1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
|
/*
* plex86: run multiple x86 operating systems concurrently
* Copyright (C) 1999-2001 Kevin P. Lawton
*
* dt.h: Dynamic Translation header file
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef __DT_H__
#define __DT_H__
// xxx Clean up #if 0 clauses
/* ===== DT CONFIGURATION OPTIONS ===== */
#define DT_DEBUG 0 /* Print debug dump */
#define DT_ON 1 /* Use DT engine to run guest code */
//#define DT_ON 0 /* Run guest code native for speed comparison */
/* This is how many loop iterations the major body of code takes */
//#define DT_MacroLoops 2000000
#define DT_MacroLoops 400000
//#define DT_Workload 0 /* NOP */
#define DT_Workload 1 /* Cascading add loop (DT_MicroLoops) */
/*
* This is how many tight-loop iterations each code section takes.
* Must be between 1 and 255.
*/
//#define DT_MicroLoops 100
//#define DT_MicroLoops 10
#define DT_MicroLoops 5
#define DT_UseR3hStack 1
/*
* 1=Use backpatch scheme for static out-of-page branches, 0=Always
* use lookup function.
*/
#define DT_UseBackpatch 1
/*
* Simulate guest context switches @ N usec intervals. Since the
* system timer is used, the lower bound of this is determined by
* the setitimer() resolution.
*/
//#define DT_GuestTimeslice 10000
#define DT_GuestTimeslice 500000
#define DT_G2THashMethod 1
/* Only define if testing sparse table logic */
#define TestSparseTables 0
/* Do some extra Sparse Table releated sanity checks. */
#define STExtraSanityChecks 1
#if DT_DEBUG
#define InstrG2THit(i) ({instrG2THit[i]++;})
#define InstrG2TMiss() ({instrG2TMiss++;})
#else
#define InstrG2THit(i) ({})
#define InstrG2TMiss() ({})
#endif
#define CacheLineAlignment 32
//#define DoInstrEmulateOpcode
/* ===== END OF DT CONFIGURATION OPTIONS ===== */
#ifdef DoInstrEmulateOpcode
#define InstrEmulateOpcode(vm) instrEmulateOpcode(vm)
#else
#define InstrEmulateOpcode(vm) ({})
#endif
#define INT3OP 0xcc
/* ================================================================= */
/* Bit definititions for elements in vOpcodeMap_t. */
/* Bit4: signals if this instruction needs virtualization */
/* 0: virtualize this instruction */
/* 1: well behaved; no need to virtualize */
#define VOpcodeRunNative 0x10
#define VOpcodeTranslate 0x20
/* Shorthand macro */
#define RN VOpcodeRunNative
#if 0
/* ================================================================= */
/* Bit definitions for fields in instruction meta cache. */
/* 3..0: instruction length (1..15) */
/* 4: run native; 1=run native, 0=virtualize */
/* 5: available: (not used) */
/* 6: opcode-byte: 1=instruction opcode byte, 0=not */
/* 7: opcode-start: 1=scanned instruction starts here, 0=not */
#define MetaGetILen(m) ((m) & 0x0f)
#define MetaRunNative VOpcodeRunNative
#define MetaOpcodeByte 0x40
#define MetaOpcodeStart 0x80
#endif
/*
* The guest Linear to Meta index Hash table. We need an efficient
* hash table to store translations from guest linear page
* addresses (upper 20 bits) to the DT meta page for that code page.
* This is quite similar to an i-TLB use in the CPU, except that
* rather than translate to physical addresses, we translate to
* the index of the DT meta page.
*
* In the DT meta page, is a lookup table and other data specific
* to that particular code page, which can be accessed to find the
* address of a specific translated instruction if it exists. Thus
* when we encounter new guest instruction addresses which are not
* in the G2T table, we have an efficient way to lookup the meta
* info for that code page.
*
* This translation only concerns the upper 20bits, as the lower
* 12bits are the page offset. Bits 15..12 (4bits) from the linear
* address are used to select the hash block used. Bits 31..16 (16bits)
* are stored in one of the translation pairs along with the
* corresponding meta index (which is also 16bits). Since both
* quantities of each pair is 16bits, 8 pairs where chosen as the size of
* the hash block, because this fits neatly into 1 cache line on the
* Pentium+. Thus DO NOT CHANGE the dimensions of this structure without
* considering the data size issues.
*
* bits 31..16: stored as tag
* bits 15..12: selects hash block [0..15]
* bits 11..00: (page offset not used)
*/
#define DT_L2MHashWidth 8
#define DT_L2MHashHeight 16
#define DT_LPAToMIHash(lpa) ((lpa) & 0xf)
#define DT_LPAToMITag(lpa) (((lpa) >> 4) & 0xffff)
/* The following index value signifies the entry is available and does
* not point to any construct.
*/
#define MetaIndexNone 0xffff
typedef struct {
Bit16u tag;
Bit16u metai;
} __attribute__ ((packed)) dtL2MHash_t[DT_L2MHashHeight][DT_L2MHashWidth];
/* 16*8*4 = 512bytes */
/*
* The guest Linear to Translated address Hash table. Once instructions
* have been translated and stored in the DT buffer, the address pairing
* (guest and translated instruction addresses) can be stored in this
* hash table. For branch handling, this makes an efficient way to
* determine the associated translation buffer address for a given
* branch target address. No extra protection checks are necessary
* before the branch is executed. To allow for this, the following
* actions must occur:
*
* - Buffer is completely invalidated for user<-->supervisor transitions
* - Buffer is completely invalidated for CS segment reloads
*/
#define DT_G2THashWidth 4 /* Fits in 1 Pentium+ cache line */
#define DT_G2THashHeight 8192 /* Need to tune this value */
/*
* NOTE: This hash select function needs to be coordinated with the
* hand coded assembly & generated tcode.
*/
#if DT_G2THashMethod == 0
#define DT_G2THashSelect(l) ( ((l)>>5) & 0x00001fff ) /* Need to tune this */
#else
#define DT_G2THashSelect(l) ( (l) & 0x00001fff ) /* Need to tune this */
#endif
/* 8192*4*8 = 256k */
#define TcodeOffsetNone 0xffffffff
typedef struct {
Bit32u gOff;
Bit32u tOff;
} __attribute__ ((packed)) dtG2THash_t[DT_G2THashHeight][DT_G2THashWidth];
/* ============================
* Sparse table lookup features
* ============================
*/
/* A sparse table is used to efficiently maintain associations
* between guest instruction addresses and corresponding translated
* code sequence addresses, both in forward and reverse directions.
*
* L0: bits 11..8 (4bits)
* L1: bits 7..5 (3bits)
* L2: bits 4..0 (5bits)
*/
/* Level 2 (L2) of the sparse lookup is actually a linked
* list, where each node contains STL2N entries. Using
* a full (array) frame to cover this part of the address space
* would consume a lot of space because a lot of addresses will not
* contain the start of scanned instructions. The value of
* STL2N can be 1 or more. Storing more in each
* quantum increases the search efficiency, but may consume
* more space when elements are not used. Values of
* 1, 2, or 3 may make sense.
*/
#define STForwardL0N 16 /* Dont change */
#define STForwardL1N 8 /* Dont change */
#define STForwardL2N 3 /* (configurable) */
typedef struct stForwardL2Cluster_tag {
union {
struct {
Bit32u addr4_0:5; /* For address match of bits 4..0 */
Bit32u attributes:7;
Bit32u tcodeOffset:20;
} __attribute__ ((packed)) fields;
Bit32u raw; /* access to all bits at once */
} __attribute__ ((packed)) element[STForwardL2N];
struct stForwardL2Cluster_tag *next;
} __attribute__ ((packed)) stForwardL2Cluster_t;
/* Levels 0 and 1 (L0 and L1) are simple arrays, one element for
* each combination of the address bits for the corresponding
* address range. Elements of L0 frames are frame indeces for
* the next level (L1). Elements of the L1 frames point to an
* L2 linked list structure.
*/
typedef stForwardL2Cluster_t *stForwardL1Frame_t[8];
typedef stForwardL1Frame_t *stForwardL0Frame_t[16];
#define STReverseL1N 4 /* Dont change */
#define STReverseL2N 3 /* (configurable) */
typedef struct stReverseL2Cluster_tag {
union {
struct {
Bit32u addr5_0:6; /* For address match of bits 5..0 */
Bit32u tcodeLen:8; /* length of tcode sequence */
Bit32u pageOffset:12; /* iaddr page offset (bits 11..0) */
Bit32u notUsed:6;
} __attribute__ ((packed)) fields;
Bit32u raw; /* access to all bits at once */
} __attribute__ ((packed)) element[STReverseL2N];
struct stReverseL2Cluster_tag *next;
} __attribute__ ((packed)) stReverseL2Cluster_t;
/* ====================
* Tcode chunk features
* ====================
*/
#define TCodeChunkN 256 /* (configurable) Must be multiple of 8 */
#define TCodeChunkSize 256 /* Dont change this! */
typedef union tcodeChunk_tag {
struct {
/* For reverse lookup (tcode address -> instruction address), a
* lookup table is used, which is similar to the forward lookup
* mechanisms. Each tcode chunk is 256 bytes (8 bits of address).
* This address space is analogous to the L1 & L2 components of
* forward lookup. So for simplicity and consistency, we start
* with L1. The top level frame is embedded in the chunk.
*/
stReverseL2Cluster_t *t2iL1[4];
/* Pointer to next chunk used by associated guest code page. The
* meta info for the code page points to the first chunk, and
* from there subsequent chunks which are allocated as needed
* are chained together by this pointer.
*/
union tcodeChunk_tag *next;
/* The index of the next available data offset in this chunk. */
Bit16u head;
Bit16u tail;
/* The index into the meta array so we can find which associated
* code page owns this tcode chunk.
*/
Bit32u ownerMetaIndex;
} __attribute__ ((packed)) header;
Bit8u raw[TCodeChunkSize];
} __attribute__ ((packed)) tcodeChunk_t;
#define MaxTcodeSnippets 32
typedef struct {
Bit32u pOff; /* The guest instruction page offset. */
Bit32u tcodeBuffOff; /* The offset into the tcode buffer passed. */
unsigned tcodeLen; /* Length of this individual tcode sequence */
} tcodeSnippet_t;
/* =======================
* Page Meta Info features
* =======================
*/
#define DTPageMetaTableN 16 /* (configurable) Should be multiple of 8. */
typedef struct {
stForwardL0Frame_t i2tL0; /* Level0 frame of iaddr->tcode sparse lookup */
Bit32u lpi; /* Linear Page Index (addr>>12). */
Bit32u ppi; /* Physical Page Index (addr>>12). */
/* Code segment info: */
descriptor_cache_t cs;
unsigned cpl; /* CPL of guest code this was scanned for */
/* +++ other constraints need to be added here */
/* Time Stamps */
struct {
Bit64u guest_write; /* last time guest code wrote data from this page */
Bit64u guest_executed; /* last time monitor allowed guest code in */
/* this page to execute */
Bit64u mon_created; /* 1st time monitor saw use of this page. */
Bit64u mon_prescan; /* last time of new prescanning activity */
} ts;
tcodeChunk_t *tcodeChunkHead; /* ptr to 1st tcode chunk in list */
tcodeChunk_t *tcodeChunkCurrent; /* ptr to current tcode chunk in list */
} dtPageMeta_t; // xxx Should I bother using __attribute__ ((packed))
#define R3HToMonRequestNone 0
#define R3HToMonRequestG2T 1
#define R3HToMonRequestPanic 2
#define R3HToMonRequestTerminate 3
#if 0
extern void __mon2r3h(void);
extern void __r3h2mon(void);
extern Bit32u mon_ESP;
extern unsigned r3h_request;
extern Bit32u r3h_data;
extern Bit32u idPatchDispl;
extern Bit32u jmpPatchDispl;
/* Variable declarations */
extern descriptor_t CS;
extern unsigned CPL;
#endif
/* NOTE: This structure mirrors the values in 'stubs-r3.S'. Make
* sure to keep synchronized.
*/
typedef struct {
/* Data fields. */
Bit32u hashID; /* xxx was globalID */
Bit32u r3hESP;
Bit32u r3hSS;
unsigned r3hRequest;
Bit32u r3hData;
Bit32u r3hTargetEIP;
Bit32u guestESP;
Bit32u guestSS;
Bit32u r3hBranchDataAddr;
Bit32u r3hAsyncEvent;
/* Structure pointers. */
dtG2THash_t *dtG2THash;
} __attribute__ ((packed)) r3hData_t;
#define SizeOfTcodeBuffer (sizeof(tcodeChunk_t) * TCodeChunkN)
#define DTL2MMaxPages (1)
#define DTG2TMaxPages (64)
#define DTMetaTableMaxPages (16)
#define DTMetaTableUsageMaxPages (1)
#define DTTcodeChunkMaxPages (64)
#define DTTcodeChunkUsageMaxPages (1)
void
r3hBranchStatic(void)
__attribute__ ((section ("r3hSection")));
void
r3hBranchDynamic(void)
__attribute__ ((section ("r3hSection")));
void __r3hStubsDataStart(void);
void __r3hStubsCodeStart(void);
void __r3hBranchStatic(void);
void __r3hNewEIP(void);
void __r3hSectionStart(void);
void __r3hSectionEnd(void);
unsigned dtEmitPushImm32(Bit8u *p, unsigned remain, Bit32u imm32);
unsigned dtEmitUseR3hStack(Bit8u *p, unsigned remain);
unsigned dtEmitUseGuestStack(Bit8u *p, unsigned remain);
unsigned dtEmitPushf(Bit8u *p, unsigned remain);
unsigned dtEmitPopf(Bit8u *p, unsigned remain);
unsigned dtEmitIDCheck(Bit8u *p, unsigned remain, Bit8u **offsetPtr,
Bit8u **idPtr);
unsigned dtEmitJmp(Bit8u *p, unsigned remain, Bit32u **offsetPtr);
unsigned dtEmitCall(Bit8u *p, unsigned remain, Bit32u **offsetPtr);
#define HashIDNone 0
extern Bit32u __hashID;
extern Bit32u __r3hESP;
extern Bit32u __r3hSS;
extern Bit32u __r3hRequest;
extern Bit32u __r3hData;
extern Bit32u __r3hTargetEIP;
extern Bit32u __guestESP;
extern Bit32u __guestSS;
extern Bit32u __r3hBranchDataAddr;
extern Bit32u __r3hAsyncEvent;
#endif /* __DT_H__ */
|