1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
|
/*****************************************************************************
* *
* PLAST : Parallel Local Alignment Search Tool *
* Version 2.3, released November 2015 *
* Copyright (c) 2009-2015 Inria-Cnrs-Ens *
* *
* PLAST is free software; you can redistribute it and/or modify it under *
* the Affero GPL ver 3 License, that is compatible with the GNU General *
* Public License *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* Affero GPL ver 3 License for more details. *
*****************************************************************************/
#include <index/impl/DatabaseNucleotidIndex.hpp>
#include <misc/api/macros.hpp>
#include <misc/api/PlastStrings.hpp>
#include <designpattern/impl/CommandDispatcher.hpp>
#include <os/impl/DefaultOsFactory.hpp>
#include <os/impl/TimeTools.hpp>
using namespace std;
using namespace os;
using namespace os::impl;
using namespace dp;
using namespace dp::impl;
using namespace database;
using namespace seed;
/** Some macros. */
#define LETTER_NUC(l) ((l) & 3)
#define LETTER_AA(l) ((l) & 31)
#define LETTER_ASCII(l) ((l) & 127)
//#define LETTER_ISBAD(l) ((l) & 128)
#define LETTER_ISBAD(l) ((l) & 4)
#include <stdio.h>
#define DEBUG(a) //printf a
#define VERBOSE(a) //printf a
/********************************************************************************/
namespace indexation { namespace impl {
/********************************************************************************/
typedef u_int64_t word_t;
enum { WORD_SIZE = sizeof(word_t) * 8 };
inline int bindex(int b) { return b / WORD_SIZE; }
inline int boffset(int b) { return b % WORD_SIZE; }
#define GETMASK(data,b) (data[bindex(b)] & (1 << (boffset(b))))
#define SETMASK(data,b) data[bindex(b)] |= 1 << (boffset(b))
/*********************************************************************
** METHOD :
** PURPOSE :
** INPUT :
** OUTPUT :
** RETURN :
** REMARKS :
*********************************************************************/
DatabaseNucleotidIndex::DatabaseNucleotidIndex (ISequenceDatabase* database, ISeedModel* model, IDatabaseIndex* otherIndex)
: AbstractDatabaseIndex (database, model), _counter(0), _span(0), _bitshift(0), _maskIn(0), _maskOut(0)
{
/** Shortcuts. */
_span = getModel()->getSpan();
_bitshift = 2*(_span-1);
size_t alphabetSize = getModel()->getAlphabet()->size;
/** We compute the maximum number of seeds. This is for instance 4^11=4194304 for nucleotide 11-kmers. */
_maxSeedsNumber = 1;
for (size_t i=1; i<=_span; i++) { _maxSeedsNumber *= alphabetSize; }
/** We allocate the vector that counts the number or occurrences for each possible seeds. */
_counter = (u_int32_t*) DefaultFactory::memory().calloc (_maxSeedsNumber, sizeof(u_int32_t));
memset (_counter, 0, _maxSeedsNumber*sizeof(u_int32_t));
/** We set the size of the index. Such index is a vector of vectors: the 'parent' vector size is the
* number of possible seeds. For each seed, the 'child' vector holds locations (and possibly other
* information) of the current seed occurrences in the database.
* The total number of cells should be (at most) the size of the database since each letter of the database
* is the beginning of a seed, seed that should be indexed. Note however that some seeds are not indexed if
* they contain some bad letter (like 'N'), which can happen quite often when "dust" algorithm has been used
* for tagging (with 'N') low informative regions in the database. */
_index.resize (_maxSeedsNumber);
size_t maskSize = _maxSeedsNumber / WORD_SIZE;
_maskOut = new word_t [maskSize]; memset (_maskOut, 0, sizeof(word_t)*maskSize);
_maskIn = new word_t [maskSize];
if (otherIndex != 0 && otherIndex->getMask())
{
memcpy (_maskIn, otherIndex->getMask(), sizeof(word_t)*maskSize);
}
else
{
memset (_maskIn, ~0, sizeof(word_t)*maskSize);
}
DEBUG (("DatabaseNucleotidIndex::DatabaseNucleotidIndex: _maxSeedsNumber=%ld _alphabetSize=%ld\n",
_maxSeedsNumber, alphabetSize
));
}
/*********************************************************************
** METHOD :
** PURPOSE :
** INPUT :
** OUTPUT :
** RETURN :
** REMARKS :
*********************************************************************/
DatabaseNucleotidIndex::~DatabaseNucleotidIndex ()
{
/** We release resources. */
DefaultFactory::memory().free (_counter);
delete[] _maskIn;
delete[] _maskOut;
}
/*********************************************************************
** METHOD :
** PURPOSE :
** INPUT :
** OUTPUT :
** RETURN :
** REMARKS :
*********************************************************************/
void DatabaseNucleotidIndex::build ()
{
/** We need a command dispatcher. */
ParallelCommandDispatcher dispatcher;
/** Some time statistics. */
TimeInfo timeInfo (DefaultFactory::time());
DEBUG (("DatabaseNucleotidIndex::build : START ! \n"));
size_t nbcpu = DefaultFactory::thread().getNbCores();
/** The intent of this method is to fill the '_index' attribute; this attribute is designed to hold (for each possible seed
* of the seeds model) the vector of offset occurrences. These offsets are relative to the provided sequences iterator.
*
* The job is done in 3 phases:
* 1) for each seed, count the occurrences number (ie. fill the '_counter' vector).
* 2) for each seed, resize the vector of occurrences
* 3) for each seed, fill the vector of occurrences (occurrence offset in database)
*
* Note that phases 1 and 3 can be parallelized; therefore, these phases are done within a ICommand context, and
* can be executed on several threads thanks to a ParallelCommandDispatcher.
*/
/** We create a sequence iterator that iterates the database. */
ISequenceIterator* seqIter = getDatabase()->createSequenceIterator();
LOCAL(seqIter);
timeInfo.addEntry ("b");
/************************************************************/
/*********************** PHASE 1 ****************************/
/************************************************************/
timeInfo.addEntry ("1");
/** We need a "get" iterator on the sequence iterator for parallel iteration. */
IteratorGet<const database::ISequence*>* seqIterGetCount = new IteratorGet<const ISequence*> (seqIter);
LOCAL (seqIterGetCount);
/** We build a list of commands that will iterate our list, through the created iterator. */
list<ICommand*> commands;
for (size_t i=1; i <= nbcpu; i++) { commands.push_back (new CountSeedsCmd (seqIterGetCount, this)); }
dispatcher.dispatchCommands (commands,0);
timeInfo.stopEntry ("1");
DEBUG (("DatabaseNucleotidIndex::build : COUNTING IS DONE...\n"));
/************************************************************/
/*********************** PHASE 2 ****************************/
/************************************************************/
timeInfo.addEntry ("2");
u_int64_t nbOccurrences = 0;
/** Now, we can allocate structures since we know the number of occurrences for each seed. */
for (size_t currentCode=0; currentCode<_maxSeedsNumber; currentCode++)
{
size_t len = _counter[currentCode];
nbOccurrences += len;
if (len > 0 && GETMASK (_maskIn, currentCode))
{
_index[currentCode].resize (len);
_counter[currentCode] = 0;
/** We setup the mask */
SETMASK (_maskOut, currentCode);
}
}
timeInfo.stopEntry ("2");
/************************************************************/
/*********************** PHASE 3 ****************************/
/************************************************************/
timeInfo.addEntry ("3");
/** We need a "get" iterator on the sequence iterator for parallel iteration. */
IteratorGet<const database::ISequence*>* seqIterGetFill = new IteratorGet<const ISequence*> (seqIter);
LOCAL (seqIterGetFill);
commands.clear();
for (size_t i=1; i <= nbcpu; i++) { commands.push_back (new FillSeedsCmd (seqIterGetFill, this)); }
dispatcher.dispatchCommands (commands,0);
timeInfo.stopEntry ("3");
timeInfo.stopEntry ("b");
DEBUG (("DatabaseNucleotidIndex::build : END SEQUENCES LOOP\n"));
DEBUG (("DatabaseNucleotidIndex::build: count in %d msec (%.1f), resize in %d msec (%.1f), fill in %d msec (%.1f)=> total %d msec\n",
timeInfo.getEntryByKey("1"), 100.0 * (double) timeInfo.getEntryByKey("1") / (double)timeInfo.getEntryByKey("b"),
timeInfo.getEntryByKey("2"), 100.0 * (double) timeInfo.getEntryByKey("2") / (double)timeInfo.getEntryByKey("b"),
timeInfo.getEntryByKey("3"), 100.0 * (double) timeInfo.getEntryByKey("3") / (double)timeInfo.getEntryByKey("b"),
timeInfo.getEntryByKey("b")
));
DEBUG (("DatabaseNucleotidIndex::build : %ld sequences %ld occurrences dbSize=%ld => %ld letter(s) not used\n",
getDatabase()->getSequencesNumber(), nbOccurrences, getDatabase()->getSize(),
getDatabase()->getSize() - (_span-1)*getDatabase()->getSequencesNumber() - nbOccurrences
));
}
/*********************************************************************
** METHOD :
** PURPOSE :
** INPUT :
** OUTPUT :
** RETURN :
** REMARKS :
*********************************************************************/
IDatabaseIndex::IndexEntry& DatabaseNucleotidIndex::getEntry (const seed::ISeed* seed)
{
if (seed->code >= _index.size()) { throw MSG_INDEXATION_MSG1; }
return (IDatabaseIndex::IndexEntry&) _index[seed->code];
}
/*********************************************************************
** METHOD :
** PURPOSE :
** INPUT :
** OUTPUT :
** RETURN :
** REMARKS :
*********************************************************************/
size_t DatabaseNucleotidIndex::getOccurrenceNumber (const seed::ISeed* seed)
{
if (seed->code >= _index.size()) { throw MSG_INDEXATION_MSG1; }
return _index[seed->code].size();
}
/*********************************************************************
** METHOD :
** PURPOSE :
** INPUT :
** OUTPUT :
** RETURN :
** REMARKS :
*********************************************************************/
u_int64_t DatabaseNucleotidIndex::getTotalOccurrenceNumber ()
{
u_int64_t result = 0;
for (size_t i=0; i<_index.size(); i++) { result += _index[i].size(); }
return result;
}
/*********************************************************************
** METHOD :
** PURPOSE :
** INPUT :
** OUTPUT :
** RETURN :
** REMARKS :
*********************************************************************/
void DatabaseNucleotidIndex::countSeedsOccurrences (const ISequence*& sequence)
{
/** This method takes a sequence as input and loops over all possible seeds
* on that sequence. For each seed (seen through its hash code), we increment
* its counter (ie. _counter attribute)
*
* Note: this method can be called on the same instance concurrently by
* different threads . Since we modify an attribute of the instance, we must take
* care on concurrent access on '_counter' attribute. This is done with the
* intrinsic '__sync_fetch_and_add' command.
*
* Note: When we deal with nucleotides, we can compute the next hash code
* knowing the current one and the next letter. This can be done efficiently
* with binary operators like >> and |. However the first hash code has to
* be computed in a slightly different way, so the method make the same treatment,
* first on the first hash code and after on all successive hash codes.
*
* Note: We consider that we find a valid hash code when all the letters of the
* seeds are valid (cf usage of LETTER_ISBAD macro). This means that a seed holding
* one ore more 'N' character won't be kept in the index.
*/
/** Shortcuts. */
u_int32_t length = sequence->getLength();
const LETTER* data = sequence->getData();
if (length > _span)
{
size_t nbMatch = 0;
SeedHashCode hashCode = 0;
/** We compute the beginning hash code. */
for (int i=_span-1; i>=0; i--)
{
LETTER l = data[i];
hashCode = (hashCode << 2) | LETTER_NUC(l);
nbMatch += LETTER_ISBAD(l) ? 0 : 1;
}
/** We increment the counter for the current seed if that seed is valid.
* Note the usage of '__sync_fetch_and_add': we get the value (the number
* of occurrences for 'hashCode') and increment it in a single protected
* instruction.
*/
if (nbMatch >= _span && GETMASK(_maskIn,hashCode)) { __sync_fetch_and_add (_counter + hashCode,1 ); }
/** We have computed the hash code for the first '_span' letters of the sequence.
* Now, we will need only one letter for computing the next hash code, which explains
* why we need to move the 'data' pointer '_span' letters further. */
data += _span;
int imax = length - _span;
/** We loop the remaining data. */
for (int i=1; i<=imax; i++, data++)
{
LETTER s = *data;
/** We update the hash code from the previous one:
* we get rid of the first letter: (hashCode >> 2)
* we add the new one at the end of the seed: (LETTER_NUC(s) << _bitshift) */
hashCode = (hashCode >> 2) | (LETTER_NUC(s) << _bitshift);
/** Note that we compute the hash code even if the letter is considered as bad.
* Actually, the hash code is updated with some valid letter, thanks to LETTER_NUC
* that returns any valid letter. Although the hash code is updated, this hash code
* won't be used in the index thanks to the LETTER_ISBAD macro. In such a case, we
* reset the 'nbMatch' value, and since we need 'nbMatch >= _span' for valid seed,
* this updated hash code occurrence won't be used by the index.
*/
if (LETTER_ISBAD(s)) { nbMatch = 0; }
else
{
nbMatch++;
/** We increment the counter for the current seed if that seed is valid. */
if (nbMatch >= _span && GETMASK(_maskIn,hashCode)) { __sync_fetch_and_add (_counter+hashCode, 1); }
}
}
}
}
/*********************************************************************
** METHOD :
** PURPOSE :
** INPUT :
** OUTPUT :
** RETURN :
** REMARKS :
*********************************************************************/
void DatabaseNucleotidIndex::fillSeedsOccurrences (const ISequence*& sequence)
{
u_int32_t length = sequence->getLength();
const LETTER* data = sequence->getData();
u_int64_t offset = sequence->offsetInDb;
if (length > _span)
{
size_t nbMatch = 0;
SeedHashCode hashCode = 0;
/** We compute the beginning hash code. */
for (int i=_span-1; i>=0; i--)
{
LETTER l = data[i];
hashCode = (hashCode << 2) | LETTER_NUC(l);
nbMatch += LETTER_ISBAD(l) ? 0 : 1;
}
if (nbMatch >= _span && GETMASK(_maskIn,hashCode))
{
/** We add the offset in the database for the current seed. */
SeedOccurrence& occur = _index[hashCode] [ __sync_fetch_and_add (_counter+hashCode, 1)];
occur.offsetInDatabase = offset + 0;
occur.sequenceIdx = sequence->index;
}
/** We loop the remaining data; we update the hash code from the previous one. */
data += _span;
int imax = length - _span;
for (int i=1; i<=imax; i++, data++)
{
LETTER s = *data;
/** We update the hash code from the previous one. */
hashCode = (hashCode >> 2) | (LETTER_NUC(s) << _bitshift);
if (LETTER_ISBAD(s)) { nbMatch = 0; }
else
{
nbMatch++;
if (nbMatch >= _span && GETMASK(_maskIn,hashCode))
{
/** We add the offset in the database for the current seed. */
SeedOccurrence& occur = _index[hashCode] [ __sync_fetch_and_add (_counter+hashCode, 1)];
occur.offsetInDatabase = offset + i;
occur.sequenceIdx = sequence->index;
}
}
}
}
}
/********************************************************************************/
} } /* end of namespaces. */
/********************************************************************************/
|