1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
//////////////////////////////////////////////////////////////////
// //
// PLINK (c) 2005-2007 Shaun Purcell //
// //
// This file is distributed under the GNU General Public //
// License, Version 2. Please see the file COPYING for more //
// details //
// //
//////////////////////////////////////////////////////////////////
#include <iostream>
#include <iomanip>
#include <fstream>
#include <sstream>
#include <cmath>
#include <vector>
#include <map>
#include "plink.h"
#include "options.h"
#include "phase.h"
#include "helper.h"
#include "stats.h"
void HaploPhase::haplotypicQTL(map<int,int> & tests,
int nt,
bool display_results )
{
// Quantitative trait test based on a test vector; like TDT, assumes
// only ever two groups, for now
// No implementation of QTL omnibus test yet
if (nt!=2) return;
// Genotypic and phenotype mean, variance, covariance
double genotypic_mean = 0;
double genotypic_variance = 0;
double qt_mean = 0;
double qt_variance = 0;
double covariance = 0;
// number of individuals in analysis
int numberIndividuals = 0;
// For this, we will make the male X coding equivalent to
// --xchr-model 1; except we will not add a covariate for
// sex;
// Females: 0, 1, 2
// Males: 0, 1
/////////////////////////////
// Iterate over individuals
for (int i = 0 ; i < P.n; i++)
{
if ( hap1[i].size() == 0 )
continue;
Individual * pperson = P.sample[i]->pperson;
Individual * gperson = P.sample[i];
if (!pperson->missing)
{
qt_mean += pperson->phenotype;
// Consider all possible phases
for (int z = 0 ; z < hap1[i].size(); z++)
{
map<int,int>::iterator i1 = tests.find(hap1[i][z]);
map<int,int>::iterator i2 = tests.find(hap2[i][z]);
// i1 and i2 should always point to a 0/1 variable;
// but the coding is reversed (for god knows what reason)
// such as convention means the to-be-tested variant(s)
// have a 0; therefore reverse here.
int c1 = 1 - i1->second;
int c2 = 1 - i2->second;
if ( i1 != tests.end() )
{
if (!ambig[i])
genotypic_mean += c1;
else
genotypic_mean += c1 * pp[i][z];
}
if ( ! ( haploid || ( X && gperson->sex ) ) )
{
if ( i2 != tests.end() )
{
if (!ambig[i])
genotypic_mean += c2;
else
genotypic_mean += c2 * pp[i][z];
}
}
}
numberIndividuals++;
}
} // Next individual
qt_mean /= (double)numberIndividuals;
genotypic_mean /= (double)numberIndividuals;
//////////////////////////////////
// Iterate over individuals again
for (int i=0; i< P.n; i++)
{
if ( hap1[i].size() == 0 )
continue;
Individual * pperson = P.sample[i]->pperson;
Individual * gperson = P.sample[i];
if (!pperson->missing)
{
double g = 0;
// Consider all possible phases
for (int z = 0 ; z < hap1[i].size(); z++)
{
map<int,int>::iterator i1 = tests.find(hap1[i][z]);
map<int,int>::iterator i2 = tests.find(hap2[i][z]);
// i1 and i2 should always point to a 0/1 variable;
// but the coding is reversed (for god knows what reason)
// such as convention means the to-be-tested variant(s)
// have a 0; therefore reverse here.
int c1 = 1 - i1->second;
int c2 = 1 - i2->second;
if ( i1 != tests.end() )
{
if (!ambig[i])
g += c1;
else
g += c1 * pp[i][z];
}
if ( ! ( haploid || ( X && gperson->sex ) ) )
{
if ( i2 != tests.end() )
{
if (!ambig[i])
g += c2;
else
g += c2 * pp[i][z];
}
}
}
qt_variance += (pperson->phenotype-qt_mean)
* ( pperson->phenotype-qt_mean ) ;
genotypic_variance += (g-genotypic_mean)
* ( g-genotypic_mean ) ;
covariance += ( pperson->phenotype - qt_mean )
* ( g - genotypic_mean ) ;
}
} // Next individual
// Statistics
qt_variance /= (double)numberIndividuals - 1;
genotypic_variance /= (double)numberIndividuals - 1;
covariance /= (double)numberIndividuals - 1;
// Test statistic
double beta = covariance / genotypic_variance;
double vbeta = ( qt_variance/genotypic_variance
- (covariance * covariance )
/ (genotypic_variance* genotypic_variance)
) / (numberIndividuals-2);
double t = beta / sqrt(vbeta);
double t_p = pT(t,numberIndividuals-2);
// Display results?
if ( display_results )
{
// Skip?, if filtering p-values
if ( par::pfilter && ( t_p > par::pfvalue || t_p < 0 ) )
goto skip_p2;
double r2 = (covariance * covariance )
/ ( qt_variance * genotypic_variance ) ;
HTEST << setw(10) << hname << " ";
// Find test haplotype (assuming there is a single one;
// otherwise we won't be in display mode, i.e. proxy
// association has it's own display)
int hh=0;
map<int,int>::iterator i1 = tests.begin();
while ( i1 != tests.end() )
{
if ( i1->second == 0 )
hh = i1->first;
i1++;
}
HTEST << setw(12) << haplotypeName(hh) << " ";
HTEST << setw(8) << numberIndividuals << " "
<< setw(10) << beta << " "
<< setw(10) << r2 << " " ;
if (t_p >= 0)
HTEST << setw(8) << t << " " << setw(12) << t_p << " " ;
else
HTEST << setw(8) << "NA" << " " << setw(12) << "NA" << " " ;
// Display SNPs
for (int snps=0; snps<ns-1; snps++)
HTEST << P.locus[S[snps]]->name << "|";
HTEST << P.locus[S[ns-1]]->name << "\n";
}
skip_p2:
// Store chi-sq and regression coefficient
result = t;
pvalue = t_p;
odds = beta;
}
|