +
", number of dropped aps (dim): " + str(
alignment_points.alignment_points_dropped_dim) +
", number of dropped aps (structure): " + str(
alignment_points.alignment_points_dropped_structure))
color_image = alignment_points.show_alignment_points(average)
plt.imshow(color_image)
plt.show()
# For each alignment point rank frames by their quality.
start = time()
alignment_points.compute_frame_qualities()
end = time()
print('Elapsed time in ranking frames for every alignment point: {}'.format(end - start))
y_low = 490
y_high = 570
x_low = 880
x_high = 960
found_ap_list = alignment_points.find_alignment_points(y_low, y_high, x_low, x_high)
print("Removing alignment points between bounds " + str(y_low) + " <= y <= " + str(y_high) +
", " + str(x_low) + " <= x <= " + str(x_high) + ":")
for ap in found_ap_list:
print("y: " + str(ap['y']) + ", x: " + str(ap['x']))
alignment_points.remove_alignment_points(found_ap_list)
y_new = 530
x_new = 920
half_box_width_new = 40
half_patch_width_new = 50
num_pixels_y = average.shape[0]
num_pixels_x = average.shape[1]
alignment_points.alignment_points.append(
alignment_points.new_alignment_point(y_new, x_new, False, False, False, False))
print("Added alignment point at y: " + str(y_new) + ", x: " + str(x_new) + ", box size: "
+ str(2 * half_box_width_new) + ", patch size: " + str(2 * half_patch_width_new))
# Show updated alignment point boxes and patches.
print("Number of alignment points created: " + str(len(alignment_points.alignment_points)) +
", number of dropped aps (dim): " + str(alignment_points.alignment_points_dropped_dim) +
", number of dropped aps (structure): " + str(
alignment_points.alignment_points_dropped_structure))
color_image = alignment_points.show_alignment_points(average)
plt.imshow(color_image)
plt.show()
|