1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
(* Planets: A celestial simulator
Copyright (C) 2001-2003 Yaron M. Minsky
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*)
open StdLabels
open MoreLabels
open Printf
open State
open Constants
open Common
(*******************************************************)
(*** Physics *****************************************)
(*******************************************************)
let cube x = x *. x *. x
let square x = x *. x
let magsq (x,y) = x*.x +. y*.y
let mag (x,y) = sqrt (x*.x +. y*.y)
let distsq v1 v2 = magsq (v1 <-> v2)
let dist v1 v2 = mag (v1 <-> v2)
(* return unit vector pointing from (x1,y1) to (x2,y2) *)
let unit_vect v1 v2 = dist v1 v2 <|> (v2 <-> v1)
let update_pos body =
{ body with pos = body.pos <+> (state.delta#v <*> body.velocity) }
let update_pos_bodies bodies =
List.map ~f:update_pos bodies
let print_body body =
let (x,y) = body.pos
and (x_v,y_v) = body.velocity
in
printf "pos: (%3f,%3f), vel: (%3f,%3f) " x y x_v y_v
let print_bodies bodies = List.iter ~f:print_body bodies
(***********************************************)
(** Energy Calculations **********************)
(***********************************************)
let rec pairfold ~f list ~init =
match list with
[] -> init
| hd::tl ->
let init = List.fold_left
~f:(fun partial el -> f partial hd el) ~init tl in
pairfold ~f tl ~init
(* How to compute potential: sum of pair energy for all pairs
(don't do pairs twice),
where pair energy is G m_1 * m_2 / d
Only works with grav_exp = 2.0
*)
let pair_energy b1 b2 =
let dist = mag (b1.pos <-> b2.pos) in
-. gconst#v *. b1.mass *. b2.mass /. dist
(* returns potential energy *)
let penergy bodies =
pairfold ~f:(fun e b1 b2 -> e +. pair_energy b1 b2)
~init:0. bodies
(* returns kinetic energy *)
let kenergy bodies =
List.fold_left ~f:(fun e b -> e +. 0.5 *. b.mass *. magsq b.velocity)
~init:0. bodies
let energy bodies =
(* penergy bodies +. *)
kenergy bodies
(***********************************************)
(***********************************************)
(***********************************************)
let center_of_mass bodies = match bodies with
[] -> (0.0,0.0)
| _ ->
let mpositions =
List.map ~f:(fun body -> body.mass <*> body.pos) bodies
and masses = List.map ~f:(fun body -> body.mass) bodies
in
(sum masses <|> vsum mpositions)
let central_velocity bodies = match bodies with
[] -> (0.0,0.0)
| _ ->
let momenta = List.map
~f:(fun body -> body.mass <*> body.velocity)
bodies
and masses = List.map ~f:(fun body -> body.mass) bodies
in
(sum masses <|> vsum momenta)
(***********************************************)
let orbital_velocity bodies ~pos dir =
(* first compute some global facts about the system *)
let com = center_of_mass bodies
and masses = List.map ~f:(fun body -> body.mass) bodies
and cv = central_velocity bodies in
let mass = sum masses
in
(* now we compute the orbital speed *)
let radius_vect = com -| pos in
let r = sqrt (dot radius_vect radius_vect) in
let speed = sqrt(gconst#v *. mass /. r) in
let uvect = r /| radius_vect in
let uvect = if dir then rotleft uvect else rotright uvect
in
(speed *| uvect) +| cv
let induced_orbital_velocity bodies ~pos dir =
if List.length bodies = 0 then (0.0,0.0) else
let cv = central_velocity bodies in
let induced_accel_list =
List.map ~f:(fun body ->
let dvect = body.pos -| pos in
let d = mag dvect in
let uvect = d /| dvect in
(body.mass /. (d *. d)) *| uvect
)
bodies in
let induced_accel = List.fold_left ~f:( +| ) induced_accel_list
~init:vzero in
let total_mass = sum (List.map ~f:(fun body -> body.mass) bodies) in
let implied_dist = sqrt (total_mass /. mag induced_accel) in
let implied_uvect = mag induced_accel /| induced_accel in
let speed = sqrt (gconst#v *. total_mass /. implied_dist) in
let uvect = (if dir then rotleft implied_uvect
else rotright implied_uvect) in
(speed *| uvect) +| cv
(***********************************************)
let sub_velocity vel body =
{ body with velocity = body.velocity <-> vel; }
let zero_speed_bodies selected_bodies =
let velocity = central_velocity selected_bodies in
state.bodies <- List.map ~f:(sub_velocity velocity) state.bodies
let center_bodies selected_bodies =
let center = center_of_mass selected_bodies in
state.center#set center
(***********************************************)
let zero_speed () = zero_speed_bodies state.bodies
let center () = center_bodies state.bodies
let bodies_from_ids ids =
List.filter ~f:(fun body -> List.mem body.id ids) state.bodies
let zero_speeds_ids ids = zero_speed_bodies (bodies_from_ids ids)
let center_ids ids = center_bodies (bodies_from_ids ids)
(************************************************************************)
(** Collision Detection ********************************************)
(************************************************************************)
let touch ~mult b1 b2 =
let mdist = max b1.radius b2.radius in
distsq b1.pos b2.pos < mdist *. mdist *. mult *. mult
let join_bodies b1 b2 =
{ pos = center_of_mass [b1; b2];
velocity =
(b1.mass +. b2.mass) <|>
((b1.mass <*> b1.velocity) <+> (b2.mass <*> b2.velocity));
radius = ((b1.radius ** 3.0) +. (b2.radius ** 3.0))**(1.0/.3.0);
color = join_colors b1.color b1.mass b2.color b2.mass;
mass = b1.mass +. b2.mass;
id = Random.bits ();
i = None;
}
let find_single_collision ~mult b1 bodies =
let rec loop b1 bodies examined = match bodies with
[] -> b1::examined
| b2::tl ->
if touch ~mult b1 b2
then loop (join_bodies b1 b2) tl examined
else loop b1 tl (b2::examined)
in
loop b1 bodies []
(* look for a collision. If you find it, return a body list
with those two bodies joined. Otherwise, return the original
unchanged *)
let rec find_collisions ~mult bodies = match bodies with
[] -> []
| b1::tl -> (find_single_collision ~mult b1 (find_collisions ~mult tl))
(************************************************************************)
(** Simulation ******************************************************)
(************************************************************************)
let compose f g x = f (g x)
let compose3 f g h x = f (g (h x))
let ident x = x
let rec apply n f x = match n with
0 -> x
| _ -> apply (n-1) f (f x)
let simulate ?(bounce=false) i =
let action =
compose
(Fast_physics.act_all_on_all ~bounce)
(find_collisions ~mult:(if bounce then 0.5 else 1.0))
in
state.bodies <- apply i action state.bodies
|