1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
//////////////////////////////////////////////////////////////////
// //
// PLINK (c) 2005-2008 Shaun Purcell //
// //
// This file is distributed under the GNU General Public //
// License, Version 2. Please see the file COPYING for more //
// details //
// //
//////////////////////////////////////////////////////////////////
#include <iostream>
#include <iomanip>
#include <fstream>
#include <sstream>
#include <vector>
#include <map>
#include <iterator>
#include "plink.h"
#include "helper.h"
#include "options.h"
#include "perm.h"
extern Plink * PP;
void Plink::runTestCNVwithQT(Perm & perm)
{
// Permutation test for mean difference in QT between people with
// versus without a CNV. By default two-sided, unless
// par::segment_test_force_1sided = T
// Optionally allowed for this to operate on smoothed data (i.e.
// average of event count over a KB window, forwards and backwards
// from the given position)
// Also performs genome-wide burden analyses for QTs -- is there
// an association between CNV size and QT, for example, etc. These
// are based on standard correlation
int validN = 0;
double grandMean = 0;
for (int i=0; i<n; i++)
{
if ( !sample[i]->missing )
{
grandMean += sample[i]->phenotype;
++validN;
}
}
grandMean /= (double)validN;
printLOG("Total sample mean is " + dbl2str(grandMean) + ", based on "
+ int2str( validN ) + " individuals\n");
//////////////////////////////////////////
// Test positons = MAP positions (nl_all)
// Test positions = summed segment counts ( get from original counts )
// Test position = aggregate statistics ( 7 tests)
int nt = nl_all;
// IGNORE THIS FOR NOW...
// if ( par::seg_test_region )
// nt = coverage_aff.size();
////////////////////////////////////////////////////////////////////
// //
// Set up for individual burden tests? //
// //
////////////////////////////////////////////////////////////////////
// if ( par::cnv_indiv_perm )
// nt = 7;
// Option per-individual summary tests? (4 tests)
// Correlation between QT and these measures:
// total # segs
// # people w/ 1+ seg
// total kb length
// mean segment length
// gene-count
// atleast-1-gene-count
// gene-enrichment
////////////////////////////////////////////////////////////////////
// //
// Initialise permutation procedures //
// //
////////////////////////////////////////////////////////////////////
perm.setTests(nt);
perm.setPermClusters(*this);
perm.originalOrder();
vector_t original(nt);
////////////////////////////////////////////////////////////////////
// //
// Standard positional tests //
// //
////////////////////////////////////////////////////////////////////
if ( par::cnv_indiv_perm )
error("Not implemented --cnv-indiv-perm for QTs yet");
// Test statistic is difference in QT bewteen people with
// versus without a CNV at this position
vector_t count;
vector_t m1;
vector_t m0;
original = testCNVwithQT(grandMean, validN, nt, count, m1, m0);
////////////////////////////////////////////////////////////////////
// //
// Report to summary file //
// //
////////////////////////////////////////////////////////////////////
string f = par::output_file_name + ".cnv.qt.summary";
printLOG("Writing CNV QT summary to [ "+f+" ]\n");
ofstream FOUT;
FOUT.open( f.c_str() , ios::out );
FOUT.precision(4);
FOUT << setw(4) << "CHR" << " "
<< setw(par::pp_maxsnp) << "SNP" << " "
<< setw(12) << "BP" << " "
<< setw(8) << "NCNV" << " "
<< setw(12) << "M1" << " "
<< setw(12) << "M0" << "\n";
for (int l=0; l<nt; l++)
{
FOUT << setw(4) << locus[l]->chr << " "
<< setw(par::pp_maxsnp) << locus[l]->name << " "
<< setw(12) << locus[l]->bp << " "
<< setw(8) << count[l] << " ";
if ( count[l] > 0 )
FOUT << setw(12) << m1[l] << " ";
else
FOUT << setw(12) << "NA" << " ";
FOUT << setw(12) << m0[l] << "\n";
}
FOUT.close();
////////////////////////////////////////////////////////////////////
// //
// Run permutations //
// //
////////////////////////////////////////////////////////////////////
bool finished = false;
while(!finished)
{
perm.permuteInCluster();
vector_t pr = testCNVwithQT(grandMean, validN, nt, count, m1, m0);
finished = perm.update(pr,original);
}
if (!par::silent)
cout << "\n\n";
////////////////////////////////////////////////////////////////////
// //
// Display permuted results //
// //
////////////////////////////////////////////////////////////////////
f += ".mperm";
printLOG("Writing CNV QT permutation results to [ "+f+" ]\n");
FOUT.open( f.c_str() , ios::out );
FOUT.precision(4);
FOUT << setw(4) << "CHR" << " "
<< setw(par::pp_maxsnp) << "SNP" << " "
<< setw(12) << "BP" << " "
<< setw(12) << "EMP1" << " "
<< setw(12) << "EMP2" << "\n";
for (int l=0; l<nt; l++)
{
FOUT << setw(4) << locus[l]->chr << " "
<< setw(par::pp_maxsnp) << locus[l]->name << " "
<< setw(12) << locus[l]->bp << " "
<< setw(12) << perm.pvalue( l ) << " "
<< setw(12) << perm.max_pvalue( l ) << "\n";
}
FOUT.close();
}
vector_t Plink::testCNVwithQT( double grandMean, int validN, int nt ,
vector_t & count,
vector_t & m1,
vector_t & m0 )
{
vector_t score(nt,0);
m1.clear();
m0.clear();
count.clear();
m1.resize(nt,0);
m0.resize(nt, grandMean * validN) ;
count.resize(nt,0);
// Calculate QT mean for people with CNVs
vector<Segment>::iterator s = segment.begin();
while ( s != segment.end() )
{
for (int l = s->start ; l <= s->finish; l++)
{
++count[ l ];
m1[ l ] += s->p1->pperson->phenotype;
}
++s;
}
// Calculate QT mean for all other people, given grand mean
for ( int l = 0 ; l < nl_all ; l++ )
{
int k = validN - (int)count[l] ;
m0[l] = k > 0 ? ( m0[l] - m1[l] ) / (double)k : 0 ;
m1[l] = count[ l ] > 0 ?
m1[l] / count[ l ] :
0 ;
score[ l ] = m1[l] - m0[l];
if ( par::segment_test_force_1sided )
{
if ( score[ l ] < 0 )
score[ l ] = 0;
}
}
return score;
}
|