File: fault-mon.c

package info (click to toggle)
plex86 0.0.20011018-8
  • links: PTS
  • area: main
  • in suites: woody
  • size: 4,868 kB
  • ctags: 8,721
  • sloc: ansic: 46,915; cpp: 17,817; xml: 1,283; makefile: 1,130; sh: 451; asm: 360; csh: 18
file content (997 lines) | stat: -rw-r--r-- 35,411 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
/*
 *  plex86: run multiple x86 operating systems concurrently
 *  Copyright (C) 1999-2001 Kevin P. Lawton
 *
 *  fault-mon.c:  fault/int handlers for VM monitor - monitor space.
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Lesser General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  License along with this library; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */


#include "plex86.h"
#define IN_MONITOR_SPACE
#include "monitor.h"





/* The monitor stack frame.  When an exception or interrupt occurrs
 * during the execution of either guest or monitor code, the following
 * values are pushed.
 * 
 * [gs]
 * [fs]       These are pushed by the CPU _only if_ transitioning from
 * [ds]       guest code running in v86 mode.
 * [es]
 *
 * ss
 * esp
 * eflags    Values pushed by the CPU and interrupt stub.  To simplify
 * cs        things, the stub pushes an error of zero for those
 * eip       events which don't naturally cause an error push, and
 * error     also pushes the vector of the exception/interrupt.
 * vector
 *
 * eax
 * ecx
 * edx       General registers, pushed with a PUSHA instruction,
 * ebx       by code below.
 * <esp>
 * ebp
 * esi
 * edi
 *
 * es
 * ds        Segment selectors, pushed by code below.
 * fs
 * gs
 */

/* Info on hack for transitioning to 16-bit guest stack segments.  For
 * the cases of returning to a guest being monitored in either v86-mode,
 * or PM with a 32-bit SS, the full 32 bits of ESP are honored from the
 * monitor stack image.  But when performing an IRET back to guest code
 * monitored in PM * with a 16-bit stack segment, only the lower 16 bits
 * of ESP are initialized.  The upper 16bits remain from the previous and
 * unrelated monitor ESP values.  To handle restoring the full 32 bits of
 * the guest ESP as expected, a temporary monitor stack segment is created,
 * with adjusted SS.base and ESP values such that the same linear offsets
 * are generated for the parameters (guest register values) on the
 * monitor stack, but with the upper 16 bits of ESP being identical
 * to those expected by the guest.  This temporary segment is used only
 * for the purposes of the IRET.  During the next event generated while
 * the guest is executing, the normal SS:ESP values are reloaded from
 * the monitor TSS.
 *
 * The only issue is if an exception is generated while trying to
 * IRET to the guest code.  In this case, we have to fix the SS:ESP
 * first, as these values will not have been reloaded as they usually
 * are in a transition from guest (ring3) to monitor (ring0).
 */


void handleMonFault(guest_context_t *monContext);

  static inline
Bit32u readCR2(void)
{
  Bit32u cr2;
  asm volatile ("movl %%cr2, %0" : "=r" (cr2));
  return( cr2 );
}


asm (
".text                  \n\t"

/* __handle_fault:  This is called by all of the monitor's fault handler
 *     stubs.  A fault could have originated from execution of the guest
 *     (due to virtualization conditions or natural fault generation) or
 *     from the monitor (currently only due to bugs in the monitor).
 */
".globl __handle_fault  \n\t"
"__handle_fault:        \n\t"
"  pushal               \n\t" /* Save general registers */
"  pushl %es            \n\t" /* Save segment registers */
"  pushl %ds            \n\t"
"  pushl %fs            \n\t"
"  pushl %gs            \n\t"

"  movl  64(%esp), %eax     \n\t" /* EFLAGS pushed by CPU from fault */
"  andl  $0x20000, %eax     \n\t" /* Check EFLAGS.VM bit */
"  jnz   __fault_from_guest \n\t" /* V86 mode means fault was from guest */
"  movl  60(%esp), %eax     \n\t" /* CS pushed by CPU from fault */
"  andl  $3, %eax           \n\t" /* Check CS.RPL bits */
"  jz    __fault_from_mon   \n\t" /* RPL0 means from monitor */

/* We have determined that the fault was from guest code.  Prepare
 * to call the monitor C code to do most of the fault handling.
 */
"__fault_from_guest:    \n\t"
"  movl  %ss, %eax      \n\t" /* Copy SS into DS/ES */
"  movl  %eax, %ds      \n\t"
"  movl  %eax, %es      \n\t"
"  cld                  \n\t" /* gcc-compiled code needs this */
"  pushl %esp           \n\t"
"  call handleGuestFault\n\t" /* Call the C monitor fault handler */
"  addl $4, %esp        \n\t" // xxx Could eliminate if we re-code
                              // xxx Need to pre-push esp in init code.
".globl __ret_to_guest  \n\t" /* Fault handled, work back to guest */
"__ret_to_guest:        \n\t"
"  pushl %esp           \n\t"
"  call preGuest        \n\t" /* Prepare for return to guest */
"  addl $4, %esp        \n\t"
"  cmpl $0x1, %eax      \n\t" /* What mode is guest monitored in? */
"  jb   __ret_to_v86    \n\t" /* case 0: guest monitored in v86 mode */
"  jnz  __ret_to_pmss16 \n\t" /* case 2: guest monitored in PM w/ small SS */
                            /* case 1: guest monitored in PM w/ big SS */

/* Return to the guest, monitored in PM with a 32-bit SS.  Simply
 * restore registers from the monitor stack.  The full 32-bit guest ESP
 * value is honored.
 */
"__ret_to_pmss32:       \n\t"
"  popl  %gs            \n\t" /* Restore guest segments */
"  popl  %fs            \n\t"
"  popl  %ds            \n\t"
"  popl  %es            \n\t"
"  popal                \n\t" /* Restore guest general registers */
"  addl  $8, %esp       \n\t" /* Ignore vector and error dwords */
"  iret                 \n\t" /* Resume execution of guest */


/* __fault_from_mon:  The only expected faults from the monitor occur
 *   when special assembly routines attempt native guest seg:offset
 *   accesses to accelerate emulation.  Paging faults and segment
 *   check faults can occur.
 *
 *   Old comments:
 *   Currently this means a monitor bug.  It's often
 *   due to an attempt to IRET to the guest with bad selector/descriptor
 *   values setup by the monitor.  Because of the SS16 hack, if an IRET
 *   back to guest code never completes and generates an exception, our
 *   SS:ESP values are still modified and not reloaded by the exception
 *   mechanism since no privilege level change occurred.  So before
 *   turning control over to the C code, we must check for this condition
 *   and restore SS:ESP.  Then we can reload the data segments from SS.
 */

"__fault_from_mon:               \n\t"
// xxx Fix this stuff
#if 0
"  movl  %esp, %ebx              \n\t" /* Get nexus page address */
"  andl  $0xfffff000, %ebx       \n\t"
"  movl  $__SSNormal, %edx       \n\t" /* Create a pointer to SSNormal */
"  subl  $__nexus_start, %edx    \n\t"
"  ss; movl  (%ebx,%edx), %ecx   \n\t" /* Get SSNormal */
"  movl  %ss, %eax               \n\t" /* Get current SS */
"  cmpw  %cx, %ax                \n\t" /* Compare SS with SSNormal */
"  je    __mon_SS_ESP_restored   \n\t" /* If same, then no restore needed */

"  movl  $__espUpperNormal, %edx \n\t" /* Get pointer to espUpperNormal */
"  subl  $__nexus_start, %edx    \n\t"
"  ss; movl  (%ebx,%edx), %eax   \n\t" /* Get espUpperNormal */
"  andl  $0x0000ffff, %esp       \n\t" /* Clear upper ESP bits */
"  orl   %eax, %esp              \n\t" /* Restore upper ESP bits */
"  movl  %ecx, %ss               \n\t" /* Restore SS */

"__mon_SS_ESP_restored:          \n\t"
"  movl  %ss, %eax               \n\t" /* Copy monitor SS to DS/ES */
"  movl  %eax, %ds               \n\t"
"  movl  %eax, %es               \n\t"
#endif
"  cld                           \n\t" /* gcc-compiled code needs this */
"  pushl %esp                    \n\t" /* Push pointer to context. */
"  call handleMonFault           \n\t" /* Call C code for real work */
"  addl $4, %esp                 \n\t"
"  jmp  __ret_to_monitor         \n\t" /* Event handled, back to monitor */
                                       /* (Currently never gets here) */



/* Return to guest, monitored in PM with a 16-bit SS.  Only the lower
 * 16 bits of ESP will be honored.  The upper 16 bits of ESP are actually
 * passed through (left) from the unrelated monitor ESP value, when
 * transitioning from a 32-bit SS (which is the case with the monitor)
 * to a 16-bit SS.  So what we do is create an alternate monitor stack
 * segment such that the upper 16 bits are equivalent to those expected
 * by the guest, by adjusting the SS.base value.  This alternate segment
 * is really only used for the purposes of an IRET back to the guest.
 */
"__ret_to_pmss16:                     \n\t"
"  movl  %esp, %ebx                   \n\t" /* Get nexus page addr */
"  andl  $0xfffff000, %ebx            \n\t"
"  movl  $__espUpper16BitSSHack, %edx \n\t" /* Get ptr to nexus field */
"  subl  $__nexus_start, %edx         \n\t"
"  movl  (%ebx,%edx), %eax            \n\t" /* Access nexus field */
"  movl  $__SS16BitSSHack, %edx       \n\t" /* Get ptr to nexus field */
"  subl  $__nexus_start, %edx         \n\t"
"  movl  (%ebx,%edx), %ecx            \n\t" /* Access nexus field */
"  andl  $0x0000ffff, %esp            \n\t" /* Clear upper ESP bits */
"  orl   %eax, %esp                   \n\t" /* Use alternate ESP upper bits */
"  movl  %ecx, %ss                    \n\t" /* Use alternate SS segment */
"  popl  %gs            \n\t" /* Restore guest segments */
"  popl  %fs            \n\t"
"  popl  %ds            \n\t"
"  popl  %es            \n\t"
"  popal                \n\t" /* Restore guest general registers */
"  addl  $8, %esp       \n\t" /* Ignore vector and error dwords */
"  iret                 \n\t" /* Resume execution of guest */

/* Return to the guest, monitored in v86 mode.  Simply restore registers
 * from the monitor stack.  The full 32-bit guest ESP value is honored
 * when returning to v86 mode code.
 */
"__ret_to_v86:          \n\t"
"  addl $16, %esp       \n\t" /* Ignore, segs are in IRET area for v86 */
"  popal                \n\t" /* Restore guest general registers */
"  addl $8, %esp        \n\t" /* Ignore vector and error dwords */
"  iret                 \n\t" /* Resume execution of guest */

/* Return to monitor.  An event occurred while monitor code was executing.
 * Simply restore state from the monitor stack.
 */
"__ret_to_monitor:      \n\t"
"  popl  %gs            \n\t" /* Restore monitor segments */
"  popl  %fs            \n\t"
"  popl  %ds            \n\t"
"  popl  %es            \n\t"
"  popal                \n\t" /* Restore monitor general registers */
"  addl  $8, %esp       \n\t" /* ignore vector and error dwords */
"  iret                 \n\t" /* Resume execution of monitor */


/*
 * Hardware interrupt handler stub
 */
".globl __handle_int    \n\t" /* Return to monitor code */
"__handle_int:          \n\t"
"  pushal               \n\t" /* Save guest general registers */
"  pushl %es            \n\t" /* Save guest segment registers */
"  pushl %ds            \n\t"
"  pushl %fs            \n\t"
"  pushl %gs            \n\t"

"  movl  %ss, %eax      \n\t" /* Copy SS into DS/ES */
"  movl  %eax, %ds      \n\t"
"  movl  %eax, %es      \n\t"
"  cld                  \n\t" /* gcc-compiled code needs this */
"  pushl %esp           \n\t"
"  call handleInt       \n\t" /* monitor interrupt handler */
"  addl $4, %esp        \n\t"
"  cmpl $0x1, %eax      \n\t" /* Was interrupt generated from monitor code? */
"  je   __ret_to_monitor\n\t" /* Yes, so return to monitor code */
"  jmp  __ret_to_guest  \n\t" /* No, so return to guest code */
);



  unsigned
preGuest(guest_context_t *context)
{
  nexus_t *nexus = (nexus_t *) (((Bit32u) context) & 0xfffff000);
  vm_t    *vm    = (vm_t *) nexus->vm;
  //v86_sregs_t *v86_sregs =
  //    (v86_sregs_t *) (((Bit32u)context) + sizeof(guest_context_t));

#if 0
  Bit32u   guestLinAddr, guest_ppage_index;
  unsigned seg32;
  Bit32u   gerror;
  unsigned us, rw;
  unsigned m, ret;
  Bit32u   tcodeAddr=0;
#endif

#if ANAL_CHECKS
  if ( !context->eflags.fields.vm && !(context->cs & 0x0003) )
    monpanic(vm, "preGuest: monitor code!\n");
#endif


#if ANAL_CHECKS
  if ( !context->eflags.fields.if_ )
     monpanic(vm, "preGuest: guest IF=0\n");

  if ( context->eflags.raw & (
       FLG_IOPL | /* FLG_NT | FLG_RF | FLG_VM | FLG_AC | */
       FLG_VIF | FLG_VIP) )
     monpanic(vm, "preGuest: eflags=0x%x\n", context->eflags);
#endif


  STI();

  /* Prime with initial modeChange if any. */
  if (vm->modeChange)
    monModeChange(vm);

  while (1) {
    unsigned reason;
    unsigned instructions;

    instructions = 0; /* Indefinite. */
    reason = cpuEmulate(vm, context, &instructions);
    /* If execution is being driven by a debugger. */
// xxx This should be conditionally compiled in.
    if (vm->executeN) {
      if (instructions > vm->executeN)
        monpanic(vm, "preGuest: i > executeN.\n");
      vm->executeN -= instructions;
      if (vm->executeN==0) {
        sysEOICount(vm);
        }
      }
    if (reason & EmulateStopReasonModeChange) {
      if (vm->modeChange)
        monModeChange(vm);
      }
    if (reason & EmulateStopReasonCycles) {
      //monpanic(vm, "preGuest: StopReasonCycles: elapsed=%u, remain=%u.\n",
      //         (Bit32u) vm->system.cyclesElapsed,
      //         (Bit32u) vm->system.cyclesRemaining);
      if (handleTimers(vm) != 0)
        monpanic(vm, "preGuest: handleTimers error.\n");
      }
    if (reason & EmulateStopReasonDT) {
      monpanic(vm, "preGuest: StopReasonDT.\n");
      }
    if (reason & EmulateStopReasonExecuteNative) {
      monpanic(vm, "preGuest: StopReasonExecuteNative.\n");
      }
    if (reason & EmulateStopReasonInstructions) {
      monpanic(vm, "preGuest: StopReasonInstructions.\n");
      }
    }

  return(1); // xxx Bogus for now



#if 0
  if (vm->eipModified) {
    guest_cycles_elapsed(vm);
    /* If there is an asynchronous event waiting, let the tcode know
     * we are requesting a return soon.
     */
    goto returnToGuest;
    }

loop:

  guest_cycles_elapsed(vm);

  /* Past execution (emulation) could have created a need for
   * a remap of the guest in the monitor space
   */
  if (vm->modeChange)
    monModeChange(vm);

  /* Check for asynchronous events, inhibits, traps etc before
   * executing guest code
   */
  emulate_async_checks(vm);

  /* +++ Look again here???  Remove check above??? */
  if (vm->modeChange)
    monModeChange(vm);

/* Notes:
 *   if (vm->guest_cpu.inhibit_mask || vm->guest_cpu.debug_trap)
 *     then have to make sure inhibits are honored.
 */

  /* See if cosimulation demands the guest takes an interrupt
   * at this point.  This would be the case if it is being
   * driven as a slave simulator.
   */
  if (vm->dbg_force_int) {
    unsigned vector = vm->dbg_force_int & 0xff;
    if (vm->guest_cpu.inhibit_mask || vm->guest_cpu.debug_trap)
      monpanic(vm, "preGuest: force_int w/ IM || DT\n");
    vm->dbg_force_int = 0;
    emulate_interrupt(vm, vector);
    sysReqComplete(vm);
    /* An interrupt may put the VM in a state which requires
     * remapping.  Repeat the process
     */
    goto loop;
    }

  switch (vm->executeMethod) {
    case RunGuestNMethodExecute:
      /* Really, should copy guest TF to monitor TF here.  For
       * now just turn off TF always.  Need to check what case
       * set it in handler when enabled.
       */
      if (vm->guest_cpu.inhibit_mask || vm->guest_cpu.debug_trap)
        monpanic(vm, "preGuest: MethodExecute: IM || DT\n");
      context->eflags.fields.tf = 0;
      break;

    case RunGuestNMethodEmulate:
      emulate_instr(vm, context, 4);
      /* Above call will decrement executeN if execution completes */
      goto loop;

    case RunGuestNMethodBreakpoint:
      /* Regardless of guest TF, we need to set monitor TF to generate
       * a breakpoint after the next instruction executes
       */
      context->eflags.fields.tf = 1;
      break;

    default:
      monpanic(vm, "preGuest: Method default\n");
    }

  cache_sreg(vm, SRegCS);
  if (context->eip > vm->guest_cpu.desc_cache[SRegCS].limit_scaled)
    monpanic(vm, "preGuest: %x > CS.limit\n", context->eip);
  guestLinAddr = vm->guest_cpu.desc_cache[SRegCS].base + context->eip;
  us = (G_GetCPL(vm)==3);
  rw = 0; /* need at least read priv for code */
  switch ( m = map_guest_laddr(vm, guestLinAddr, &guest_ppage_index,
                           us, rw, PageUsageVCode, &gerror) ) {
    case MapLinOK:
    case MapLinAlreadyMapped:
      break;
    case MapLinMonConflict:
      monpanic(vm, "preGuest: MapLinMonConflict:\n");
    case MapLinPPageOOB:
      monpanic(vm, "preGuest: MapLinPPageOOB:\n");
    case MapLinException:
      /* Executing code at this location would generate a #PF */
      vm->guest_cpu.cr2 = guestLinAddr;
      emulate_exception(vm, ExceptionPF, gerror);
      /* An exception means a possible monitor remap request, mode
       * change etc.  We need to repeat this process.
       */
      goto loop;
    case MapLinEmulate:
      monpanic(vm, "preGuest: MapLinEmulate:\n");
      emulate_instr(vm, context, 5);
      goto loop;
    default:
      monpanic(vm, "preGuest: MapLin: default case:\n");
    }

  if ( vm->vOpcodeMap ) {
    Bit32u   guestPhyAddr;

    seg32 = vm->guest_cpu.desc_cache[SRegCS].desc.d_b;
    guestPhyAddr = (guest_ppage_index<<12) | (guestLinAddr & 0xfff);
  
    tcodeAddr = dtTranslateG2T(vm, context->eip, guestLinAddr, guestPhyAddr);

    if (tcodeAddr == TcodeOffsetNone) {
      /* xxx If we can have dtTranslateG2T pass back a flag, notifying us
       * xxx when the 1st instruction is virtualized, we can emulate it
       * xxx immediately, rather than wasting a round trip to guest space.
       */
      monpanic(vm, "preGuest: dtTranslateG2T returns None.\n");
      emulate_instr(vm, context, 5);
      goto loop;
      }

    {
    // xxx Fix these.  Not all should be set here.
    /* Our r3h stack can use the same segment as GS which is virtualized
     * to be used as the r3h data segment.
     */
    vm->guest.addr.r3hData->r3hSS = Selector(4+SRegGS, 0, RPL3);
    vm->guest.addr.r3hData->r3hESP =
        ((Bit32u)vm->guest.addr.r3hData) + 4096;
    vm->guest.addr.r3hData->r3hRequest = R3HToMonRequestNone;
    vm->guest.addr.r3hData->dtG2THash = vm->guest.addr.dtG2THash;
    vm->guest.addr.r3hData->guestSS = Selector(4+SRegSS, 0, RPL3);
// xxx Selector() usage below should use 4+SReg?S format
    }
  
    /* Update timestamp for latest time of guest execution */
    // (vm->addr->dtPageMetaTable)[metaI].ts.guest_executed = vm_rdtsc();
    }

  /* Before returning execution to the guest, we have to copy certain
   * information from the vm->guest_cpu area to the guest_context
   * area, depending on guest/monitored mode.
   */

  if (GetMonMode(vm) == MonModeVM) {
    /* Guest code is monitored in V86M.  In this case, segment registers
     * are used natively.  A previous event (like emulation of an
     * instruction) may have changed some values.  Copy any updated
     * values which are currently managed in vm->guest_cpu, to the current
     * guest context before executing.
     */

    if ( vm->selectorInEmu & (1 << SRegES) )
      context->es = vm->guest_cpu.selector[SRegES].raw;
    if ( vm->selectorInEmu & (1 << SRegCS) )
      context->cs = vm->guest_cpu.selector[SRegCS].raw;
    if ( vm->selectorInEmu & (1 << SRegSS) )
      context->ss = vm->guest_cpu.selector[SRegSS].raw;
    if ( vm->selectorInEmu & (1 << SRegDS) )
      context->ds = vm->guest_cpu.selector[SRegDS].raw;
    if ( vm->selectorInEmu & (1 << SRegFS) )
      context->fs = vm->guest_cpu.selector[SRegFS].raw;
    if ( vm->selectorInEmu & (1 << SRegGS) )
      context->gs = vm->guest_cpu.selector[SRegGS].raw;

    /* Since we are executing guest code using v86 mode, we will
     * allow natural selector reads, and segment reloads to occur
     * unvirtualized.  Thus, we need to mark the fact that selectors
     * and descriptor cache values are no longer consistent with
     * those stored in the guest_cpu area.  
     */
    vm->selectorInEmu   = 0;
    vm->descriptorInEmu = 0;
    vm->segmentUpdated  = 0; // xxx Is this correct?

/* +++ we could eliminate double copy of selectors here and below */
    }
  else if ( vm->vOpcodeMap ) {

if ( (vm->selectorInEmu & 0x3f) != 0x3f )
  monpanic(vm, "preGuest: SIV=1, sInEmu=0x%x\n",
  vm->selectorInEmu);

    /* MonModePMR3, GuestModeRM.  Since the monitor is not running
     * guest code in VM, there must be non-compatible values in
     * the descriptor caches.  In this case we are virtualizing
     * segment registers accesses, and using PM selectors.  Update
     * virtualized descriptors based on updated guest values.  In
     * this case, there is no notion of a null selector.
     * Descriptor cache values remain maintained in the guest_cpu area.
     * Skip updating CS/GS, since they are virtualized for tcode use.
     */

    if ( vm->segmentUpdated ) {
      unsigned sreg;

/* +++ similar code in mon-mode.c */
      /* If the descriptor caches for each segment register is
       * invalid, then set the virtualized selector to NULL so
       * an exception is not generated upon return to the guest.
       * Otherwise, point them at virtualized descriptors representing
       * the shadow cache values of each segment register.
       */
      if ( vm->segmentUpdated & (1<<SRegES) ) {
        if ( !vm->guest_cpu.desc_cache[SRegES].valid )
          context->es = nullSelector.raw;
        else
          context->es = Selector(4, 0, RPL3);
        }
   
      if ( vm->segmentUpdated & (1<<SRegSS) ) {
        if ( !vm->guest_cpu.desc_cache[SRegSS].valid )
          context->ss = nullSelector.raw;
        else
          context->ss = Selector(6, 0, RPL3);
        }

      if ( vm->segmentUpdated & (1<<SRegDS) ) {
        if ( !vm->guest_cpu.desc_cache[SRegDS].valid )
          context->ds = nullSelector.raw;
        else
          context->ds = Selector(7, 0, RPL3);
        }

      if ( vm->segmentUpdated & (1<<SRegFS) ) {
        if ( !vm->guest_cpu.desc_cache[SRegFS].valid )
          context->fs = nullSelector.raw;
        else
          context->fs = Selector(8, 0, RPL3);
        }

      for (sreg=0; sreg<6; sreg++) {
        if ( vm->segmentUpdated & (1<<sreg) ) {
          /* CS/GS are handled separatedly - they are used for tcode */
          if ( (sreg==SRegCS) || (sreg==SRegGS) )
            continue;
          if (vm->guest_cpu.desc_cache[sreg].valid) {
            vm->guest.addr.gdt[4+sreg] = vm->guest_cpu.desc_cache[sreg].desc;
            vm->guest.addr.gdt[4+sreg].dpl = 3;
            }
          else {
            vm->guest.addr.gdt[4+sreg] = nullDescriptor;
            }
          }
        }
      vm->segmentUpdated = 0;
      }

    /* Up to this point, CS:EIP are the expected guest values.  Modify
     * them to use values for DT tcode.  The interrupt/exception
     * handlers will reset them back to guest values.
     */
    context->eip = tcodeAddr;
    vm->eipModified = 1;
    }
  else {
    monpanic(vm, "preGuest: SIV off not handled yet.\n");
    vm->eipModified = 0;
    }

returnToGuest:

  if (context->eflags.fields.vm) {
    /* Copy working sregs back to stack so IRET will use them. */
    v86_sregs.es = context->es;
    v86_sregs.ds = context->ds;
    v86_sregs.fs = context->fs;
    v86_sregs.gs = context->gs;
    vm->guest.addr.tss->esp0 = ((Bit32u)nexus) + PAGESIZE;
    }
  else {
    vm->guest.addr.tss->esp0 =
      ((Bit32u)nexus) + PAGESIZE - sizeof(v86_sregs_t);
    }

  CLI();

// xxx Should all code below, be after CLI?

  /* Set a flag to report back to the assembly code, which mode
   * the guest is being monitored in.  Also, the 16-bit ESP stack
   * hack is setup, when appropriate.  See the notes at the top of
   * this file.
   */
  if (context->eflags.fields.vm) {
    ret = 0; /* to guest in V86M */
    }
  else if ( !vm->guest.addr.gdt[4+SRegSS].d_b ) {
    Bit32u monBaseNormal, monESPUpperNormal, monBaseHacked;
    Bit32u guestESPUpperNormal;
    unsigned ssNormalSlot, ssHackedSlot;
  
    ssNormalSlot = vm->guest.addr.nexus->SSNormal>>3;
    ssHackedSlot = vm->guest.addr.nexus->SS16BitSSHack>>3;
    monBaseNormal = BaseOfDescriptor(vm->guest.addr.gdt[ssNormalSlot]);
  
    asm volatile (
      "movl %%esp, %0 \n\t"
      "andl $0xffff0000, %0"
      : "=r" (monESPUpperNormal)
      );
    guestESPUpperNormal = context->esp & 0xffff0000;
  
    monBaseHacked = monBaseNormal +
                    (monESPUpperNormal - guestESPUpperNormal);
  
    vm->guest.addr.nexus->espUpperNormal = monESPUpperNormal;
    vm->guest.addr.nexus->espUpper16BitSSHack = guestESPUpperNormal;
    vm->guest.addr.gdt[ssHackedSlot] = vm->guest.addr.gdt[ssNormalSlot];
    vm->guest.addr.gdt[ssHackedSlot].base_low  = monBaseHacked;
    vm->guest.addr.gdt[ssHackedSlot].base_med  = monBaseHacked >> 16;
    vm->guest.addr.gdt[ssHackedSlot].base_high = monBaseHacked >> 24;
    ret = 2; /* to guest in PM with SS16 hack */
    }
  else {
    ret = 1; /* to guest in PM */
    }

  if (vm->guest_cpu.async_event)
    __r3hAsyncEvent = 1;
  else
    __r3hAsyncEvent = 0;

  vm->system.t0 = vm_rdtsc();
  return (ret);
#endif
}


  unsigned
handleInt(guest_context_t *context)
/*
 * handleInt(): Redirect a hardware interrupt back to the host
 */
{
  nexus_t *nexus = (nexus_t *) (((Bit32u) context) & 0xfffff000);
  vm_t    *vm    = (vm_t *) nexus->vm;
  v86_sregs_t *v86_sregs =
      (v86_sregs_t *) (((Bit32u)context) + sizeof(guest_context_t));
  unsigned from_monitor;
  Bit64u t1;

  t1 = vm_rdtsc();

  if (context->eflags.fields.vm) {
    /* End of elapsed guest execution duration.  Add elapsed */
    /* cycles to time framework. */
    vm->system.cyclesElapsed += (t1 - vm->system.t0);

    /* Interrupt from guest code executing in v8086 mode. */
    /* The data segment selectors will have been pushed by the */
    /* the CPU for the interrupt.  Copy them down to the area */
    /* where we save them for protected mode. */
    context->es = v86_sregs->es;
    context->ds = v86_sregs->ds;
    context->fs = v86_sregs->fs;
    context->gs = v86_sregs->gs;
    from_monitor = 0; /* Event from guest code */
    }
  else if ( (context->cs & 0x0003) == 0x0003 ) {
    /* End of elapsed guest execution duration.  Add elapsed */
    /* cycles to time framework. */
    vm->system.cyclesElapsed += (t1 - vm->system.t0);

    from_monitor = 0; /* Event from guest code */
    }
  else {
    from_monitor = 1; /* Event from monitor code */
    }

  /* Interrupts are off naturally here. */
  vm->mon_request = MON_REQ_REDIRECT;
  vm->redirect_vector = context->vector;
  vm->guest.__mon2host();
  return(from_monitor);
}


  void
handleGuestFault(guest_context_t *context)
/*  Handle a fault from the guest.  Called from the assembly stub
 *  __handle_fault.
 */
{
  nexus_t *nexus = (nexus_t *) (((Bit32u) context) & 0xfffff000);
  vm_t    *vm    = (vm_t *) nexus->vm;
  v86_sregs_t *v86_sregs =
      (v86_sregs_t *) (((Bit32u)context) + sizeof(guest_context_t));
  Bit32u  cr2    = readCR2();
  Bit64u t1;

  /* End of elapsed guest execution duration */
  t1 = vm_rdtsc();
  vm->system.cyclesElapsed += (t1 - vm->system.t0);

  if (context->eflags.fields.vm) {
    /* Interrupt from guest code executing in v8086 mode. */
    /* The data segment selectors will have been pushed by the */
    /* the CPU for the interrupt.  Copy them down to the area */
    /* where we save them for protected mode. */
    context->es = v86_sregs->es;
    context->ds = v86_sregs->ds;
    context->fs = v86_sregs->fs;
    context->gs = v86_sregs->gs;
    }

#if ANAL_CHECKS
  if ( !context->eflags.fields.if_ )
    monpanic(vm, "handleGuestFault: guest IF=0\n");
  if ( !context->eflags.fields.vm && ((context->cs & 0x0003) != 0x0003) )
    monpanic(vm, "handleGuestFault: CS.RPL!=3\n");
#endif

  STI();

#if 0
  if (vm->eipModified) {
    r3hData_t *r3hData = vm->guest.addr.r3hData;
    if (context->eip == (Bit32u) __r3hNewEIP) {
      if (r3hData->r3hData > vm->guest_cpu.desc_cache[SRegCS].limit_scaled) {
        monpanic(vm, "hF: r3h EIP > CS.limit.\n");
        }
      context->eip = r3hData->r3hData;
      vm->eipModified = 0;
      }
    else {
      dtFixContext(vm, context);
      vm->eipModified = 0;
      }
    }
  else {
    // xxx Fix this
    monpanic(vm, "fault: SIV off.\n");
    }
#endif

  switch ( context->vector ) {
    case ExceptionDB: /* 1 */
      if (vm->executeMethod == RunGuestNMethodBreakpoint) {
        /* Breakpoint generated because we requested it via TF=1 */
        if (vm->executeN) {
          vm->executeN--;
          if (vm->executeN==0) {
            sysEOICount(vm);
            }
          }
        }
      else {
        monpanic(vm, "handleGuestFault: #DB, method=%u not coded\n",
          vm->executeMethod);
        }
      break;

    case ExceptionBR: /* 5 */
monpanic(vm, "handleGuestFault: BR unfinished.\n");
      /* BOUND instruction fault; array index not in bounds */
      emulate_exception(vm, context->vector, 0);
      break;

    case ExceptionDE: /* 0 */
    case ExceptionBP: /* 3 */
    case ExceptionOF: /* 4 */
    case ExceptionNM: /* 7 */
    case ExceptionMF: /* 16 */
monpanic(vm, "handleGuestFault: DE/BP/OF/NM/MF unfinished.\n");
      monpanic(vm, "handleGuestFault: %u\n", context->vector);
      /* emulate_interrupt(vm, context->vector); */
      break;

    case ExceptionNP: /* 11 */
    case ExceptionSS: /* 12 */
    case ExceptionAC: /* 17 */
monpanic(vm, "handleGuestFault: NP/SS/AC unfinished.\n");
      /* use emulate_xyz() */
      /*interrupt(vm, context->vector, 0, 1, context->error); */
      monpanic(vm, "handleGuestFault: %u\n", context->vector);
      break;

    case ExceptionUD: /* 6 */
    case ExceptionGP: /* 13 */
monpanic(vm, "handleGuestFault: UD/GP unfinished.\n");
//emulate_instr(vm, context, 1);
      break;

    case ExceptionPF: /* 14 */
      monPageFault(vm, context, cr2);
      break;

    default:
      monpanic(vm, "Other Fault: %u\n", context->vector);
      break;
    }
}

  void
handleMonFault(guest_context_t *monContext)
{
  nexus_t *nexus = (nexus_t *) (((Bit32u) monContext) & 0xfffff000);
  vm_t    *vm    = (vm_t *) nexus->vm;

  if (vm->inMonFault)
    monpanic(vm, "handleMonFault called recursively.\n");
  vm->inMonFault = 1;

  /* Fault occurred inside monitor code. */

  /* Except for a page fault, load GS with the null selector, in
   * case using it for accelerated guest access was the cause of the
   * problem.  For page faults, we may map in the page and restart
   * the instruction, leaving GS intact.
   */
  if ( monContext->vector!=ExceptionPF )
    monContext->gs = 0;

  switch ( monContext->vector ) {
    case ExceptionPF:
    case ExceptionGP:
      {
      Bit32u cr2, guest_ppi, gerror, fixEip;
      unsigned us, rw;

      cr2 = readCR2();
      STI();

      if (monContext->error & 0x8) /* If RSVD bits used in PDir */
        monpanic(vm, "handleMF: RSVD\n");
      us = G_GetCPL(vm)==3;
      rw = (monContext->error >> 1) & 1;
      if ( monContext->eip == (Bit32u) __fetchCheckAttempt )
        fixEip = (Bit32u) __readError;
      else if ( monContext->eip == (Bit32u) __readByteAttempt )
        fixEip = (Bit32u) __readError;
      else if ( monContext->eip == (Bit32u) __readWordAttempt )
        fixEip = (Bit32u) __readError;
      else if ( monContext->eip == (Bit32u) __readDWordAttempt )
        fixEip = (Bit32u) __readError;
      else if ( monContext->eip == (Bit32u) __readRMWByteAttempt )
        fixEip = (Bit32u) __readError;
      else if ( monContext->eip == (Bit32u) __readRMWWordAttempt )
        fixEip = (Bit32u) __readError;
      else if ( monContext->eip == (Bit32u) __readRMWDWordAttempt )
        fixEip = (Bit32u) __readError;

      else if ( monContext->eip == (Bit32u) __writeByteAttempt )
        fixEip = (Bit32u) __writeError;
      else if ( monContext->eip == (Bit32u) __writeWordAttempt )
        fixEip = (Bit32u) __writeError;
      else if ( monContext->eip == (Bit32u) __writeDWordAttempt )
        fixEip = (Bit32u) __writeError;

      else
        fixEip = 0;
      if ( (monContext->vector==ExceptionPF) && fixEip ) {
        switch (mapGuestLinAddr(vm, cr2, &guest_ppi, us, rw, 0, &gerror)) {
          case MapLinOK:
            {
#if 0
            /* Map was successful.  Restart instruction @ current eip. */
            Bit32u lAddr, lAddr0, lAddrN;
            unsigned r;

            /* Since the paged was mapped OK, this was a lazy (demand) paging
             * fault.  This is a good time to speculatively map in some more
             * neighboring pages, to reduce future faults.  Do that before
             * restarting instruction.
             */
            lAddr0 = cr2    & 0xffff8000;
            lAddrN = lAddr0 | 0x00007000;
            cr2 &= 0xfffff000; /* Need strict page address for compare. */
            for (lAddr=lAddr0; lAddr<=lAddrN; lAddr++) {
              /* Skip the page we already mapped. */
              if (lAddr == cr2)
                continue;
              /* For the read-write flag, just pass 0=read since there really
               * is no particular access occurring.  The monitor will map in
               * the page according to the guest attributes.
               */
              r = mapGuestLinAddr(vm, lAddr, &guest_ppi, us, 0, 0, &gerror);
              /* Stop speculative mapping, when we hit a non-standard case. */
              if ( (r!=MapLinOK) && (r!=MapLinAlreadyMapped) )
                break;
              }
#endif
            break;
            }
          default:
            /* A new mapping was unsuccessful.  Adjust monitor EIP to
             * error recovery code, specific to the access code which
             * generated the event.
             */
            monContext->eip = fixEip;
            monContext->gs = 0;
            break;
          }
        }
      else if ( (monContext->vector==ExceptionGP) && fixEip ) {
        /* Adjust monitor EIP to error routine. */
        monContext->eip = fixEip;
        monContext->gs = 0;
        }
// xxx Delete this debug stuff
      else {
        monContext->gs = 0;
monprint(vm, "nexus = 0x%x\n", nexus);
monprint(vm, "rVBA: 0x%x\n", (Bit32u) __readByteAttempt);
monprint(vm, "rVWA: 0x%x\n", (Bit32u) __readWordAttempt);
monprint(vm, "rVDA: 0x%x\n", (Bit32u) __readDWordAttempt);
monprint(vm, "wVBA: 0x%x\n", (Bit32u) __writeByteAttempt);
monprint(vm, "wVWA: 0x%x\n", (Bit32u) __writeWordAttempt);
monprint(vm, "wVDA: 0x%x\n", (Bit32u) __writeDWordAttempt);
monprint(vm, "desc.l=0x%x\n", *(Bit32u*) &vm->guest.addr.gdt[4+SRegGS]);
monprint(vm, "desc.h=0x%x\n", *( ((Bit32u*) &vm->guest.addr.gdt[4+SRegGS]) + 1) );
monprint(vm, "gs sel = 0x%x\n", monContext->gs);
monpanic(vm, "hMF: fault=%u, eip=0x%x\n",
         monContext->vector, monContext->eip);
        monpanic(vm, "hMF: vector=%u\n", monContext->vector);
        }
      break;
      }
    default:
      monpanic(vm, "hMF: vector=%u\n", monContext->vector);
      break;
    }

  //vm->abort_code = 1;
  //monpanic_nomess(vm);
  CLI();
  vm->inMonFault = 0;
}