1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
|
/*
* plex86: run multiple x86 operating systems concurrently
* Copyright (C) 1999-2001 Kevin P. Lawton
*
* mode-nexus.c: deals with which mode to run the guest CPU in,
* and mapping the monitor segments according to those modes.
* (features available to either space)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "plex86.h"
#define IN_NEXUS_SPACE
#include "monitor.h"
const selector_t nullSelector = { raw: 0 };
const descriptor_t nullDescriptor = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
//static selector_t getFreeGDTSlot(vm_t *vm, unsigned slot, unsigned rpl);
/* Given the values already in vm->guest_cpu, and the passed 'eflags',
* map the monitor and guest into the VM.
*/
unsigned
mapMonitor(vm_t *vm, Bit32u eflags, unsigned remapHints)
{
selector_t monCsSel, monSsSel, monTssSel, monSsHackSel;
Bit32u laddr, base;
unsigned slot, sreg;
guest_context_t *guestContext;
nexus_t *nexus;
descriptor_t *gdt;
// xxx mapMonitor assumes guest_cpu holds all current selector
// xxx and descriptor info. We should have some checks here?
/* For convenience, some pointers */
guestContext = vm->addr->guest_context;
nexus = vm->addr->nexus;
gdt = vm->addr->gdt;
/* Eflags: The application oriented flags are stored in
* guest_context->eflags, to be used directly by the guest.
* Some of the system oriented flags are manipulated by the
* monitor for virtualization. In those case, the actual
* guest values are stored in guest_cpu.veflags.
*/
vm->guest_cpu.veflags.raw = 0;
guestContext->eflags.raw = FLG_IF | 0x02;
write_eflags(vm, eflags, ~0);
/* Set the actual EFLAGS.VM flag according to the mode the
* guest is monitor in.
*/
//if (GetMonMode(vm) == MonModeVM)
// guestContext->eflags.raw |= FLG_VM;
//else
guestContext->eflags.raw &= ~FLG_VM;
/* +++ should zero out GDT, so prev entries do not remain */
/* +++ do that in unmap_mon */
/*
* Virtualized guest data selectors and shadow cache descriptors
*/
#warning "unify with similar code in mon-fault.c"
/* =========================
* Map in Monitor structures
* =========================
*/
#if 0
/* Find GDT slots for monitor system segments. */
if ( (GetGuestMode(vm) == GuestModeRM) ||
(GetGuestMode(vm) == GuestModeVM) ||
vm->vOpcodeMap ) {
/* If the guest is in RM or VM, or we need to use SIV then we
* can simply put monitor system segments at the beginning of
* the GDT, because we use modified selectors/descriptors and
* just put them right after the monitor system segments.
*/
#endif
monCsSel.raw = Selector(1, 0, RPL0);
monSsSel.raw = Selector(2, 0, RPL0);
monTssSel.raw = Selector(3, 0, RPL0);
monSsHackSel.raw = Selector(10, 0, RPL0); /* not really used */
#if 0
}
else {
/* Guest is in PM and we are running code natively. This means
* the guest descriptors have to be placed in the descriptor tables
* where the guest selectors expect them. Thus, we need to look
* at the guest selectors to find some open slots in the GDT which
* do not cause conflict with the extra monitor segments.
*/
monCsSel = getFreeGDTSlot(vm, 1, RPL0);
monSsSel = getFreeGDTSlot(vm, monCsSel.fields.index + 1, RPL0);
monTssSel = getFreeGDTSlot(vm, monSsSel.fields.index + 1, RPL0);
monSsHackSel = getFreeGDTSlot(vm, monTssSel.fields.index + 1, RPL0);
}
#endif
/* Search for unused PDE for nexus PT (fixed for now) */
laddr = 0x70000000;
vm->mon_pde_mask = laddr & 0xffc00000;
vm->mon_pdi = laddr >> 22;
base = MON_BASE_FROM_LADDR(laddr);
/* Map nexus into monitor/guest address space */
vm->addr->page_dir[laddr >> 22] = vm->host.nexus_pde;
/* Monitor segments (code/data/TSS). Put at fixed GDT location for now */
SET_DESCRIPTOR(gdt[monCsSel.fields.index], base, 0xfffff,
D_PG, D_D32, D_AVL0, D_PRESENT, D_DPL0, D_CODE | D_READ)
SET_DESCRIPTOR(gdt[monSsSel.fields.index], base, 0xfffff,
D_PG, D_D32, D_AVL0, D_PRESENT, D_DPL0, D_DATA | D_WRITE)
SET_DESCRIPTOR(gdt[monTssSel.fields.index],
base + (Bit32u) vm->guest.addr.tss,
sizeof(tss_t)-1,
D_BG, 0, D_AVL0, D_PRESENT, D_DPL0, D_TSS)
/* SS hack for returning to 16bit stacks */
gdt[monSsHackSel.fields.index] =
gdt[monSsSel.fields.index];
nexus->SSNormal = monSsSel.raw;
nexus->SS16BitSSHack = monSsHackSel.raw;
/* ==========================
* Guest selector/descriptors
* ==========================
*/
#warning "Is the GDT being cleared of old values?"
#if 0
if ( GetMonMode(vm) == MonModeVM ) {
/* Guest VM/RM code running is monitored in VM mode. Use guest
* selectors as-is. No SIV is used. There are no guest segments
* used - the descriptor caches are loaded according to VM
* semantics.
*/
guestContext->es = vm->guest_cpu.selector[SRegES].raw;
guestContext->cs = vm->guest_cpu.selector[SRegCS].raw;
guestContext->ss = vm->guest_cpu.selector[SRegSS].raw;
guestContext->ds = vm->guest_cpu.selector[SRegDS].raw;
guestContext->fs = vm->guest_cpu.selector[SRegFS].raw;
guestContext->gs = vm->guest_cpu.selector[SRegGS].raw;
}
else if ( vm->vOpcodeMap ) {
/* In any case that we are using SIV, we use a descriptor for each
* guest segment descriptor cache. These are not placed at the
* location in the GDT where the guest expects them, so we can
* just use the next set of GDT slots.
*
* CS/GS:
* Used for tcode and tcode (ring3) handlers, and
* are virtualized. Thus, CS/GS selector reads/writes and segment
* prefixes are monitored.
*
* ES/SS/DS/FS:
* descriptors: A descriptor is created/maintained which
* represents the state of the shadow cache for each segment.
* selectors: Select the virtualized descriptors.
* Selector reads/writes are monitored, because they are modified.
* Prefixes: OK - segments can be used for memory access natively.
*/
/* Since the guest doesn't need any segments, we can just use
* some static ones, right after the monitor system segments.
*
* Note that due to previous transitions from PM, there may be
* some descriptors loaded with invalid descriptor caches
* (like from loading a NULL selector etc). So we have to
* check - if a descriptor cache is invalid, set the selector
* to NULL. Otherwise, an exception will be generated when we
* attempt to return back to the guest.
*/
if ( !vm->guest_cpu.desc_cache[SRegES].valid )
guestContext->es = nullSelector.raw;
else
guestContext->es = Selector(4+SRegES, 0, RPL3);
if ( !vm->guest_cpu.desc_cache[SRegSS].valid )
guestContext->ss = nullSelector.raw;
else
guestContext->ss = Selector(4+SRegSS, 0, RPL3);
if ( !vm->guest_cpu.desc_cache[SRegDS].valid )
guestContext->ds = nullSelector.raw;
else
guestContext->ds = Selector(4+SRegDS, 0, RPL3);
if ( !vm->guest_cpu.desc_cache[SRegFS].valid )
guestContext->fs = nullSelector.raw;
else
guestContext->fs = Selector(4+SRegFS, 0, RPL3);
/* Set the virtualized descriptors. These represent the
* contents of the shadow cache descriptors of each of the guest
* segment registers. Thus a separate one is needed, one
* for each guest descriptor shadow cache. For now, these
* are store at fixed locations in the GDT. To virtualize,
* just copy guest descriptor shadow caches to the GDT entries,
* and deprivilege the DPL to 3.
*/
for (sreg=0; sreg<6; sreg++) {
/* CS/GS are handled separatedly - they are used for tcode */
if ( (sreg==SRegCS) || (sreg==SRegGS) )
continue;
if (vm->guest_cpu.desc_cache[sreg].valid) {
gdt[4+sreg] = vm->guest_cpu.desc_cache[sreg].desc;
gdt[4+sreg].dpl = 3;
}
else {
gdt[4+sreg] = nullDescriptor;
}
}
/* The tcode CS/GS segments use the same values as the monitor
* code/stack==data segments, with DPL=3.
*/
guestContext->cs = Selector(4+SRegCS, 0, RPL3);
guestContext->gs = Selector(4+SRegGS, 0, RPL3);
gdt[4+SRegCS] = gdt[monCsSel.fields.index];
gdt[4+SRegCS].dpl = 3;
gdt[4+SRegGS] = gdt[monSsSel.fields.index];
gdt[4+SRegGS].dpl = 3;
}
else {
#warning "Is the GDT being cleared of old values?"
monprint(vm, "mapMon: code for vm->vOpcodeMap==0 unfinished.\n");
return 0;
/* PM guest, SIV==0. We place the guest segments where the
* guest expects them. The code above makes sure that the monitor
* system segments do not conflict with these descriptor table slots.
*/
guestContext->es = vm->guest_cpu.selector[SRegES].raw;
guestContext->ss = vm->guest_cpu.selector[SRegSS].raw;
guestContext->ds = vm->guest_cpu.selector[SRegDS].raw;
guestContext->fs = vm->guest_cpu.selector[SRegFS].raw;
guestContext->cs = vm->guest_cpu.selector[SRegCS].raw;
guestContext->gs = vm->guest_cpu.selector[SRegGS].raw;
/* Initialize guest descriptors in monitor descriptor tables */
for (sreg=0; sreg<6; sreg++) {
slot = vm->guest_cpu.selector[sreg].fields.index;
// xxx What about NULL selectors here?
if ( (slot > 512) || vm->guest_cpu.selector[sreg].fields.ti ) {
monprint(vm, "mapMon: guest selector OOB\n");
return 0;
}
if (vm->guest_cpu.desc_cache[sreg].valid) {
gdt[slot] = vm->guest_cpu.desc_cache[sreg].desc;
gdt[slot].dpl = 3;
}
else {
gdt[slot] = nullDescriptor;
}
}
}
#endif
// xxx Fix this, preGuest() needs to see that the guest was running
// xxx in ring3 or it freaks when first called.
guestContext->cs = Selector(4+SRegCS, 0, RPL3);
/* All guest segments are now synchronized with their virtualized
* counterparts */
vm->segmentUpdated = 0;
/* Fix up the selectors of all IDT entries */
for ( slot = 0; slot < 256; slot++ )
vm->addr->idt[slot].selector = monCsSel;
/* The monitor GDT/IDT loading info */
nexus->mon_gdt_info.base = base + (Bit32u) vm->guest.addr.gdt;
nexus->mon_gdt_info.limit = MON_GDT_SIZE;
nexus->mon_idt_info.base = base + (Bit32u) vm->guest.addr.idt;
nexus->mon_idt_info.limit = MON_IDT_SIZE;
/* We don't have a monitor LDT for now */
nexus->mon_ldt_sel = 0;
/* The monitor TSS */
nexus->mon_tss_sel = monTssSel.raw;
#warning "deal with esp0 according to monitor mode"
//if ( GetMonMode(vm) == MonModeVM ) {
// vm->addr->tss->esp0 =
// ((Bit32u)vm->guest.addr.nexus) + PAGESIZE;
// }
//else {
vm->addr->tss->esp0 =
((Bit32u)vm->guest.addr.nexus) + PAGESIZE - sizeof(v86_sregs_t);
// }
vm->addr->tss->ss0 = monSsSel.raw;
/* Monitor code and stack segments */
nexus->mon_jmp_info.selector = monCsSel.raw;
nexus->mon_stack_info.selector = monSsSel.raw;
/* Monitor PDBR */
#warning "Monitor CRx hacks"
nexus->mon_cr0 = 0x80010033; /* PG/WP/NE/ET/MP/PE */
nexus->mon_cr3 = vm->pages.page_dir << 12;
nexus->mon_cr4 = 0x00000004; /* TSD=1 */
/* Monitor code/data segment base */
nexus->mon_base = base;
vm->modeChange |= ModeChangeRequestMapVSegs;
return(1);
}
#if 0
selector_t
getFreeGDTSlot(vm_t *vm, unsigned slot, unsigned rpl)
{
/* start looking at GDT slot number 'slot'. */
unsigned sreg;
selector_t sel;
for (; slot<512; slot++) { /* search descriptor table slots */
for (sreg=0; sreg<6; sreg++) { /* compare to guest selectors */
if (vm->guest_cpu.selector[sreg].fields.index == slot)
break; /* this slot conflicts with guest selector */
}
if (sreg>=6) {
/* No guest selector found to use this slot, so we can use
* it for a monitor segment.
*/
sel.raw = Selector(slot, 0, rpl);
return( sel );
}
}
if (slot>=512) {
monprint(vm, "getFreeGDTSlot: slot OOB\n");
}
sel.raw = 0; /* Error */
return(sel);
}
#endif
#if 0
unsigned
isV86MCompatible(vm_t *vm)
{
Bit32u desc_raw_dword1, bits, compatValue;
unsigned sreg;
descriptor_cache_t *cache;
for (sreg=0; sreg<6; sreg++) {
cache = &vm->guest_cpu.desc_cache[sreg];
if ( !(vm->descriptorInEmu & (1<<sreg)) )
monprint(vm, "isV86MCompatible: desc not synced\n");
if ( !(vm->selectorInEmu & (1<<sreg)) )
monprint(vm, "isV86MCompatible: sel not synced\n");
if (cache->valid==0)
return 0;
if (cache->limit_scaled != 0xffff)
return 0;
/* Base must = selector << 4, or else a reload of the guest
* segment will not yield the proper base */
if ( cache->base != (vm->guest_cpu.selector[sreg].raw << 4) )
return 0;
/* Get the high dword of the descriptor */
desc_raw_dword1 = ((Bit32u *) &cache->desc)[1];
/* Make sure that important fields are compatible with RM */
#define RMCompatMask 0x00c0fe00 /* G/D_B/P/DPL/S/Type */
#define RMCompatValueData 0x00009200
#define RMCompatValueCode 0x00009A00
bits = desc_raw_dword1 & RMCompatMask;
if (sreg == SRegCS)
compatValue = RMCompatValueCode;
else
compatValue = RMCompatValueData;
if ( bits != compatValue ) {
monprint(vm, "isV86MCompatible: not compat, sreg=%u, bits=0x%x\n",
sreg, bits);
}
}
return 1;
}
#endif
#if 0
unsigned
isPMR3NativeCompatible(vm_t *vm)
{
return( 0 );
// xxx isPMR3NativeCompatible() not complete.
// xxx Need to convert this to NEXUS space compliant code.
// xxx Was in mode-mod.c before.
unsigned sreg;
/* Condition: Guest CPL must equal privilege level that it
* is monitored at. Otherwise, the RPL of segment selectors would
* be incorrect and the difference readable by unmonitored guest code.
* The calling function should check that the guest is running in
* protected mode ring3 before calling.
*/
VM_ASSERT(vm, G_GetCPL(vm)==3);
VM_ASSERT(vm, vm->guest_cpu.cr0.fields.pe);
VM_ASSERT(vm, G_GetVM(vm)==0);
/* ===================================================================
* Condition: Guest EFLAGS.IOPL < 3. This way we can set the monitored
* IOPL value to the expected guest value, without allowing IOPL
* sensitive instructions to execute unwantedly. For example, look at
* the STI/CLI instructions. If we let IOPL be 3 (and we know the guest
* is running at ring3 at this point), then STI/CLI instructions will
* execute successfully out of control of the VM monitor. Additionally,
* IN/OUT instructions would do the same. As long as we constrain that
* IOPL < 3, we can set the monitored IOPL value as expected by the
* guest, thus allowing PUSHF to push expected values.
*/
if (G_GetIOPL(vm) == 3) {
InstrNonSIVFail(InstrNonSIVFailIOPL);
return 0; /* Not compliant */
}
/* ===================================================================
* Condition: Guest EFLAGS.IF must be 1. If we execute the guest
* with IF==0, then control may never return to the monitor. We
* need to make sure that the next hardware interrupt is received
* promptly by the monitor and redirected to the host OS.
*/
if (G_GetIF(vm)==0) {
InstrNonSIVFail(InstrNonSIVFailIF);
return 0; /* Not compliant */
}
/* ===================================================================
* Condition: Guest EFLAGS.{VIF,VIP} must be 0 (for now). I haven't
* looked into these flags much yet. So for now, mandate they must
* be zero.
*/
if (G_GetVIP(vm) || G_GetVIF(vm)) {
InstrNonSIVFail(InstrNonSIVFailVIPVIF);
return 0; /* Not compliant */
}
/* ===================================================================
* Condition: All non-null guest selectors must point to a valid ring3
* segment descriptor. Otherwise, the guest selector restore / IRET
* sequence in the monitor will fail.
*
* Condition: The current descriptor cache values must be consistent
* with the actual descriptor table entries. Otherwise, the guest
* selector restore / IRET sequence in the monitor will load values
* into the segments which are inconsistent with values that the
* guest has loaded into them.
*/
if ( (vm->descriptorInEmu & 0x3f) != 0x3f )
monpanic(vm, "nonSIVCC: dInEmu=0x%x\n", vm->descriptorInEmu);
if ( (vm->selectorInEmu & 0x3f) != 0x3f )
monpanic(vm, "nonSIVCC: sInEmu=0x%x\n", vm->selectorInEmu);
/* CS and SS selectors must be non-NULL */
if ( IsNullSelector(vm->guest_cpu.selector[SRegCS]) ) {
InstrNonSIVFail(InstrNonSIVFailSRegCS);
return 0; /* Not compliant */
}
if ( IsNullSelector(vm->guest_cpu.selector[SRegSS]) ) {
InstrNonSIVFail(InstrNonSIVFailSRegSS);
return 0; /* Not compliant */
}
for (sreg=0; sreg<6; sreg++) {
selector_t selector;
selector = vm->guest_cpu.selector[sreg];
if ( !IsNullSelector(selector) ) {
Bit32u descriptor_laddr;
if ( !vm->guest_cpu.desc_cache[sreg].valid ) {
InstrNonSIVFail(InstrNonSIVFailSReg + sreg);
return 0; /* Not compliant */
}
/* We have a non-null selector, and it's shadow descriptor cache
* is marked valid. Now fetch the corresponding guest descriptor
* table entry. This entry must be equivalent to the shadow cache
* values for our assumptions to work.
*/
if (selector.fields.ti == 0) { /* GDT */
if ( (selector.raw | 0x0007) > vm->guest_cpu.gdtr.limit ) {
InstrNonSIVFail(InstrNonSIVFailGDT);
return 0; /* Not compliant */
}
descriptor_laddr = vm->guest_cpu.gdtr.base +
(selector.raw & 0xfff8);
}
else { /* LDT */
if (vm->guest_cpu.ldtr_cache.valid == 0) {
InstrNonSIVFail(InstrNonSIVFailLDT);
return 0; /* Not compliant */
}
if ( (selector.raw | 0x0007) >
vm->guest_cpu.ldtr_cache.limit_scaled ) {
InstrNonSIVFail(InstrNonSIVFailLDT);
return 0; /* Not compliant */
}
descriptor_laddr = vm->guest_cpu.ldtr_cache.base +
(selector.raw & 0xfff8);
}
if (vm->guest_cpu.cr0.fields.pg) {
monpanic(vm, "nonSIVCC: PG==1 not coded yet.\n");
}
else {
unsigned char *guest_page;
Bit32u guest_paddr_index;
descriptor_t *descriptor_p;
if ( (descriptor_laddr & 0xfff) > 0xffa ) {
monpanic(vm, "nonSIVCC: PG==0 descriptor crosses page.\n");
}
guest_paddr_index = A20Addr(vm, descriptor_laddr) >> 12;
if (guest_paddr_index >= vm->pages.guest_n_pages)
monpanic(vm, "nonSIVCC: paddr_i OOB\n");
guest_page = open_guest_phy_page(vm, guest_paddr_index,
vm->guest.addr.tmp_phy_page0);
descriptor_p = (descriptor_t *)
(guest_page + (descriptor_laddr & 0xfff));
if ( ((Bit32u *) descriptor_p)[0] !=
((Bit32u *) &vm->guest_cpu.desc_cache[sreg].desc)[0] ) {
failSReg:
monprint(vm, "guest DT %x:%x\n",
((Bit32u *) descriptor_p)[0], ((Bit32u *) descriptor_p)[1]);
monpanic(vm, "cache %x:%x\n",
((Bit32u *) &vm->guest_cpu.desc_cache[sreg].desc)[0],
((Bit32u *) &vm->guest_cpu.desc_cache[sreg].desc)[1]);
InstrNonSIVFail(InstrNonSIVFailSReg + sreg);
return 0; /* Not compliant */
}
if ( ((Bit32u *) descriptor_p)[1] !=
((Bit32u *) &vm->guest_cpu.desc_cache[sreg].desc)[1] ) {
goto failSReg;
}
}
}
} /* for (...) */
/* Notes:
* - A20 considerations?
* - user code access to GDT/LDT/IDT pages?
*/
#if 0
From mon-paging.c:
/* For guest code running with SIV on, it doesn't matter if */
/* guest accesses a structure such as GDT, IDT, LDT, since we */
/* virtualize segment loads and update the A bit immediately. */
if (!vm->vOpcodeMap) {
monpanic(vm, "...: siv==0\n");
/* SIV off should only happen when running ring3 guest code, */
/* which ordinarily doesn't have access to the GDT, IDT, LDT. */
/* If we add this as a condition before turning off SIV, then */
/* we don't need to have a check here. */
}
#endif
InstrNonSIVPass();
return 1;
}
#endif
|