1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
|
# -*- coding: utf-8; -*-
"""
Copyright (c) 2018 Rolf Hempel, rolf6419@gmx.de
This file is part of the PlanetarySystemStacker tool (PSS).
https://github.com/Rolf-Hempel/PlanetarySystemStacker
PSS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PSS. If not, see <http://www.gnu.org/licenses/>.
"""
from glob import glob
from math import ceil
from os import path, remove, listdir, stat
from os.path import splitext
from pathlib import Path
from time import time
from PyQt5 import QtCore
from astropy.io import fits
from cv2 import imread, VideoCapture, CAP_PROP_FRAME_COUNT, cvtColor, COLOR_RGB2GRAY, \
COLOR_BGR2RGB, COLOR_BayerGB2BGR, COLOR_BayerBG2BGR, THRESH_TOZERO, threshold, \
GaussianBlur, Laplacian, CV_32F, COLOR_RGB2BGR, imwrite, convertScaleAbs, CAP_PROP_POS_FRAMES, \
IMREAD_UNCHANGED, flip, COLOR_GRAY2RGB, COLOR_BayerRG2BGR, COLOR_BayerGR2BGR, \
COLOR_BayerRG2BGR_VNG, COLOR_BayerGR2BGR_VNG, COLOR_BayerGB2BGR_VNG, COLOR_BayerBG2BGR_VNG, \
COLOR_BayerRG2BGR_EA, COLOR_BayerGR2BGR_EA, COLOR_BayerGB2BGR_EA, COLOR_BayerBG2BGR_EA
from cv2 import mean as cv_mean
from numpy import max as np_max
from numpy import min as np_min
from numpy import sum as np_sum
from numpy import uint8, uint16, int32, float32, clip, zeros, float64, where, average, moveaxis, \
unravel_index, ndarray
import ser_parser
from configuration import Configuration
from exceptions import TypeError, ShapeError, ArgumentError, WrongOrderingError, Error, \
InternalError
from frames_old import FramesOld
def debayer_frame(frame_in, debayer_pattern='No change', debayer_method='Bilinear', BGR_input=False):
"""
Process a given input frame "frame_in", either containing one layer (B/W) or three layers
(color) into an output frame "frame_out" as specified by the parameter "debayer_pattern".
The rules for this transformation are:
- If the "debayer_pattern" is "No change", the input frame is not changed, i.e. the
output frame is identical to the input frame. The same applies if the input frame is of type
"B/W" and the "debayer_pattern" is "Grayscale".
- If the input frame is of type "color" and "debayer_pattern" is "Grayscale", the RGB / BGR
image is converted into a B/W one.
- If the input frame is of type "color", the "debayer_pattern" is "BGR" and "BGR_input" is
'False', the "B" and "R" channels are exchanged. The same happens if "debayer_pattern" is "RGB"
and "BGR_input" is 'True'. For the other two combinations the channels are not exchanged.
- If the input frame is of type "Grayscale" and "debayer_pattern" is "RGB" or "BGR", the result
is a three-channel RGB / BGR image where all channels are the same.
- If a non-standard "debayer_pattern" (i.e. "RGGB", "GRBG", "GBRG", "BGGR") is specified and the
input is a B/W image, decode the image using the given Bayer pattern. If the input image is
of type "color" (three-channel RGB or BGR), first convert it into grayscale and then decode
the image as in the B/W case. In both cases the result is a three-channel RGB color image.
:param frame_in: Input image, either 2D (grayscale) or 3D (color). The type is either 8 or 16
bit unsigned int.
:param debayer_pattern: Pattern used to convert the input image into the output image. One out
of 'Grayscale', 'RGB', 'Force Bayer RGGB', 'Force Bayer GRBG',
'Force Bayer GBRG', 'Force Bayer BGGR'
:param BGR_input: If 'True', a color input frame is interpreted as 'BGR'; Otherwise as 'RGB'.
OpenCV reads color images in 'BGR' format.
:return: frame_out: output image (see above)
"""
if debayer_method == 'Bilinear':
debayer_codes = {
'Force Bayer RGGB': COLOR_BayerRG2BGR,
'Force Bayer GRBG': COLOR_BayerGR2BGR,
'Force Bayer GBRG': COLOR_BayerGB2BGR,
'Force Bayer BGGR': COLOR_BayerBG2BGR
}
if debayer_method == 'Variable Number of Gradients':
debayer_codes = {
'Force Bayer RGGB': COLOR_BayerRG2BGR_VNG,
'Force Bayer GRBG': COLOR_BayerGR2BGR_VNG,
'Force Bayer GBRG': COLOR_BayerGB2BGR_VNG,
'Force Bayer BGGR': COLOR_BayerBG2BGR_VNG
}
if debayer_method == 'Edge Aware':
debayer_codes = {
'Force Bayer RGGB': COLOR_BayerRG2BGR_EA,
'Force Bayer GRBG': COLOR_BayerGR2BGR_EA,
'Force Bayer GBRG': COLOR_BayerGB2BGR_EA,
'Force Bayer BGGR': COLOR_BayerBG2BGR_EA
}
type_in = frame_in.dtype
if type_in != uint8 and type_in != uint16:
raise Exception("Image type " + str(type_in) + " not supported")
# If the input frame is 3D, it represents a color image.
color_in = len(frame_in.shape) == 3
# Case color input image.
if color_in:
# Three-channel input, interpret as RGB color and leave it unchanged.
if debayer_pattern == 'No change' or debayer_pattern == 'RGB' and not BGR_input or \
debayer_pattern == 'BGR' and BGR_input:
frame_out = frame_in
# If the Bayer pattern and the BGR_input flag don't match, flip channels.
elif debayer_pattern == 'RGB' and BGR_input or debayer_pattern == 'BGR' and not BGR_input:
frame_out = cvtColor(frame_in, COLOR_BGR2RGB)
# Three-channel (color) input, reduce to two-channel (B/W) image.
elif debayer_pattern in ['Grayscale', 'Force Bayer RGGB', 'Force Bayer GRBG',
'Force Bayer GBRG', 'Force Bayer BGGR']:
frame_2D = cvtColor(frame_in, COLOR_RGB2GRAY)
# Output is B/W image.
if debayer_pattern == 'Grayscale':
frame_out = frame_2D
# Decode the B/W image into a color image using a Bayer pattern.
else:
frame_out = cvtColor(frame_2D, debayer_codes[debayer_pattern])
# Invalid debayer pattern specified.
else:
raise Exception("Debayer pattern " + debayer_pattern + " not supported")
# Case B/W input image.
else:
# Two-channel input, interpret as B/W image and leave it unchanged.
if debayer_pattern in ['No change', 'Grayscale']:
frame_out = frame_in
# Transform the one-channel B/W image in an RGB one where all three channels are the same.
elif debayer_pattern == 'RGB' or debayer_pattern == 'BGR':
frame_out = cvtColor(frame_in, COLOR_GRAY2RGB)
# Non-standard Bayer pattern, decode into color image.
elif debayer_pattern in ['Force Bayer RGGB', 'Force Bayer GRBG',
'Force Bayer GBRG', 'Force Bayer BGGR']:
frame_out = cvtColor(frame_in, debayer_codes[debayer_pattern])
# Invalid Bayer pattern specified.
else:
raise Exception("Debayer pattern " + debayer_pattern + " not supported")
# Return the decoded image.
return frame_out
def detect_bayer(frame, frames_bayer_max_noise_diff_green, frames_bayer_min_distance_from_blue,
frames_color_difference_threshold):
"""
Detect a Bayer pattern in a grayscale image. The assumption is that statistically the
brightness differences at adjacent pixels are greater than those at neighboring pixels of the
same color. It is also assumed that the noise in the blue channel is greater than in the red
and green channels.
Acknowledgements: This method uses an algorithm developed by Chris Garry for his 'PIPP'
software package.
:param frame: Numpy array (2D or 3D) of type uint8 or uint16 containing the image data.
:param frames_bayer_max_noise_diff_green: Maximum allowed difference in noise levels at the two
green pixels of the bayer matrix in percent of value
at the blue pixel.
:param frames_bayer_min_distance_from_blue: Maximum allowed noise level at Bayer matrix pixels
other than blue, in percent of value at the blue
pixel.
:param frames_color_difference_threshold: If the brightness values of all three color channels
of a three-channel frame at all pixels do not differ
by more than this value, the frame is regarded as
monochrome.
:return: If the input frame is a (3D) color image, 'Color' is returned.
If the input frame is a (2D or 3D) grayscale image without any detectable Bayer
pattern, 'Grayscale' is returned.
If a Bayer pattern is detected in the grayscale image, its type (one out of
'Force Bayer BGGR', 'Force Bayer GBRG', 'Force Bayer GRBG', 'Force Bayer RGGB') is
returned.
If none of the above is true, 'None' is returned.
"""
# Frames are stored as 3D arrays. Test if all three color levels are the same.
if len(frame.shape) == 3 and frame.shape[2] == 3:
first_minus_second = np_max(
abs(frame[:, :, 0].astype(int32) - frame[:, :, 1].astype(int32)))
first_minus_third = np_max(abs(frame[:, :, 0].astype(int32) - frame[:, :, 2].astype(int32)))
# print("first_minus_second: " + str(first_minus_second) + ", first_minus_third: " + str(
# first_minus_third))
# The color levels differ more than some threshold. Probably color image.
if first_minus_second > frames_color_difference_threshold \
or first_minus_third > frames_color_difference_threshold:
return 'Color'
# All three levels are the same, convert to 2D grayscale image and proceed.
else:
frame_grayscale = cvtColor(frame, COLOR_RGB2GRAY).astype(int32)
# Input frame is already grayscale.
elif len(frame.shape) == 2:
frame_grayscale = frame.astype(int32)
# Neither a color image nor grayscale.
else:
return 'None'
try:
height, width = frame_grayscale.shape
analysis_height = height - height % 2
analysis_width = width - width % 2
# Look for signs of a bayer pattern.
adjacent_pixel_diffs = np_sum(
abs(frame_grayscale[:, 0:analysis_width - 2] - frame_grayscale[:,
1:analysis_width - 1]))
apart_pixel_diffs = np_sum(
abs(frame_grayscale[:, 0:analysis_width - 2] - frame_grayscale[:, 2:analysis_width]))
# Pixels are more like the pixels next to them than they are like the pixels 2 pixel away.
# This indicates that there is no bayer pattern present
if apart_pixel_diffs > adjacent_pixel_diffs:
return 'Grayscale'
# Analyse noise characteristics of image to guess at positions of R, G and B in bayer pattern.
noise_level = ndarray((2, 2), dtype=float)
for y in range(2):
for x in range(2):
# Apply a five point (Poisson) stencil and sum over all points.
neighbors = (frame_grayscale[y:analysis_height - 6 + y:2,
2 + x:analysis_width - 4 + x:2] +
frame_grayscale[4 + y:analysis_height - 2 + y:2,
2 + x:analysis_width - 4 + x:2] +
frame_grayscale[2 + y:analysis_height - 4 + y:2,
x:analysis_width - 6 + x:2] +
frame_grayscale[2 + y:analysis_height - 4 + y:2,
4 + x:analysis_width - 2 + x:2]) / 4.
noise_level[y, x] = np_sum(
abs(frame_grayscale[2 + y:analysis_height - 4 + y:2,
2 + x:analysis_width - 4 + x:2] - neighbors))
# Normalize noise levels.
max_y, max_x = unravel_index(noise_level.argmax(), noise_level.shape)
max_noise_level = noise_level[max_y, max_x]
if max_noise_level > 0.:
noise_level = noise_level * (100. / max_noise_level)
# Zero noise - cannot detect bayer pattern.
else:
return 'Grayscale'
# The location of the maximum noise level is interpreted as the blue channel.
# It is in position (0, 0).
if (max_y, max_x) == (0, 0):
# The noise levels of the green pixels are too different for this to be a bayer pattern.
if abs(noise_level[0, 1] - noise_level[1, 0]) > frames_bayer_max_noise_diff_green:
return 'Grayscale'
# Noise levels of the other pixels are too close to the blue values for this to definitely
# be a bayer pattern.
if noise_level[0, 1] > frames_bayer_min_distance_from_blue or noise_level[
1, 0] > frames_bayer_min_distance_from_blue or noise_level[
1, 1] > frames_bayer_min_distance_from_blue:
return 'Grayscale'
# Bayer pattern "BGGR" found.
return 'Force Bayer BGGR'
# Case "GBRG":
elif (max_y, max_x) == (0, 1):
if abs(noise_level[0, 0] - noise_level[1, 1]) > frames_bayer_max_noise_diff_green:
return 'Grayscale'
if noise_level[0, 0] > frames_bayer_min_distance_from_blue or noise_level[
1, 0] > frames_bayer_min_distance_from_blue or noise_level[
1, 1] > frames_bayer_min_distance_from_blue:
return 'Grayscale'
# Bayer pattern "GBRG" found.
return 'Force Bayer GBRG'
# Case "GRBG":
elif (max_y, max_x) == (1, 0):
if abs(noise_level[0, 0] - noise_level[1, 1]) > frames_bayer_max_noise_diff_green:
return 'Grayscale'
if noise_level[0, 0] > frames_bayer_min_distance_from_blue or noise_level[
0, 1] > frames_bayer_min_distance_from_blue or noise_level[
1, 1] > frames_bayer_min_distance_from_blue:
return 'Grayscale'
# Bayer pattern "GRBG" found.
return 'Force Bayer GRBG'
# Case "RGGB"
elif (max_y, max_x) == (1, 1):
if abs(noise_level[0, 1] - noise_level[1, 0]) > frames_bayer_max_noise_diff_green:
return 'Grayscale'
if noise_level[0, 0] > frames_bayer_min_distance_from_blue or noise_level[
0, 1] > frames_bayer_min_distance_from_blue or noise_level[
1, 0] > frames_bayer_min_distance_from_blue:
return 'Grayscale'
# Bayer pattern "RGGB" found.
return 'Force Bayer RGGB'
# Theoretically this cannot be reached.
return 'None'
# If something bad has happened, return 'None'.
except Exception as e:
# print("An Exception occurred: " + str(e))
return 'None'
def detect_rgb_bgr(frame):
"""
Given a color (3D) frame, find out if the channels are arranged as 'RGB' or 'BGR'. To this end,
the noise level of the first and third channels are compared. The channel with the highest noise
level is interpreted as the blue channel.
:param frame: Numpy array (3D) of type uint8 or uint16 containing the image data.
:return: Either 'RGB' or 'BGR', depending on whether the noise in the third or first channel is
highest. If an error occurs, 'None' is returned.
"""
# Not a color (3D) frame:
if len(frame.shape) != 3:
return 'None'
try:
height, width = frame.shape[0:2]
analysis_height = height - height % 2
analysis_width = width - width % 2
# Analyse noise characteristics of image to guess at positions of R, G and B in bayer pattern.
frame_int32 = frame.astype(int32)
noise_level = [0., 0., 0.]
for channel in [0, 2]:
# Apply a five point (Poisson) stencil and sum over all points.
neighbors = (frame_int32[0:analysis_height - 2, 1:analysis_width - 1, channel] +
frame_int32[2:analysis_height, 1:analysis_width - 1, channel] +
frame_int32[1:analysis_height - 1, 0:analysis_width - 2, channel] +
frame_int32[1:analysis_height - 1, 2:analysis_width, channel]) / 4.
noise_level[channel] = np_sum(
abs(frame_int32[1:analysis_height - 1, 1:analysis_width - 1, channel] - neighbors))
# print("noise level 0:" + str(noise_level[0]) + ", noise level 2:" + str(noise_level[2]))
if noise_level[0] > noise_level[2]:
return 'BGR'
else:
return 'RGB'
except Exception as e:
# print("An Exception occurred: " + str(e))
return 'None'
class VideoReader(object):
"""
The VideoReader deals with the import of frames from a video file. Frames can be read either
consecutively, or at an arbitrary frame index. Eventually, all common video types (such as .avi,
.mov, .mp4, .ser) should be supported.
"""
def __init__(self, configuration):
"""
Create the VideoReader object and initialize instance variables.
:param configuration: Configuration object with parameters
"""
self.configuration = configuration
self.last_read = None
self.last_frame_read = None
self.frame_count = None
self.shape = None
self.color = None
self.convert_to_grayscale = False
self.dtype = None
self.SERFile = False
self.shift_pixels = 0
self.bayer_option_selected = None
self.bayer_pattern = None
self.BGR_input = None
self.warn_message = None
def sanity_check(self, file_path):
"""
Performs a sanity check of input file.
:return: -
"""
if not path.isfile(file_path):
raise IOError("File does not exist")
elif stat(file_path).st_size == 0:
raise IOError("File is empty")
def open(self, file_path, bayer_option_selected='Auto detect color',
SER_16bit_shift_correction=True):
"""
Initialize the VideoReader object and return parameters with video metadata.
Throws an IOError if the video file format is not supported.
:param file_path: Full name of the video file.
:param bayer_option_selected: Bayer pattern, one out of: "Auto detect color", "Grayscale",
"RGB", "BGR", "Force Bayer RGGB", "Force Bayer GRBG",
"Force Bayer GBRG", "Force Bayer BGGR".
:param SER_16bit_shift_correction: If True and the frame type is 16bit, the video frames
are analyzed to find the number of unused high bits in
pixel data. In read operations data are shifted up by
this number of bits.
:return: (frame_count, color, dtype, shape) with
frame_count: Total number of frames in video.
color: True, if frames are in color; False otherwise.
dtype: Numpy type, either uint8 or uint16
shape: Tuple with the shape of a single frame; (num_px_y, num_px_x, 3) for color,
(num_px_y, num_px_x) for B/W.
shift_pixels: Number of unused (high) bits in pixel values. Frame data can be
left-shifted by this number without going into saturation.
"""
# Do sanity check
self.sanity_check(file_path)
# Check, if file has SER extension
self.SERFile = path.splitext(file_path)[1].lower() == '.ser'
# Check if input file is SER file
if self.SERFile:
try:
# Create the VideoCapture object.
self.cap = ser_parser.SERParser(file_path, SER_16bit_shift_correction)
self.shift_pixels = self.cap.shift_pixels
self.warn_message = self.cap.warn_message
# Read the first frame.
self.last_frame_read = self.cap.read_frame_raw(0)
# Look up video metadata.
self.frame_count = self.cap.frame_count
self.color_in = self.cap.color
self.BGR_input = False
self.dtype = self.cap.PixelDepthPerPlane
# Set the bayer pattern. In automatic mode, use the pattern encoded in the SER
# file header.
if bayer_option_selected == 'Auto detect color':
self.bayer_pattern = self.cap.header['ColorIDDecoded']
else:
self.bayer_pattern = bayer_option_selected
except:
raise IOError("Error in reading first video frame")
else:
try:
# Create the VideoCapture object.
self.cap = VideoCapture(file_path)
# Read the first frame.
ret, self.last_frame_read = self.cap.read()
if not ret:
raise IOError("Error in reading first video frame")
# Look up video metadata. Set "BGR_input" to 'True' because OpenCV reads color
# images in BGR channel ordering. R and B channels have to be swapped because
# PSS works with RGB color internally.
self.frame_count = int(self.cap.get(CAP_PROP_FRAME_COUNT))
self.color_in = (len(self.last_frame_read.shape) == 3)
self.BGR_input = True
self.dtype = self.last_frame_read.dtype
# Set the bayer pattern.
if bayer_option_selected == 'Auto detect color':
# Look for a Bayer pattern in the 2D or 3D data.
bayer_pattern_computed = detect_bayer(self.last_frame_read,
self.configuration.frames_bayer_max_noise_diff_green,
self.configuration.frames_bayer_min_distance_from_blue,
self.configuration.frames_color_difference_threshold)
# If the image was classified as 'Color', test the ordering of color channels.
if bayer_pattern_computed == 'Color':
# Analyze first frame to detect ordering of color channels. Note that the
# frame was read by OpenCV in BGR mode. Channels will be swapt later.
rgb_order = detect_rgb_bgr(self.last_frame_read)
if rgb_order == 'BGR':
self.bayer_pattern = 'RGB'
# print("Color channel ordering 'RGB' detected")
elif rgb_order == 'RGB':
self.bayer_pattern = 'BGR'
# print("Color channel ordering 'BGR' detected")
else:
self.bayer_pattern = 'RGB'
# print("No color channel ordering detected, apply 'RGB'")
elif bayer_pattern_computed == 'Grayscale':
self.bayer_pattern = 'Grayscale'
# print("Image has been found to be grayscale")
elif bayer_pattern_computed == 'None':
if self.color_in:
self.bayer_pattern = 'RGB'
# print("No Bayer pattern detected, apply 'RGB' because 3D")
else:
self.bayer_pattern = 'Grayscale'
# print("No Bayer pattern detected, apply 'Grayscale' because 2D")
else:
self.bayer_pattern = bayer_pattern_computed
# print("Bayer pattern " + bayer_pattern_computed + " detected")
# The user has selected a debayering mode explicitly.
else:
# Leave the pattern unchanged.
self.bayer_pattern = bayer_option_selected
except:
raise IOError("Error in reading first video frame. Try to convert the video with "
"PIPP into some standard format")
# Assign "last_read"
self.last_read = 0
# Convert the first frame read into the desired output format and set the metadata.
self.last_frame_read = debayer_frame(self.last_frame_read,
debayer_pattern=self.bayer_pattern,
debayer_method=self.configuration.frames_debayering_method,
BGR_input=self.BGR_input)
self.shape = self.last_frame_read.shape
self.color = (len(self.shape) == 3)
# Return the metadata.
return self.frame_count, self.color, self.dtype, self.shape, self.shift_pixels
def read_frame(self, index=None):
"""
Read a single frame from the video.
:param index: Frame index (optional). If no index is specified, the next frame is read.
:return: Numpy array containing the frame. For B/W, the shape is (num_px_y, num_px_x).
For a color video, it is (num_px_y, num_px_x, 3). The type is uint8 or uint16 for
8 or 16 bit resolution.
"""
# Check the index.
if index is None:
# Consecutive reading. Just increment the frame pointer.
self.last_read += 1
elif index == self.last_read:
# An index is the same as at last call, just return the last frame.
return self.last_frame_read
else:
# If it is the next frame after the one read last time, for AVI videos the frame pointer
# does not have to be set. The read_frame method of the "ser_parser" module always does
# a seek operation.
if not self.SERFile and index != self.last_read + 1:
self.cap.set(CAP_PROP_POS_FRAMES, index)
self.last_read = index
# A new frame has to be read. First check if the index is not out of bounds.
if 0 <= self.last_read < self.frame_count:
try:
# Read the next frame.
if self.SERFile:
self.last_frame_read = self.cap.read_frame_raw(self.last_read)
else:
ret, self.last_frame_read = self.cap.read()
if not ret:
raise IOError("Error in reading video frame, index: {0}. Try to convert the video with "
"PIPP into some standard format".format(index))
except:
raise IOError("Error in reading video frame, index: {0}. Try to convert the video with "
"PIPP into some standard format".format(index))
else:
raise ArgumentError("Error in reading video frame, index {0} is out of bounds".format(index))
# Convert the frame read into the desired output format.
self.last_frame_read = debayer_frame(self.last_frame_read,
debayer_pattern=self.bayer_pattern,
debayer_method=self.configuration.frames_debayering_method,
BGR_input=self.BGR_input)
return self.last_frame_read
def close(self):
"""
Close the VideoReader object.
:return:
"""
self.cap.release()
class ImageReader(object):
"""
The ImageReader deals with the import of frames from a list of single images. Frames can
be read either consecutively, or at an arbitrary frame index. It is assumed that the
lexicographic order of file names corresponds to their chronological order.
"""
def __init__(self, configuration):
"""
Create the ImageReader object and initialize instance variables.
:param configuration: Configuration object with parameters.
"""
self.configuration = configuration
self.opened = False
self.just_opened = False
self.last_read = None
self.last_frame_read = None
self.frame_count = None
self.shape = None
self.color = None
self.convert_to_grayscale = False
self.dtype = None
self.bayer_pattern = None
self.shift_pixels = 0
self.warn_message = None
def open(self, file_path_list, bayer_option_selected='Auto detect color'):
"""
Initialize the ImageReader object and return parameters with image metadata.
:param file_path_list: List with path names to the image files.
:param bayer_option_selected: Bayer pattern, one out of: "Auto detect color", "Grayscale",
"RGB", "BGR", "Force Bayer RGGB", "Force Bayer GRBG",
"Force Bayer GBRG", "Force Bayer BGGR".
This parameter is ignored for now.
:return: (frame_count, color, dtype, shape) with
frame_count: Total number of frames.
color: True, if frames are in color; False otherwise.
dtype: Numpy type, either uint8 or uint16
shape: Tuple with the shape of a single frame; (num_px_y, num_px_x, 3) for color,
(num_px_y, num_px_x) for B/W.
shift_pixels: Number of unused (high) bits in pixel values. Frame data can be
left-shifted by this number without going into saturation.
"""
self.file_path_list = file_path_list
self.bayer_option_selected = bayer_option_selected
self.bayer_pattern = bayer_option_selected
try:
self.frame_count = len(self.file_path_list)
self.last_frame_read = Frames.read_image(self.file_path_list[0])
if self.convert_to_grayscale:
self.last_frame_read = cvtColor(self.last_frame_read, COLOR_RGB2GRAY)
# Look up metadata.
self.last_read = 0
self.shape = self.last_frame_read.shape
self.color = (len(self.shape) == 3)
self.dtype = self.last_frame_read.dtype
except Exception as ex:
raise IOError("Reading first frame: " + str(ex))
self.opened = True
self.just_opened = True
# Return the metadata.
return self.frame_count, self.color, self.dtype, self.shape, self.shift_pixels
def read_frame(self, index=None):
"""
Read a single frame.
:param index: Frame index (optional). If no index is specified, the next frame is read.
At the first invocation, this is frame number 0.
:return: Numpy array containing the frame. For B/W, the shape is (num_px_y, num_px_x).
For a color video, it is (num_px_y, num_px_x, 3). The type is uint8 or uint16 for
8 or 16 bit resolution.
"""
if not self.opened:
raise WrongOrderingError(
"Error: Attempt to read image file frame before opening ImageReader")
# Special case: first call after initialization.
if self.just_opened:
self.just_opened = False
# Frame 0 has been read during initialization. Not necessary to read it again.
if index is None or index == 0:
return self.last_frame_read
# General case: not the first call.
else:
# Consecutive reading. Just increment the frame index.
if index is None:
self.last_read += 1
# An index is specified explicitly. If it is the same as at last call, just return the
# last frame.
elif index == self.last_read:
return self.last_frame_read
# Some other frame was specified explicitly.
else:
self.last_read = index
# A new frame has to be read. First check if the index is not out of bounds.
if 0 <= self.last_read < self.frame_count:
try:
self.last_frame_read = Frames.read_image(self.file_path_list[self.last_read])
if self.convert_to_grayscale:
self.last_frame_read = cvtColor(self.last_frame_read, COLOR_RGB2GRAY)
except Exception as ex:
raise IOError("Reading image with index: " + str(index) + ", " + str(ex))
else:
raise ArgumentError("Reading image with index: " + str(index) +
", index is out of bounds")
# Check if the metadata match.
shape = self.last_frame_read.shape
color = (len(shape) == 3)
# Check if all images have matching metadata.
if color != self.color:
raise ShapeError(
"Mixing grayscale and color images not supported, index: " + str(index))
elif shape != self.shape:
raise ShapeError("Images have different size, index: " + str(index))
elif self.last_frame_read.dtype != self.dtype:
raise TypeError("Images have different type, index: " + str(index))
return self.last_frame_read
def close(self):
"""
Close the ImageReader object.
:return:
"""
self.opened = False
class Calibration(QtCore.QObject):
"""
This class performs the dark / flat calibration of frames. Master frames are created from
video files or image directories. Flats, darks and the stacking input must match in terms of
types, shapes and color modes.
"""
report_calibration_error_signal = QtCore.pyqtSignal(str)
def __init__(self, configuration):
"""
Initialize the object for dark / flat calibration.
:param configuration: Configuration object with parameters
"""
super(Calibration, self).__init__()
self.configuration = configuration
self.warn_message = None
self.reset_masters()
def reset_masters(self):
"""
De-activate master dark and flat frames.
:return: -
"""
self.reset_master_dark()
self.reset_master_flat()
self.color = None
self.shape = None
self.dtype = None
def reset_master_dark(self):
"""
De-activate a master dark frame.
:return: -
"""
self.master_dark_frame = None
self.master_dark_frame_adapted = None
self.high_value = None
self.dark_color = None
self.dark_dtype = None
self.dark_shape = None
def reset_master_flat(self):
"""
De-activate a master flat frame.
:return: -
"""
self.master_flat_frame = None
self.inverse_master_flat_frame = None
self.flat_color = None
self.flat_dtype = None
self.flat_shape = None
def create_master(self, master_name, output_dtype=uint16):
"""
Create a master frame by averaging a number of video frames or still images.
:param master_name: Path name of video file or image directory.
:param output_dtype: Data type of resulting master frame, one of:
- uint8 (high value = 255)
- uint16 (high value = 65535)
default: uint16
:return: Master frame
"""
# Case video file:
if Path(master_name).is_file():
extension = Path(master_name).suffix
if extension.lower() in ('.avi', '.mov', '.mp4', '.ser'):
reader = VideoReader(self.configuration)
# Switch off dynamic range correction for 16bit SER files.
frame_count, input_color, input_dtype, input_shape, shift_pixels = reader.open(master_name,
bayer_option_selected=self.configuration.frames_debayering_default,
SER_16bit_shift_correction=False)
self.warn_message = reader.warn_message
self.configuration.hidden_parameters_current_dir = str(Path(master_name).parent)
else:
raise InternalError(
"Unsupported file type '" + extension + "' specified for master frame "
"construction")
# Case image directory:
elif Path(master_name).is_dir():
names = [path.join(master_name, name) for name in listdir(master_name)]
reader = ImageReader(self.configuration)
frame_count, input_color, input_dtype, input_shape, shift_pixels = reader.open(names,
bayer_option_selected=self.configuration.frames_debayering_default)
self.configuration.hidden_parameters_current_dir = str(master_name)
else:
raise InternalError("Cannot decide if input file is video or image directory")
# Sum all frames in a 64bit buffer.
master_frame_64 = zeros(input_shape, float64)
for index in range(frame_count):
master_frame_64 += reader.read_frame(index)
# Return the average frame in the format specified.
if output_dtype == input_dtype:
return (master_frame_64 / frame_count).astype(output_dtype)
elif output_dtype == uint8 and input_dtype == uint16:
factor = 1. / (frame_count * 256)
return (master_frame_64 * factor).astype(output_dtype)
elif output_dtype == uint16 and input_dtype == uint8:
factor = 256. / frame_count
return (master_frame_64 * factor).astype(output_dtype)
else:
raise ArgumentError("Cannot convert dtype from " + str(input_dtype) + " to " +
str(output_dtype))
def create_master_dark(self, dark_name, load_from_file=False):
"""
Create a master dark image, or read it from a file.
:param dark_name: If a new master frame is to be created, path name of video file or image
directory. Otherwise the file name (Tiff or Fits) of the master frame.
:param load_from_file: True, if to be loaded from file. False, if to be created anew.
:return: -
"""
# Reset a master dark frame if previously allocated.
self.reset_master_dark()
# Create the master frame or read it from a file.
if load_from_file:
try:
self.master_dark_frame = Frames.read_image(dark_name)
except Exception as e:
self.report_calibration_error_signal.emit("Error: " + str(e))
return
if self.master_dark_frame.dtype == uint8:
self.master_dark_frame = (self.master_dark_frame * 256).astype(uint16)
else:
self.master_dark_frame = self.create_master(dark_name, output_dtype=uint16)
self.shape = self.dark_shape = self.master_dark_frame.shape
self.color = self.dark_color = (len(self.dark_shape) == 3)
self.dark_dtype = self.master_dark_frame.dtype
# If a flat frame has been processed already, check for consistency. If master frames do not
# match, remove the master flat.
if self.inverse_master_flat_frame is not None:
if self.dark_color != self.flat_color or self.dark_shape != self.flat_shape:
self.reset_master_flat()
# Send a message to the main GUI indicating that a non-matching master flat is
# removed.
self.report_calibration_error_signal.emit(
"A non-matching master flat was de-activated")
def load_master_dark(self, dark_name):
"""
Read a master dark frame from disk and initialize its metadata.
:param dark_name: Path name of master dark frame (type TIFF)
:return: -
"""
self.create_master_dark(dark_name, load_from_file=True)
def create_master_flat(self, flat_name, load_from_file=False):
"""
Create a master flat image, or read it from a file.
:param flat_name: If a new master frame is to be created, path name of video file or image
directory. Otherwise the file name (Tiff or Fits) of the master frame.
:param load_from_file: True, if to be loaded from file. False, if to be created anew.
:return: -
"""
# Reset a master flat frame if previously allocated.
self.reset_master_flat()
# Create the master frame or read it from a file.
if load_from_file:
try:
self.master_flat_frame = Frames.read_image(flat_name)
except Exception as e:
self.report_calibration_error_signal.emit("Error: " + str(e))
return
if self.master_flat_frame.dtype == uint8:
self.master_flat_frame = (self.master_flat_frame * 256).astype(uint16)
else:
self.master_flat_frame = self.create_master(flat_name, output_dtype=uint16)
self.shape = self.flat_shape = self.master_flat_frame.shape
self.color = self.flat_color = (len(self.flat_shape) == 3)
self.flat_dtype = self.master_flat_frame.dtype
# If a dark frame has been processed already, check for consistency. If master frames do not
# match, remove the master dark.
if self.master_dark_frame is not None:
if self.dark_color != self.flat_color or self.dark_shape != self.flat_shape:
self.reset_master_dark()
# Send a message to the main GUI indicating that a non-matching master dark is
# removed.
self.report_calibration_error_signal.emit(
"A non-matching master dark was de-activated")
average_flat_frame = average(self.master_flat_frame).astype(uint16)
# If a new flat frame is to be constructed, apply a dark frame (if available).
if not load_from_file:
if self.master_dark_frame is not None:
# If there is a matching dark frame, use it to correct the flat frame. Avoid zeros
# in places where darks and flats are the same (hot pixels??).
self.master_flat_frame = where(self.master_flat_frame > self.master_dark_frame,
self.master_flat_frame - self.master_dark_frame,
average_flat_frame)
# Compute the inverse master flat (float32) so that its entries are close to one.
if average_flat_frame > 0:
self.inverse_master_flat_frame = (average_flat_frame / self.master_flat_frame).astype(
float32)
else:
self.reset_master_flat()
raise InternalError("Invalid input for flat frame computation")
def load_master_flat(self, flat_name):
"""
Read a master flat frame from disk and initialize its metadata.
:param flat_name: Path name of master flat frame (type TIFF)
:return: -
"""
try:
self.create_master_flat(flat_name, load_from_file=True)
# Send a signal to the main GUI and trigger error message printing there.
except Error as e:
self.report_calibration_error_signal.emit(
"Error in loading master flat: " + str(e) + ", flat correction de-activated")
def flats_darks_match(self, color, shape):
"""
Check if the master flat / master dark match frame attributes.
:param color: True, if frames are in color; False otherwise.
:param shape: Tuple with the shape of a single frame; (num_px_y, num_px_x, 3) for color,
(num_px_y, num_px_x) for B/W.
:return: True, if attributes match; False otherwise.
"""
return color == self.color and shape == self.shape
def adapt_dark_frame(self, frame_dtype, shift_pixels):
"""
Adapt the type of the master dark frame to the type of frames to be corrected.
:param frame_dtype: Dtype of frames to be corrected. Either uint8 or uint16.
:param shift_pixels: Number of unused (high) bits in pixel values. Frame data are
left-shifted by this number so that they fill the full dynamic range.
Since the dark frame is subtracted from all frames, it must be shifted
by the same number of bits before being applied.
This correction is only relevant for 16bit SER videos.
:return: -
"""
self.dtype = frame_dtype
if self.master_dark_frame is None:
self.high_value = None
self.master_dark_frame_adapted = None
elif frame_dtype == uint8:
self.high_value = 255
self.master_dark_frame_adapted = (self.master_dark_frame / 256.).astype(uint8)
elif frame_dtype == uint16:
self.high_value = 65535
if shift_pixels:
self.master_dark_frame_adapted = self.master_dark_frame << shift_pixels
else:
self.master_dark_frame_adapted = self.master_dark_frame
def correct(self, frame):
"""
Correct a stacking frame using a master dark and / or a master flat.
:param frame: Frame to be stacked.
:return: Frame corrected for dark/flat, same type as input frame.
"""
# Case neither darks nor flats are available:
if self.master_dark_frame_adapted is None and self.inverse_master_flat_frame is None:
return frame
# Case only flats are available:
elif self.master_dark_frame_adapted is None:
return (frame * self.inverse_master_flat_frame).astype(self.dtype)
# Case only darks are available:
elif self.inverse_master_flat_frame is None:
return where(frame > self.master_dark_frame_adapted,
frame - self.master_dark_frame_adapted, 0)
# Case both darks and flats are available:
else:
return clip(
(frame - self.master_dark_frame_adapted) * self.inverse_master_flat_frame,
0., self.high_value).astype(self.dtype)
class Frames(object):
"""
This object stores the image data of all frames. Four versions of the original frames are
used throughout the data processing workflow. They are (re-)used in the folliwing phases:
1. Original (color) frames, type: uint8 / uint16
- Frame stacking ("stack_frames.stack_frames")
2. Monochrome version of 1., type: uint8 / uint16
- Computing the average frame (only average frame subset, "align_frames.average_frame")
3. Gaussian blur added to 2., type: type: uint16
- Aligning all frames ("align_frames.align_frames")
- Frame stacking ("stack_frames.stack_frames")
4. Down-sampled Laplacian of 3., type: uint8
- Overall image ranking ("rank_frames.frame_score")
- Ranking frames at alignment points("alignment_points.compute_frame_qualities")
Buffering at various levels is available. It is controlled with four flags set at object
initialization time.
A complete PSS execution processes all "n" frames in four complete passes. Additionally,
in module "align_frames" there are some extra accesses:
1. In "rank_frames.frame_score": Access to all "Laplacians of Gaussian" (frame 0 to n-1)
In "align_frames.select_alignment_rect and .align_frames": Access to the Gaussian of the
best frame.
2. In "align_frames.align_frames": Access to all Gaussians (frame 0 to n-1)
In "align_frames.average_frame": Access to the monochrome frames of the best images for
averaging
3. In "alignment_points.compute_frame_qualities": Access to all "Laplacians of Gaussian"
(frame 0 to n-1)
4. In "stack_frames.stack_frames": Access to all frames + Gaussians (frame 0 to n-1)
"""
def __init__(self, configuration, names, type='video', bayer_option_selected="Auto detect color",
calibration=None, progress_signal=None, buffering_level=2):
"""
Initialize the Frame object, and read all images. Images can be stored in a video file or
as single images in a directory.
:param configuration: Configuration object with parameters
:param names: In case "video": name of the video file. In case "image": list of names for
all images.
:param type: Either "video" or "image".
:param bayer_option_selected: Bayer pattern, one out of: "Auto detect color", "Grayscale",
"RGB", "BGR", "Force Bayer RGGB", "Force Bayer GRBG",
"Force Bayer GBRG", "Force Bayer BGGR".
:param calibration: (Optional) calibration object for darks/flats correction.
:param progress_signal: Either None (no progress signalling), or a signal with the signature
(str, int) with the current activity (str) and the progress in
percent (int).
:param buffering_level: Level of buffering for original frames and image variants.
"""
self.configuration = configuration
self.warn_message = None
self.names = names
self.calibration = calibration
self.progress_signal = progress_signal
self.type = type
self.bayer_pattern = None
self.bayer_option_selected = bayer_option_selected
self.shift_pixels = None
self.buffer_original = None
self.buffer_monochrome = None
self.buffer_gaussian = None
self.buffer_laplacian = None
self.set_buffering(buffering_level)
# In non-buffered mode, the index of the image just read/computed is stored for re-use.
self.original_available = None
self.original_available_index = -1
self.monochrome_available = None
self.monochrome_available_index = -1
self.gaussian_available = None
self.gaussian_available_index = -1
self.laplacian_available = None
self.laplacian_available_index = None
# Set a flag that no monochrome image has been computed before.
self.first_monochrome = True
# Initialize the list of original frames.
self.frames_original = None
# Initialize index translation flag.
self.index_translation_active = False
# Compute the scaling value for Laplacian computation.
self.alpha = 1. / 256.
# Initialize and open the reader object.
if self.type == 'image':
self.reader = ImageReader(self.configuration)
elif self.type == 'video':
self.reader = VideoReader(self.configuration)
else:
raise TypeError("Image type " + self.type + " not supported")
self.number, self.color, self.dt0, self.shape, self.shift_pixels = self.reader.open(self.names,
bayer_option_selected=self.bayer_option_selected)
self.warn_message = self.reader.warn_message
# Look up the Bayer pattern the reader has identified.
self.bayer_pattern = self.reader.bayer_pattern
# Set the depth value of all images to either 16 or 8 bits.
if self.dt0 == 'uint16':
self.depth = 16
elif self.dt0 == 'uint8':
self.depth = 8
else:
raise TypeError("Frame type " + str(self.dt0) + " not supported")
# Check if the darks / flats of the calibration object match the current reader.
if self.calibration:
self.calibration_matches = self.calibration.flats_darks_match(self.color, self.shape)
# If there are matching darks or flats, adapt their type to the current frame type.
if self.calibration_matches:
self.calibration.adapt_dark_frame(self.dt0, self.shift_pixels)
else:
self.calibration_matches = False
# Initialize an index translation list which is used later to exclude a subset of indices
# in the stacking workflow. Initially, all indices are included.
self.number_original = self.number
self.index_translation = [item for item in range(self.number_original)]
self.index_included = [True] * self.number_original
# Initialize lists of monochrome frames (with and without Gaussian blur) and their
# Laplacians.
colors = ['red', 'green', 'blue', 'panchromatic']
if self.configuration.frames_mono_channel in colors:
self.color_index = colors.index(self.configuration.frames_mono_channel)
else:
raise ArgumentError("Invalid color selected for channel extraction")
self.frames_monochrome = [None] * self.number_original
self.frames_monochrome_blurred = [None] *self.number_original
self.frames_monochrome_blurred_laplacian = [None] *self.number_original
if self.configuration.frames_normalization:
self.frames_average_brightness = [None] *self.number_original
else:
self.frames_average_brightness = None
self.first_monochrome_index = None
self.used_alignment_points = None
def set_buffering(self, buffering_level):
"""
Set the buffering flags for original image data and its variants depending on the buffering
level selected.
:param buffering_level: Level of buffering for image data and variants.
:return: -
"""
self.buffer_original, self.buffer_monochrome, self.buffer_gaussian, self.buffer_laplacian =\
Frames.decide_buffering(buffering_level)
@staticmethod
def decide_buffering(buffering_level):
"""
Decide on the objects to be buffered, depending on "buffering_level" configuration
parameter. For each frame, four versions can be buffered or not:
buffer_original: If "True", read the original frame data only once, otherwise
read them again if required.
buffer_monochrome: If "True", compute the monochrome image only once, otherwise
compute it again if required.
buffer_gaussian: If "True", compute the gaussian-blurred image only once, otherwise
compute it again if required.
buffer_laplacian: If "True", compute the "Laplacian of Gaussian" only once, otherwise
compute it again if required.
:param buffering_level: Level of buffering for original frames and image variants.
:return: Tuple with four booleans defining for each image version if it is to be buffered or
not
"""
buffer_original = False
buffer_monochrome = False
buffer_gaussian = False
buffer_laplacian = False
if buffering_level > 0:
buffer_laplacian = True
if buffering_level > 1:
buffer_gaussian = True
if buffering_level > 2:
buffer_original = True
if buffering_level > 3:
buffer_monochrome = True
return buffer_original, buffer_monochrome, buffer_gaussian, buffer_laplacian
def compute_required_buffer_size(self, buffering_level):
"""
Compute the RAM required to store original images and their derivatives, and other objects
which scale with the image size.
Additional to the original images and their derivatives, the following large objects are
allocated during the workflow: mono color
calibration.master_dark_frame: pixels * colors (float32) 4 12
calibration.master_dark_frame_uint8: pixels * colors (uint8) 1 3
calibration.master_dark_frame_uint16: pixels * colors (uint16) 2 6
calibration.master_flat_frame: pixels * colors (float32) 4 12
align_frames.mean_frame: image pixels (int32) 4 4
align_frames.mean_frame_original: image pixels (int32) 4 4
alignment_points, reference boxes: < 2 * image pixels (int32) 8 8
alignment_points, stacking buffers: < 2 * image pixels * colors (float32) 8 24
stack_frames.stacked_image_buffer: image pixels * colors (float32) 4 12
stack_frames.number_single_frame_contributions: image pixels (int32) 4 4
stack_frames.sum_single_frame_weights: image pixels (float32) 4 4
stack_frames.averaged_background: image pixels * colors (float32) 4 12
stack_frames.stacked_image: image pixels * colors (uint16) 2 6
---------
Total (bytes / pixel): 53 111
:param buffering_level: Buffering level parameter.
:return: Number of required buffer space in bytes.
"""
# Compute the number of image pixels.
number_pixel = self.shape[0] * self.shape[1]
# Compute the size of a monochrome image in bytes.
image_size_monochrome_bytes = number_pixel * self.depth / 8
# Compute the size of an original image in bytes.
if self.color:
image_size_bytes = 3 * image_size_monochrome_bytes
else:
image_size_bytes = image_size_monochrome_bytes
# Compute the size of the monochrome images with Gaussian blur added in bytes.
image_size_gaussian_bytes = number_pixel * 2
# Compute the size of a "Laplacian of Gaussian" in bytes. Remember that it is down-sampled.
image_size_laplacian_bytes = number_pixel / \
self.configuration.align_frames_sampling_stride ** 2
# Compute the buffer space per image, based on the buffering level.
buffer_original, buffer_monochrome, buffer_gaussian, buffer_laplacian = \
Frames.decide_buffering(buffering_level)
buffer_per_image = 0
if buffer_original:
buffer_per_image += image_size_bytes
if buffer_monochrome:
buffer_per_image += image_size_monochrome_bytes
if buffer_gaussian:
buffer_per_image += image_size_gaussian_bytes
if buffer_laplacian:
buffer_per_image += image_size_laplacian_bytes
# Multiply with the total number of frames.
buffer_for_all_images = buffer_per_image * self.number_original
# Compute the size of additional workspace objects allocated during the workflow. For the
# details see the comment block at the beginning of this method.
if self.color:
buffer_additional_workspace = number_pixel * 111
else:
buffer_additional_workspace = number_pixel * 53
# Return the total buffer space required.
return (buffer_for_all_images + buffer_additional_workspace) / 1e9
def frames(self, index):
"""
Read or look up the original frame object with a given index.
:param index: Frame index
:return: Frame with index "index".
"""
# print ("Accessing frame " + str(index))
# Check if the requested index is within bounds. Translate index, if necessary.
if self.index_translation_active:
if not 0 <= index < self.number:
raise ArgumentError("Translated frame index " + str(index) + " is out of bounds")
index_original = self.index_translation[index]
else:
if not 0 <= index < self.number_original:
raise ArgumentError("Frame index " + str(index) + " is out of bounds")
index_original = index
# If the original frames are to be buffered, read them in one go at the first call to this
# method. In this case, a progress bar is displayed in the main GUI.
if self.frames_original is None:
if self.buffer_original:
self.frames_original = []
self.signal_step_size = max(int(self.number_original / 10), 1)
for frame_index in range(self.number_original):
# After every "signal_step_size"th frame, send a progress signal to the main GUI.
if self.progress_signal is not None and frame_index % self.signal_step_size == 1:
self.progress_signal.emit("Read all frames",
int(round(10 * frame_index / self.number_original) * 10))
# Read the next frame. If dark/flat correction is active, do the corrections.
if self.calibration_matches:
self.frames_original.append(self.calibration.correct(
self.reader.read_frame(frame_index)))
else:
self.frames_original.append(self.reader.read_frame(frame_index))
self.reader.close()
if self.progress_signal is not None:
self.progress_signal.emit("Read all frames", 100)
# If original frames are not buffered, initialize an empty frame list, so frames can be
# read later in non-consecutive order.
else:
self.frames_original = [None] * self.number_original
# The original frames are buffered. Just return the frame.
if self.buffer_original:
return self.frames_original[index_original]
# This frame has been cached. Just return it.
if self.original_available_index == index_original:
return self.original_available
# The frame has not been stored for re-use, read it. If dark/flat correction is active, do
# the corrections.
else:
if self.calibration_matches:
frame = self.calibration.correct(self.reader.read_frame(index_original))
else:
frame = self.reader.read_frame(index_original)
# Cache the frame just read.
self.original_available = frame
self.original_available_index = index_original
return frame
def frames_mono(self, index):
"""
Look up or compute the monochrome version of the frame object with a given index.
:param index: Frame index
:return: Monochrome frame with index "index".
"""
# Check if the requested index is within bounds. Translate index, if necessary.
if self.index_translation_active:
if not 0 <= index < self.number:
raise ArgumentError("Translated frame index " + str(index) + " is out of bounds")
index_original = self.index_translation[index]
else:
if not 0 <= index < self.number_original:
raise ArgumentError("Frame index " + str(index) + " is out of bounds")
index_original = index
# print("Accessing frame monochrome " + str(index))
# The monochrome frames are buffered, and this frame has been stored before. Just return
# the frame.
if self.frames_monochrome[index_original] is not None:
return self.frames_monochrome[index_original]
# If the monochrome frame is cached, just return it.
if self.monochrome_available_index == index_original:
return self.monochrome_available
# The frame has not been stored for re-use, compute it.
else:
# Get the original frame. If it is not cached, this involves I/O.
frame_original = self.frames(index)
# If frames are in color mode produce a B/W version.
if self.color:
if self.color_index == 3:
frame_mono = cvtColor(frame_original, COLOR_RGB2GRAY)
else:
frame_mono = frame_original[:, :, self.color_index]
# Frames are in B/W mode already
else:
frame_mono = frame_original
# Normalize the overall frame brightness. The first monochrome frame for which this
# method is invoked is taken as the reference. The average brightness of all other
# monochrome frames is adjusted to match the brightness of the referenence.
if self.configuration.frames_normalization:
frame_type = frame_mono.dtype
if self.first_monochrome:
if frame_type == uint8:
self.normalization_lower_threshold = \
self.configuration.frames_normalization_threshold
self.normalization_upper_threshold = 255
else:
self.normalization_lower_threshold = \
self.configuration.frames_normalization_threshold * 256
self.normalization_upper_threshold = 255
self.frames_average_brightness[index_original] = cv_mean(
threshold(frame_mono, self.normalization_lower_threshold,
self.normalization_upper_threshold,
THRESH_TOZERO)[1])[0] + 1.e-10
# Keep the index of the first monochrome frame as the reference index.
self.first_monochrome_index = index_original
self.first_monochrome = False
# Not the first monochrome frame. Adjust brightness to match the reference.
else:
self.frames_average_brightness[index_original] = cv_mean(
threshold(frame_mono, self.normalization_lower_threshold,
self.normalization_upper_threshold,
THRESH_TOZERO)[1])[0] + 1.e-10
# If the monochrome frames are buffered, store it at the current index.
if self.buffer_monochrome:
self.frames_monochrome[index_original] = frame_mono
# If frames are not buffered, cache the current frame.
else:
self.monochrome_available_index = index_original
self.monochrome_available = frame_mono
return frame_mono
def frames_mono_blurred(self, index):
"""
Look up a Gaussian-blurred frame object with a given index.
:param index: Frame index
:return: Gaussian-blurred frame with index "index".
"""
# Check if the requested index is within bounds. Translate index, if necessary.
if self.index_translation_active:
if not 0 <= index < self.number:
raise ArgumentError("Translated frame index " + str(index) + " is out of bounds")
index_original = self.index_translation[index]
else:
if not 0 <= index < self.number_original:
raise ArgumentError("Frame index " + str(index) + " is out of bounds")
index_original = index
# print("Accessing frame with Gaussian blur " + str(index))
# The blurred frames are buffered, and this frame has been stored before. Just return
# the frame.
if self.frames_monochrome_blurred[index_original] is not None:
return self.frames_monochrome_blurred[index_original]
# If the blurred frame is cached, just return it.
if self.gaussian_available_index == index_original:
return self.gaussian_available
# The frame has not been stored for re-use, compute it.
else:
# Get the monochrome frame. If it is not cached, this involves I/O.
frame_mono = self.frames_mono(index)
# If the mono image is 8bit, interpolate it to 16bit.
if frame_mono.dtype == uint8:
frame_mono = frame_mono.astype(uint16) * 256
# Compute a version of the frame with Gaussian blur added.
frame_monochrome_blurred = GaussianBlur(frame_mono,
(self.configuration.frames_gauss_width,
self.configuration.frames_gauss_width), 0)
# If the blurred frames are buffered, store the current frame at the current index.
if self.buffer_gaussian:
self.frames_monochrome_blurred[index_original] = frame_monochrome_blurred
# If frames are not buffered, cache the current frame.
else:
self.gaussian_available_index = index_original
self.gaussian_available = frame_monochrome_blurred
return frame_monochrome_blurred
def frames_mono_blurred_laplacian(self, index):
"""
Look up a Laplacian-of-Gaussian of a frame object with a given index.
:param index: Frame index
:return: LoG of a frame with index "index".
"""
# Check if the requested index is within bounds. Translate index, if necessary.
if self.index_translation_active:
if not 0 <= index < self.number:
raise ArgumentError("Translated frame index " + str(index) + " is out of bounds")
index_original = self.index_translation[index]
else:
if not 0 <= index < self.number_original:
raise ArgumentError("Frame index " + str(index) + " is out of bounds")
index_original = index
# print("Accessing LoG number " + str(index))
# The LoG frames are buffered, and this frame has been stored before. Just return the frame.
if self.frames_monochrome_blurred_laplacian[index_original] is not None:
return self.frames_monochrome_blurred_laplacian[index_original]
# If the blurred frame is cached, just return it.
if self.laplacian_available_index == index_original:
return self.laplacian_available
# The frame has not been stored for re-use, compute it.
else:
# Get the monochrome frame. If it is not cached, this involves I/O.
frame_monochrome_blurred = self.frames_mono_blurred(index)
# Compute a version of the frame with Gaussian blur added.
frame_monochrome_laplacian = convertScaleAbs(Laplacian(
frame_monochrome_blurred[::self.configuration.align_frames_sampling_stride,
::self.configuration.align_frames_sampling_stride], CV_32F),
alpha=self.alpha)
# If the blurred frames are buffered, store the current frame at the current index.
if self.buffer_laplacian:
self.frames_monochrome_blurred_laplacian[index_original] = frame_monochrome_laplacian
# If frames are not buffered, cache the current frame.
else:
self.laplacian_available_index = index_original
self.laplacian_available = frame_monochrome_laplacian
return frame_monochrome_laplacian
def average_brightness(self, index):
"""
Look up the average brightness of a frame with given index.
:param index: Frame index
:return: average brightness of the requested frame
"""
# Check if the requested index is within bounds. Translate index, if necessary.
if self.index_translation_active:
if not 0 <= index < self.number:
raise ArgumentError("Translated frame index " + str(index) + " is out of bounds")
index_original = self.index_translation[index]
else:
if not 0 <= index < self.number_original:
raise ArgumentError("Frame index " + str(index) + " is out of bounds")
index_original = index
ab = self.frames_average_brightness[index_original]
if ab:
return ab
else:
raise InternalError("Accessing average frame brightness before computing it, frame: " +
str(index_original))
def set_index_translation(self):
"""
Set the index translation table. The list "self.index_included" for every original frame
index specifies if the frame is included in the processing workflow (True) or not (False).
Based on this list, a translation table "self.index_translation" is constructed. For the
reduced set of frames which take part in the processing workflow it contains the original
frame indices.
:return: -
"""
self.index_translation = []
for index in range(self.number_original):
if self.index_included[index]:
self.index_translation.append(index)
# Set the number of frames which will take part in the processing workflow.
self.number = len(self.index_translation)
# Set the index translation flag, so that in future frame lookups the translation table
# will be used.
self.index_translation_active = True
def reset_index_translation(self):
"""
Reset the index translation table, and de-activate index translation. Keep the list of
included / excluded frames, so that it can be the start point for another index translation.
:return: -
"""
self.number = self.number_original
self.index_translation = None
self.index_translation_active = False
def reset_alignment_point_lists(self):
"""
Every frame keeps a list with the alignment points for which this frame is among the
sharpest ones (so it is used in stacking). Reset this list for all frames.
:return: -
"""
# For every frame initialize the list with used alignment points.
self.used_alignment_points = [[] for index in range(self.number)]
@staticmethod
def save_image(filename, image, color=False, avoid_overwriting=True,
header="PlanetarySystemStacker"):
"""
Save an image to a file. If "avoid_overwriting" is set to False, images can have either
".png", ".tiff" or ".fits" format.
:param filename: Name of the file where the image is to be written
:param image: ndarray object containing the image data
:param color: If True, a three channel RGB image is to be saved. Otherwise, it is assumed
that the image is monochrome.
:param avoid_overwriting: If True, append a string to the input name if necessary so that
it does not match any existing file. If False, overwrite
an existing file.
:param header: String with information on the PSS version being used (optional).
:return: -
"""
# Handle the special case of .fits files first.
if Path(filename).suffix == '.fits':
# Flip image horizontally to preserve orientation
image = flip(image, 0)
if color:
image = moveaxis(image, -1, 0)
hdu = fits.PrimaryHDU(image)
hdu.header['CREATOR'] = header
hdu.writeto(filename, overwrite=True)
# Not a .fits file, the name can either point to a file or a directory, or be new.
else:
if Path(filename).is_dir():
# If a directory with the given name already exists, append the word "_file".
filename += '_file'
if avoid_overwriting:
while True:
if not Path(filename + '.png').exists():
break
filename += '_file'
filename += '.png'
else:
filename += '.png'
if Path(filename).is_file():
remove(filename)
# It is a file.
elif Path(filename).is_file():
# If overwriting is to be avoided, try to append "_copy" to its basename.
# If it still exists, repeat.
if avoid_overwriting:
suffix = Path(filename).suffix
while True:
p = Path(filename)
filename = Path.joinpath(p.parents[0], p.stem + '_copy' + suffix)
if not Path(filename).exists():
break
# File may be overwritten. Delete it first.
else:
remove(filename)
# It is a new name. If it does not have a file suffix, add the default '.png'.
else:
# If the file name is new and has no suffix, add ".png".
if not Path(filename).suffix:
filename += '.png'
if Path(filename).suffix not in ['.tiff', '.png']:
raise TypeError("Attempt to write image format other than '.tiff' or '.png'")
# Write the image to the file. Before writing, convert the internal RGB representation
# into the BGR representation assumed by OpenCV.
if color:
imwrite(str(filename), cvtColor(image, COLOR_RGB2BGR))
else:
imwrite(str(filename), image)
@staticmethod
def read_image(filename):
"""
Read an image (in tiff, fits, png or jpg format) from a file.
:param filename: Path name of the input image.
:return: RGB or monochrome image.
"""
name, suffix = splitext(filename)
# Make sure files with extensions written in large print can be read as well.
suffix = suffix.lower()
# Case FITS format:
if suffix in ('.fit', '.fits'):
image = fits.getdata(filename)
# FITS output file from AS3 is 16bit depth file, even though BITPIX
# has been set to "-32", which would suggest "numpy.float32"
# https://docs.astropy.org/en/stable/io/fits/usage/image.html
# To process this data in PSS, do "round()" and convert numpy array to "np.uint16"
if image.dtype == '>f4':
image = image.round().astype(uint16)
# If color image, move axis to be able to process the content
if len(image.shape) == 3:
image = moveaxis(image, 0, -1).copy()
# Flip image horizontally to recover original orientation
image = flip(image, 0)
# Case other supported image formats:
elif suffix in ('.tiff', '.tif', '.png', '.jpg'):
input_image = imread(filename, IMREAD_UNCHANGED)
if input_image is None:
raise IOError("Cannot read image file. Possible cause: Path contains non-ascii characters")
# If color image, convert to RGB mode.
if len(input_image.shape) == 3:
image = cvtColor(input_image, COLOR_BGR2RGB)
else:
image = input_image
else:
raise TypeError("Attempt to read image format other than 'tiff', 'tif',"
" '.png', '.jpg' or 'fit', 'fits'")
return image
def access_pattern(frames_object, average_frame_percent):
"""
Simulate the access pattern of PSS to frame data, without any other activity in between. Return
the overall time.
:param frames_object: Frames object to access frames.
:param average_frame_percent: Percentage of frames for average image computation.
:return: Total time in seconds.
"""
number = frames_object.number
average_frame_number = max(
ceil(number * average_frame_percent / 100.), 1)
start = time()
for index in range(number):
frames_object.frames_mono_blurred_laplacian(index)
frames_object.frames_mono_blurred(number - 1)
frames_object.frames_mono_blurred(number - 1)
for index in range(number):
frames_object.frames_mono_blurred(index)
for index in range(average_frame_number):
frames_object.frames_mono(index)
for index in range(number):
frames_object.frames_mono_blurred_laplacian(index)
for index in range(number):
frames_object.frames(index)
frames_object.frames_mono_blurred(index)
return time() - start
def access_pattern_simple(frames_object, average_frame_percent):
"""
Simulate the access pattern of PSS to frame data, without any other activity in between. Return
the overall time.
:param frames_object: Frames object to access frames.
:param average_frame_percent: Percentage of frames for average image computation.
:return: Total time in seconds.
"""
number = frames.number
start = time()
for rep_cnt in range(5):
for index in range(number):
frames_object.frames_mono_blurred(index)
return time() - start
if __name__ == "__main__":
# Images can either be extracted from a video file or a batch of single photographs. Select
# the example for the test run.
type = 'video'
version = 'frames'
buffering_level = 4
name_flats = None
name_darks = None
if type == 'image':
# names = glob('Images/2012_*.tif')
# names = glob('D:\SW-Development\Python\PlanetarySystemStacker\Examples\Moon_2011-04-10\South\*.TIF')
names = glob(
r'D:\SW-Development\Python\PlanetarySystemStacker\Examples\Moon_2019-01-20\Images\*.TIF')
else:
# names = 'Videos/another_short_video.avi'
# names = 'Videos/Moon_Tile-024_043939.avi'
# names = r'E:\SW-Development\Python\PlanetarySystemStacker\Examples\SER_Chris-Garry' \
# r'\SER_RGGB_16bit_LittleEndian_397_397.ser'
# names = r'E:\SW-Development\Python\PlanetarySystemStacker\Examples\SER_Chris-Garry' \
# r'\SER_GRAYSCALED_16bit_LittleEndian_397_397.ser'
# names = r'E:\SW-Development\Python\PlanetarySystemStacker\Examples\SER_Chris-Garry' \
# r'\SER_GRAYSCALED_12bit_BigEndian_352_400.ser'
names = r'D:\SW-Development\Python\PlanetarySystemStacker\Examples\Jupiter_Richard\2020-07-29-2145_3-L-Jupiter_ALTAIRGP224C.ser'
# name_flats = 'D:\SW-Development\Python\PlanetarySystemStacker\Examples\Darks_and_Flats\ASI120MM-S_Flat.avi'
# name_darks = 'D:\SW-Development\Python\PlanetarySystemStacker\Examples\Darks_and_Flats\ASI120MM-S_Dark.avi'
# Get configuration parameters.
configuration = Configuration()
configuration.initialize_configuration()
# Initialize the Dark / Flat correction.
if name_darks or name_flats:
calibration = Calibration(configuration)
else:
calibration = None
# Create the master dark if requested.
if name_darks:
calibration.create_master_dark(name_darks)
print("Master dark created, shape: " + str(calibration.master_dark_frame.shape))
dark_min = np_min(calibration.master_dark_frame)
dark_max = np_max(calibration.master_dark_frame)
print("Dark min: " + str(dark_min) + ", Dark max: " + str(dark_max))
# Create the master flat if requested.
if name_flats:
calibration.create_master_flat(name_flats)
print("Master flat created, shape: " + str(calibration.inverse_master_flat_frame.shape))
flat_min = np_min(calibration.inverse_master_flat_frame)
flat_max = np_max(calibration.inverse_master_flat_frame)
print("Flat min: " + str(flat_min) + ", Flat max: " + str(flat_max))
start = time()
if version == 'frames':
try:
frames = Frames(configuration, names, type=type, calibration=calibration,
buffering_level=buffering_level)
except Error as e:
print("Error: " + e.message)
exit()
else:
try:
frames = FramesOld(configuration, names, type=type)
frames.add_monochrome(configuration.frames_mono_channel)
except Error as e:
print("Error: " + e.message)
exit()
initialization_time = time() - start
print("Number of images read: " + str(frames.number))
print("Image shape: " + str(frames.shape))
# total_access_time = access_pattern_simple(frames,
# configuration.align_frames_average_frame_percent)
total_access_time = access_pattern(frames, configuration.align_frames_average_frame_percent)
print("\nInitialization time: {0:7.3f}, frame accesses and variant computations: {1:7.3f},"
" total: {2:7.3f} (seconds)".format(initialization_time, total_access_time,
initialization_time + total_access_time))
frame = frames.frames(1776)
print("Image type: " + str(frame.dtype))
# Check the OpenCV BGR and Matplotlibs RGB color orders
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
if frames.color:
plt.imshow(frame)
else:
plt.imshow(frame, cmap='gray')
plt.show()
Frames.save_image('frame_1776.png', frame, color=True)
|