1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
// SPDX-FileCopyrightText: 2025 Micah Stanley <stanleymicah@proton.me>
// SPDX-License-Identifier: GPL-2.0-or-later
#include "masklayer.h"
#include <QSGFlatColorMaterial>
// helper function for creating rounded rectangles
static void createRoundedRectGeometry(QSGGeometry *geometry, const QRectF &rect, qreal radius)
{
geometry->setDrawingMode(QSGGeometry::DrawTriangles);
radius = qMin(radius, qMin(rect.width(), rect.height()) / 2.0); // clamp radius
// if the radius is too small, draw a simple rectangle instead
if (radius < 0.1) {
// 4 vertices, 6 indices (2 triangles * 3 indices)
geometry->allocate(4, 6);
// fill vertex data
QSGGeometry::Point2D *vertices = geometry->vertexDataAsPoint2D();
vertices[0].set(rect.left(), rect.top());
vertices[1].set(rect.right(), rect.top());
vertices[2].set(rect.left(), rect.bottom());
vertices[3].set(rect.right(), rect.bottom());
// fill index data
quint16 *indices = geometry->indexDataAsUShort();
indices[0] = 0; indices[1] = 2; indices[2] = 1; // first triangle (TL, BL, TR)
indices[3] = 1; indices[4] = 2; indices[5] = 3; // second triangle (TR, BL, BR)
geometry->markVertexDataDirty();
geometry->markIndexDataDirty();
return;
}
const int segments_per_corner = 16;
const int perimeter_verts = segments_per_corner * 4;
const int vertex_count = 1 + perimeter_verts;
const int index_count = perimeter_verts * 3;
geometry->allocate(vertex_count, index_count);
QSGGeometry::Point2D *vertices = geometry->vertexDataAsPoint2D();
quint16 *indices = geometry->indexDataAsUShort();
int vertIndex = 0;
int indexPos = 0;
// define the center vertex
const quint16 center_vert_index = vertIndex;
vertices[vertIndex++].set(rect.center().x(), rect.center().y());
// define the center of the corners
const QPointF tl_c = {rect.left() + radius, rect.top() + radius};
const QPointF tr_c = {rect.right() - radius, rect.top() + radius};
const QPointF br_c = {rect.right() - radius, rect.bottom() - radius};
const QPointF bl_c = {rect.left() + radius, rect.bottom() - radius};
// create all perimeter vertices
// top-right
for (int i = 0; i < segments_per_corner; ++i) {
const qreal angle = M_PI * 1.5 + (M_PI_2 * i / segments_per_corner);
vertices[vertIndex++].set(tr_c.x() + radius * cos(angle), tr_c.y() + radius * sin(angle));
}
// bottom-right
for (int i = 0; i < segments_per_corner; ++i) {
const qreal angle = (M_PI_2 * i / segments_per_corner);
vertices[vertIndex++].set(br_c.x() + radius * cos(angle), br_c.y() + radius * sin(angle));
}
// bottom-left
for (int i = 0; i < segments_per_corner; ++i) {
const qreal angle = M_PI_2 + (M_PI_2 * i / segments_per_corner);
vertices[vertIndex++].set(bl_c.x() + radius * cos(angle), bl_c.y() + radius * sin(angle));
}
// top-left
for (int i = 0; i < segments_per_corner; ++i) {
const qreal angle = M_PI + (M_PI_2 * i / segments_per_corner);
vertices[vertIndex++].set(tl_c.x() + radius * cos(angle), tl_c.y() + radius * sin(angle));
}
// create the triangles using indices
// loop through all perimeter vertices and connect them to the center and the next vertex
for (quint16 i = 0; i < perimeter_verts; ++i) {
indices[indexPos++] = center_vert_index; // center vertex
indices[indexPos++] = center_vert_index + 1 + i; // current perimeter vertex
// the next perimeter vertex / wrapping around to the start at the end
indices[indexPos++] = center_vert_index + 1 + ((i + 1) % perimeter_verts);
}
// tell renderer to mark all the data as dirty
geometry->markVertexDataDirty();
geometry->markIndexDataDirty();
}
MaskLayer::MaskLayer(QQuickItem *parent) : QQuickItem(parent)
{
setFlag(ItemHasContents, true);
}
MaskLayer::~MaskLayer() = default;
void MaskLayer::addItem(QQuickItem* item)
{
if (!item || m_sourceItems.contains(item)) {
return;
}
m_sourceItems.append(item);
// we connect these signals so that any changes that affects the item's visual representation triggers an update
// we then store connections to be able to disconnect them later
auto& conns = m_connections[item];
conns.append(QObject::connect(item, &QQuickItem::xChanged, this, &MaskLayer::scheduleUpdate));
conns.append(QObject::connect(item, &QQuickItem::yChanged, this, &MaskLayer::scheduleUpdate));
conns.append(QObject::connect(item, &QQuickItem::visibleChanged, this, &MaskLayer::scheduleUpdate));
conns.append(QObject::connect(item, &QQuickItem::opacityChanged, this, &MaskLayer::scheduleUpdate));
conns.append(QObject::connect(item, &QObject::destroyed, this, [this, item]() {
removeItem(item);
}));
const QMetaObject* metaObject = item->metaObject();
// due to not being about to tell when the item's transform value changes
// we check for 'scaleAmountChanged()' to use as a sort of work around
int scaleAmountIndex = metaObject->indexOfProperty("scaleAmount");
if (scaleAmountIndex != -1 && metaObject->property(scaleAmountIndex).hasNotifySignal()) {
conns.append(QObject::connect(item, SIGNAL(scaleAmountChanged()), this, SLOT(scheduleUpdate())));
}
// connect the parents signal changes, as this affects the final visible outcome
QQuickItem* currentParent = item->parentItem();
while (currentParent) {
conns.append(QObject::connect(currentParent, &QQuickItem::xChanged, this, &MaskLayer::scheduleUpdate));
conns.append(QObject::connect(currentParent, &QQuickItem::yChanged, this, &MaskLayer::scheduleUpdate));
conns.append(QObject::connect(currentParent, &QQuickItem::opacityChanged, this, &MaskLayer::scheduleUpdate));
const QMetaObject* metaObject = currentParent->metaObject();
// check for 'scaleAmountChanged()'
int scaleAmountIndex = metaObject->indexOfProperty("scaleAmount");
if (scaleAmountIndex != -1 && metaObject->property(scaleAmountIndex).hasNotifySignal()) {
conns.append(QObject::connect(currentParent, SIGNAL(scaleAmountChanged()), this, SLOT(scheduleUpdate())));
}
currentParent = currentParent->parentItem();
}
scheduleUpdate();
}
void MaskLayer::removeItem(QQuickItem* item)
{
if (!item) return;
disconnectItemSignals(item);
m_connections.remove(item);
m_sourceItems.removeAll(item);
scheduleUpdate();
}
void MaskLayer::disconnectItemSignals(QQuickItem* item)
{
if (m_connections.contains(item)) {
for (const auto &conn : m_connections.value(item)) {
QObject::disconnect(conn);
}
}
}
void MaskLayer::scheduleUpdate()
{
// marks this item for an update.
// the renderer will call updatePaintNode before the next frame
update();
}
QSGNode *MaskLayer::updatePaintNode(QSGNode *oldNode, UpdatePaintNodeData *)
{
// if oldNode is null, we need to create a new root node for our content
// otherwise, we can reuse it and manage its children
QSGNode *rootNode = oldNode;
if (!rootNode) {
rootNode = new QSGNode();
}
int currentChildIndex = 0;
for (const QPointer<QQuickItem>& itemPtr : m_sourceItems) {
QQuickItem* item = itemPtr.data();
// item was deleted
if (!item) {
continue;
}
// calculate opacity and visibility
qreal accumulatedOpacity = item->opacity();
bool isVisible = item->isVisible();
QQuickItem* currentParent = item->parentItem();
while (currentParent) {
if (!currentParent->isVisible()) {
isVisible = false;
break;
}
accumulatedOpacity *= currentParent->opacity();
if (currentParent == this) break;
currentParent = currentParent->parentItem();
}
// skip this item if it is invisible or fully transparent
if (!isVisible || qFuzzyCompare(accumulatedOpacity, 0)) {
continue;
}
// calculate position and size
bool transformOk = false;
const QTransform transform = item->itemTransform(this, &transformOk);
if (!transformOk) continue;
qreal radius = item->property("radius").toReal();
QSGTransformNode *transformNode = nullptr;
QSGGeometryNode *geometryNode = nullptr;
if (currentChildIndex < rootNode->childCount()) {
transformNode = static_cast<QSGTransformNode*>(rootNode->childAtIndex(currentChildIndex));
geometryNode = static_cast<QSGGeometryNode*>(transformNode->firstChild());
} else {
transformNode = new QSGTransformNode();
geometryNode = new QSGGeometryNode();
QSGGeometry *geometry = new QSGGeometry(QSGGeometry::defaultAttributes_Point2D(), 0);
geometryNode->setGeometry(geometry);
QSGFlatColorMaterial *material = new QSGFlatColorMaterial();
geometryNode->setMaterial(material);
geometryNode->setFlags(QSGNode::OwnsMaterial);
transformNode->appendChildNode(geometryNode);
rootNode->appendChildNode(transformNode);
}
transformNode->setMatrix(QMatrix4x4(transform));
QSGFlatColorMaterial *material = static_cast<QSGFlatColorMaterial*>(geometryNode->material());
QColor color = Qt::white;
color.setAlphaF(accumulatedOpacity);
if (material->color() != color) material->setColor(color);
QRectF rect(0, 0, item->width(), item->height());
createRoundedRectGeometry(geometryNode->geometry(), rect, radius);
geometryNode->markDirty(QSGNode::DirtyGeometry);
currentChildIndex++;
}
// if we have more nodes than items this frame, remove the extras
if (currentChildIndex < rootNode->childCount()) {
for (int i = rootNode->childCount() - 1; i >= currentChildIndex; --i) {
QSGNode *nodeToRemove = rootNode->childAtIndex(i);
rootNode->removeChildNode(nodeToRemove);
delete nodeToRemove;
}
}
return rootNode;
}
|