1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
//////////////////////////////////////////////////////////////////
// //
// PLINK (c) 2005-2006 Shaun Purcell //
// //
// This file is distributed under the GNU General Public //
// License, Version 2. Please see the file COPYING for more //
// details //
// //
//////////////////////////////////////////////////////////////////
#include <iostream>
#include "plink.h"
#include "options.h"
using namespace std;
vector<Z> Plink::calcLocusIBD(Individual * p1, Individual * p2, Z I)
{
// ** TODO ** -- development code -- lots of possible speedups here.
// 1) Remove I as an argument
// 2) Now no need to calculate all probabilities -- just do the three required for that
// particular locus
// Store calculated P(M|Z) here
vector<Z> ZL(nl);
// Locus counter
int l = 0;
//////////////////////////////
// All SNPs in the scan region
for (int l2=par::run_start; l2<=par::run_end; l2++)
{
/////////////////////
// Allele frequencies
double p = locus[l2]->freq;
double q = 1 - p;
// Na = # alleles = 2N where N is number of individuals
double Na = locus[l]->nm;
double x = p * Na;
double y = q * Na;
/////////////////////////////////////////////////
// Assign P(M|Z) based on genotype for each SNP
bool a1 = p1->one[l2];
bool a2 = p1->two[l2];
bool b1 = p2->one[l2];
bool b2 = p2->two[l2];
// Assign unit vector if either genotype is missing
if ( ( a1 && (!a2) ) ||
( b1 && (!b2) ) )
{
ZL[l].z0 = ZL[l].z1 = ZL[l].z2 = 1;
l++;
continue;
}
if ( a1 )
{
if ( a2 )
{
if ( b1 )
{
if ( b2 )
{
// aa, aa
ZL[l].z0 = q*q*q*q
* ( (y-1)/y * (y-2)/y * (y-3)/y * (Na/(Na-1)) * (Na/(Na-2)) * (Na/(Na-3)) );
ZL[l].z1 = q*q*q * ( (y-1)/y * (y-2)/y * Na/(Na-1) * Na/(Na-2));
ZL[l].z2 = q*q * ( (y-1)/y * Na/(Na-1));
}
}
else
{
if ( b2 )
{
// aa, Aa
ZL[l].z0 = 2*p*q*q*q
* ( (y-1)/y * (y-2)/y * (Na/(Na-1)) * (Na/(Na-2)) * (Na/(Na-3)) );
ZL[l].z1 = p*q*q * ((y-1)/y * Na/(Na-1) * Na/(Na-2));
ZL[l].z2 = 0;
}
else
{
// aa, AA
ZL[l].z0 = p*p*q*q
* ( (x-1)/x * (y-1)/y * (Na/(Na-1)) * (Na/(Na-2)) * (Na/(Na-3)) );
ZL[l].z1 = 0;
ZL[l].z2 = 0;
}
}
}
}
else
{
if ( a2 )
{
if ( b1 )
{
if ( b2 )
{
// Aa, aa
ZL[l].z0 = 2*p*q*q*q
* ( (y-1)/y * (y-2)/y * (Na/(Na-1)) * (Na/(Na-2)) * (Na/(Na-3)) );
ZL[l].z1 = p*q*q * ((y-1)/y * Na/(Na-1) * Na/(Na-2));
ZL[l].z2 = 0;
}
}
else
{
if ( b2 )
{
// Aa, Aa
ZL[l].z0 = 4*p*p*q*q
* ( (x-1)/x * (y-1)/y * (Na/(Na-1)) * (Na/(Na-2)) * (Na/(Na-3)) );
ZL[l].z1 = p*p*q
* ( (x-1)/x * Na/(Na-1) * Na/(Na-2) )
+ p*q*q
* ((y-1)/y * Na/(Na-1) * Na/(Na-2));
ZL[l].z2 = 2*p*q * Na/(Na-1) ;
}
else
{
// Aa, AA
ZL[l].z0 = 2*p*p*p*q
* ( (x-1)/x * (x-2)/x * (Na/(Na-1)) * (Na/(Na-2)) * (Na/(Na-3)) );
ZL[l].z1 = p*p*q
* ( (x-1)/x * Na/(Na-1) * Na/(Na-2) );
ZL[l].z2 = 0;
}
}
}
else
{
if ( b1 )
{
if ( b2 )
{
// AA, aa
ZL[l].z0 = p*p*q*q
* ( (x-1)/x * (y-1)/y * (Na/(Na-1)) * (Na/(Na-2)) * (Na/(Na-3)) );
ZL[l].z1 = 0;
ZL[l].z2 = 0;
}
}
else
{
if ( b2 )
{
// AA, Aa
ZL[l].z0 = 2*p*p*p*q
* ( (x-1)/x * (x-2)/x * (Na/(Na-1)) * (Na/(Na-2)) * (Na/(Na-3)) );
ZL[l].z1 = p*p*q
* ( (x-1)/x * Na/(Na-1) * Na/(Na-2) );
ZL[l].z2 = 0;
}
else
{
// AA, AA
ZL[l].z0 = p*p*p*p
* ( (x-1)/x * (x-2)/x * (x-3)/x * (Na/(Na-1)) * (Na/(Na-2)) * (Na/(Na-3)));
ZL[l].z1 = p*p*p
* ( (x-1)/x * (x-2)/x * Na/(Na-1) * Na/(Na-2));
ZL[l].z2 = p*p
* ( (x-1)/x * Na/(Na-1));
}
}
}
}
/////////////////////////////////////
// Fudge factor for genotyping error
if ( ZL[l].z1 < 0.0001 )
{
ZL[l].z1 = 0.0001;
double S = ZL[l].z0 + ZL[l].z1 + ZL[l].z2;
ZL[l].z0 /= S;
ZL[l].z1 /= S;
ZL[l].z2 /= S;
}
/////////////////
// Next SNP
l++;
}
return ZL;
}
// ////////////////////////////////////////////
// // 2. Allow for possible genotyping error
// // sum_{all possible true genotypes} P(observed G|true G) P(true G |IBD)
// // double e = 0.005;
// // double f = 0.001;
// // double ER_AA_AA__AA_AA = 1- 2e - 2f - 2e*f - e*e - f*f;
// // double ER_AA_AB__AA_AA = e;
// // double ER_AA_BB__AA_AA = f;
// // double ER_AB_AA__AA_AA = e;
// // double ER_AB_AB__AA_AA = e*e;
// // double ER_AB_BB__AA_AA = e*f;
// // double ER_BB_AA__AA_AA = f;
// // double ER_BB_AB__AA_AA = e*f;
// // double ER_BB_BB__AA_AA = f*f;
// // double ER_AA_AA__AA_AB = e;
// // double ER_AA_AB__AA_AB = 1 - 3*e - 2*e*e - 2*e*f - f;
// // double ER_AA_BB__AA_AB = e;
// // double ER_AB_AA__AA_AB = e*e;
// // double ER_AB_AB__AA_AB = e;
// // double ER_AB_BB__AA_AB = e*e;
// // double ER_BB_AA__AA_AB = f*e;
// // double ER_BB_AB__AA_AB = f;
// // double ER_BB_BB__AA_AB = f*e;
// // Sum over all possible true genotypes P(Observed G | True G) P(True G |IBD = 1)
|