1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
//////////////////////////////////////////////////////////////////
// //
// PLINK (c) 2005-2008 Shaun Purcell //
// //
// This file is distributed under the GNU General Public //
// License, Version 2. Please see the file COPYING for more //
// details //
// //
//////////////////////////////////////////////////////////////////
#include <iostream>
#include <iomanip>
#include <fstream>
#include <sstream>
#include <cmath>
#include <vector>
#include <map>
#include "plink.h"
#include "options.h"
#include "phase.h"
#include "helper.h"
#include "stats.h"
//////////////////////////////
// Unweighted tests
void HaploPhase::haplotypicTDT(map<int,int> & tests, int nt, bool display)
{
// No implementation of TDT omnibus test yet
if ( nt != 2 )
{
result = -9;
pvalue = -9;
odds = -9;
return;
}
// This might be a haplotype-specific test (i.e. of a single
// haplotype) or of a group of haplotypes versus the rest
// When rescoring the T and U counts, we will have supplied a 'downcoding'
// map, which is the same as the 'tests' map, i.e. mapping each haplotype
// onto a 0/1 space (i.e. nt==2)
// Find test haplotype(s), if we are in display mode (i.e. here we
// know it is not a group of haplotypes, but a specific haplotype, and
// we want the name of it, --hap-tdt; for all other instances, we
// can not assume that we will be testing a specific haplotype; so
// we do not bother about the name (it might be a group). We
// can assume a binary test though (nt==2), so always set hh to 0.
int hh=0;
double tr = 0;
double un = 0;
// This test is always of 1 haplotype/group versus all others --
// i.e. the downcoding will have been performed previously, with the
// transmissions being appropriately rescored before hand (and so
// trans[]/untrans[] will already be downcoded.
if ( display )
{
map<int,int>::iterator i1 = tests.begin();
while ( i1 != tests.end() )
{
if ( i1->second == 0 )
{
hh = i1->first;
break;
}
i1++;
}
}
tr += trans[hh];
un += untrans[hh];
///////////////////////////////////////////////////////
// 'result' visible outside this class,
// Either use McNemar's chi-square (b-c)^2/(b+c)
// or normal approximation for test of transmission
// ratio equals 0.5 (with the empirical variance added
// here)
odds = tr/un;
// if ( true || useEmpiricalVariance )
// {
result = tr - un;
result *= result;
result /= tr + un;
pvalue = chiprobP(result,1);
case_freq = tr;
control_freq = un;
// }
// else
// {
// // Calculate empirical variance of transmissions: the
// // relevant quantities will have been stored during the
// // transmission scoring routine
// double transmissionProportion = tr / ( tr + un );
// double transmissionCount = tr + un;
// // double eHH = transmissionX2[hh] / ( transmissionTotal-1);
// // double eH = transmissionX[hh] / ( transmissionTotal-1);
// double eHH = transmissionX2[hh] / ( transmissionCount );
// double eH = transmissionX[hh] / ( transmissionCount );
// empiricalVariance = eHH - ( eH * eH );
// empiricalVariance /= transmissionCount - 1 ;
// double Z = ( transmissionProportion - 0.5 )
// / ( sqrt( empiricalVariance * ( 1 / transmissionCount ) ) );
// result = Z * Z;
// pvalue = chiprobP( result , 1 );
// }
if ( display )
HTEST << setw(10) << hname << " "
<< setw(12) << haplotypeName(hh) << " "
<< setw(10) << trans[hh] << " "
<< setw(10) << untrans[hh] << " ";
if ( display )
{
if ( realnum(result) )
{
HTEST << setw(10) << result << " "
<< setw(10) << pvalue << " ";
}
else
{
HTEST << setw(10) << "NA" << " "
<< setw(10) << "NA" << " ";
}
for (int snps=0; snps<ns-1; snps++)
HTEST << P.locus[S[snps]]->name << "|";
HTEST << P.locus[S[ns-1]]->name << "\n";
}
return;
}
void HaploPhase::haplotypicWeightedTDT()
{
vector_t weights;
for (int i=0; i<nh; i++)
{
map<string,double>::iterator
whap = new_pred_weighted_allele[current].find( haplotypeName(i) );
if ( whap != new_pred_weighted_allele[current].end() )
{
weights.push_back( whap->second );
}
else
{
weights.push_back( 0 );
}
}
double T = 0;
double U = 0;
for (int h=0; h<nh; h++)
{
T += trans[h] * weights[h];
U += untrans[h] * weights[h];
}
double chisq = ( (T-U)*(T-U) ) / ( T+U ) ;
HTEST << setw(10) << hname << " "
<< setw(12) << new_map[current]->allele1 << " "
<< setw(10) << T << " "
<< setw(10) << U << " ";
if ( realnum(chisq) )
{
HTEST << setw(10) << chisq << " "
<< setw(10) << chiprobP(chisq,1) << " ";
}
else
{
HTEST << setw(10) << "NA" << " "
<< setw(10) << "NA" << " ";
}
for (int snps=0; snps<ns-1; snps++)
HTEST << P.locus[S[snps]]->name << "|";
HTEST << P.locus[S[ns-1]]->name << "\n";
return;
}
|