1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
|
//////////////////////////////////////////////////////////////////
// //
// PLINK (c) 2005-2007 Shaun Purcell //
// //
// This file is distributed under the GNU General Public //
// License, Version 2. Please see the file COPYING for more //
// details //
// //
//////////////////////////////////////////////////////////////////
#include <iostream>
#include <iomanip>
#include <fstream>
#include <map>
#include <vector>
#include <set>
#include <cmath>
#include "plink.h"
#include "options.h"
#include "helper.h"
#include "crandom.h"
#include "sets.h"
#include "perm.h"
#include "stats.h"
vector<double> Plink::testSibTDT(bool print_results,
bool permute,
Perm & perm,
vector<bool> & flipA,
vector<bool> & flipP)
{
///////////////////////////
// Vector to store results
vector<double> res(nl_all);
ofstream TDT;
if (print_results)
{
string f = par::output_file_name + ".dfam";
TDT.open(f.c_str(),ios::out);
printLOG("Writing DFAM results (asymptotic) to [ " + f + " ] \n");
TDT << setw(4) << "CHR" << " "
<< setw(par::pp_maxsnp) << "SNP" << " "
<< setw(4) << "A1" << " "
<< setw(4) << "A2" << " "
<< setw(8) << "OBS" << " "
<< setw(8) << "EXP" << " "
<< setw(12) << "CHISQ" << " "
<< setw(12) << "P" << " ";
TDT << "\n";
}
///////////////////////////////////
// Verbose display of pedigrees
if ( par::dumpped && ! par::permute )
{
string str = par::output_file_name + ".pdump";
printLOG("Dumping pedigree information to [ " + str + " ]\n");
ofstream PD(str.c_str(),ios::out);
// Of course, in practice, due to missing genotypes, the exact
// family configurations may shift.
for (int f=0; f<family.size(); f++)
{
Family * fam = family[f];
// Families with parents...
if ( fam->parents && fam->TDT && par::dfam_tdt )
{
PD << "W/PARENTS\t" << fam->pat->fid << " : ";
PD << fam->pat->iid << " x " << fam->mat->iid << " -> ";
for ( int k=0; k<fam->kid.size(); k++)
PD << fam->kid[k]->iid << " ";
PD << "\n";
}
// ...and those sibling without 2 parents
else if ( fam->sibship && par::dfam_sibs && fam->kid.size() > 1 )
{
PD << "SIBSHIP \t" << fam->kid[0]->fid << " : ";
for ( int k=0; k<fam->kid.size(); k++)
PD << fam->kid[k]->iid << " ";
PD << "\n";
}
}
// And unrelated clusters
if ( par::dfam_unrelateds )
for ( int k=0; k<nk; k++)
{
for (int c=0; c<klist[k]->person.size(); c++)
{
Individual * person = klist[k]->person[c];
if ( ! ( person->family->sibship ||
( person->family->parents ) ) )
PD << "CLUSTER " << k << "\t"
<< klist[k]->person[c]->fid << " : "
<< klist[k]->person[c]->iid << "\n";
}
}
PD.close();
}
///////////////////////////////////
// Perform analysis for each locus
for (int l=0; l<nl_all; l++)
{
// Adaptive permutation, skip this SNP?
if (par::adaptive_perm && (!perm.snp_test[l]))
continue;
// Skip X/haploid markers for now
if ( par::chr_sex[ locus[l]->chr ] ||
par::chr_haploid[ locus[l]->chr ] )
{
continue;
}
// Allele T counts
double numerator = 0;
double denom = 0;
// Total counts
double totalCount = 0;
double totalExpected = 0;
int totalInformative = 0;
/////////////////////////
// Count over families
for (int f=0; f<family.size(); f++)
{
// A simple pedigree association test
// 1. Break pedigrees into nuclear families
// 2. Classify nuclear families into (a) those where both
// parents are genotyped (b) the others.
// 3. For each type (a) family, obtain the count allele A
// among the affected children. and also its expected value
// and variance (under H0) given the genotypes of the two
// parents. These are given by the binomial distribution,
// e.g. if the parental genotypes are (AA, AB) and there are
// k affected children, then the the expected count of A is
// 1.5k, and its variance is 0.25k.
// AA AB -> AA 0.5 2
// AB 0.5 1
// E = 1.5 * K
// V = 0.25 * K
// BB AB -> AB 0.5 1
// BB 0.5 0
// E = 0.5 * K
// V = 0.25 * K
// AB AB -> AA 0.25 2
// AB 0.50 1
// BB 0.25 0
// E = 0
// V = 0.5 * K
// 4. For each type (b) family, also obtain the count A
// among the affected children and its expected value and
// variance (under H0) given the genotypes of all the
// children. These are given by the hypergeometric
// distribution, e.g. if the sibship contain n A alleles m B
// alleles and there are N affected members, then the
// expected value of the count of A among the affected
// members would be 2N n/(n+m), and its variance is 2N
// nm/(n+m)^2 Note the factor of 2 is because each person
// has 2 alleles.
// n "A" alleles, m "B" alleles
// S = n | k affected siblings
// E = 2 k n/(n+m)
// V = 2 k nm/(n+m)^2
// replacement issue?
// 5. An overall test statistic is (Sum of the Counts of A -
// Sum of expected counts )^2 / (Sum of variances)
Family * fam = family[f];
bool informative = false;
bool parents = true;
// Type A: two genotyped parents and at least 1 affected individual
if ( fam->parents && fam->TDT && par::dfam_tdt )
{
Individual * pat = family[f]->pat;
Individual * mat = family[f]->mat;
bool pat1 = pat->one[l];
bool pat2 = pat->two[l];
bool mat1 = mat->one[l];
bool mat2 = mat->two[l];
// We need two genotyped parents, with
// at least one het
if ( pat1 && (!pat2) ||
mat1 && (!mat2) )
{
parents = false;
goto jump_to_sibships;
}
int heteroParents = 0;
bool homozygParent;
if ( pat1 != pat2 )
heteroParents++;
else
homozygParent = pat1;
if ( mat1 != mat2 )
heteroParents++;
else
homozygParent = mat1;
if ( heteroParents == 0 )
{
parents = false;
goto jump_to_sibships;
}
// Consider all offspring in nuclear family
double alleleCount = 0;
double childCount = 0;
for (int c=0; c<family[f]->kid.size(); c++)
{
// Only consider affected children: based on true
// (not permuted) phenotype here: permutation works
// by flipping transmissions
if ( ! family[f]->kid[c]->aff ) continue;
bool kid1 = family[f]->kid[c]->one[l];
bool kid2 = family[f]->kid[c]->two[l];
// Skip if offspring has missing genotype
if ( kid1 && !kid2 ) continue;
// We've now established: no missing genotypes
// and at least one heterozygous parent
if ( permute )
{
if ( heteroParents == 1 )
{
if ( ! homozygParent )
alleleCount++;
if ( flipA[f] )
alleleCount++;
}
else // ...two heterozygous parents
{
if ( flipA[f] )
alleleCount+=2;
}
}
else
{
// No permtutation: standard counting
if ( ! kid1 )
alleleCount++;
if ( ! kid2 )
alleleCount++;
}
childCount++;
} // next offspring in family
double expected = childCount;
if ( heteroParents == 1 )
{
if ( ! homozygParent )
expected *= 1.5;
else
expected *= 0.5;
}
double variance = heteroParents * 0.25 * childCount;
numerator += (alleleCount - expected);
denom += variance;
totalCount += alleleCount;
totalExpected += expected;
}
jump_to_sibships:
// Sibships, considering genotypes using the
// multivariate hypergeometric distribution
if ( ( fam->sibship || ( fam->parents && !parents ) )
&& par::dfam_sibs )
{
// Let the numbers of offspring with genotypes AA, AB
// and BB.
// N=NAA+NAB+NBB
// Let the numbers of affected offsrping with genotypes
// AA, AB and BB. be
// D=DAA+DAB+DBB
// Then the observed count of A is DA = 2*DAA+DAB The
// expected value of DA = 2E(DAA) + E D(AB) = 2 NAA *
// (D/N) + NAB * (D/N). The variance of DA = 4 Var (DAA)
// + Var(DAB) + 4Cov(AA,DAB)
// The variances and covariances from the multivariate
// hypergeometric distribution.
double childCount = 0;
double affectedCount = 0;
double genotype1Count = 0; // Aa
double affectedGenotype1Count = 0; // Aa
double genotype2Count = 0; // AA
double affectedGenotype2Count = 0; // AA
for (int c=0; c<family[f]->kid.size(); c++)
{
bool kid1 = family[f]->kid[c]->one[l];
bool kid2 = family[f]->kid[c]->two[l];
// Skip if offspring has missing genotype
if ( kid1 && !kid2 ) continue;
// Only consider affected children (possibly allowing
// for permutation)
if ( family[f]->kid[c]->pperson->aff )
{
if ( ! kid1 )
{
if ( ! kid2 )
affectedGenotype2Count++;
else
affectedGenotype1Count++;
}
affectedCount++;
}
if ( !kid1 )
{
if ( !kid2 )
genotype2Count++;
else
genotype1Count++;
}
childCount++;
} // next offspring in family
if ( affectedCount > 0 && affectedCount != childCount )
{
double expectedGenotype2 = affectedCount
* ( genotype2Count / childCount ) ;
double expectedGenotype1 = affectedCount
* ( genotype1Count / childCount ) ;
double varianceGenotype2 = affectedCount
* ( genotype2Count / childCount )
* ( 1 - genotype2Count / childCount )
* ( (childCount - affectedCount ) / ( childCount - 1 ) ) ;
double varianceGenotype1 = affectedCount
* ( genotype1Count / childCount )
* ( 1 - genotype1Count / childCount )
* ( (childCount - affectedCount ) / ( childCount - 1 ) ) ;
double covarianceGenotype =
- ( affectedCount *
( ( genotype2Count * genotype1Count )
/ ( childCount * childCount ) )
* ( ( (childCount - affectedCount )
/ ( childCount - 1 ) ) ) );
double affectedAlleleCount = 2 * affectedGenotype2Count
+ affectedGenotype1Count;
double expected = 2 * expectedGenotype2
+ expectedGenotype1;
double variance = 4 * varianceGenotype2
+ varianceGenotype1 + 4 * covarianceGenotype;
numerator += ( affectedAlleleCount - expected );
denom += variance;
totalCount += affectedAlleleCount;
totalExpected += expected;
// cout << "SIB "
// << childCount << " "
// << genotype1Count << " "
// << genotype2Count << " "
// << affectedCount << " VAR1,2,3= "
// << varianceGenotype2 << " "
// << varianceGenotype1 << " "
// << covarianceGenotype << " "
// << affectedAlleleCount << " [ "
// << expected << " & "
// << variance << "] \t"
// << numerator << " / "
// << denom << " , "
// << totalCount << " "
// << totalExpected << "\n";
}
}
} // Next nuclear family
///////////////////////////////////////
// Now consider clusters of unrelateds
// As sibling test, except allelic rather than genotypic
// variance estimate (i.e. univariate rather than
// multivariate hypergeometic distribution, so equivalent
// to CMH test
if ( par::dfam_unrelateds )
for ( int k=0; k<nk; k++)
{
double affectedCount = 0;
double affectedAlleleCount = 0;
double alleleCount = 0;
double childCount = 0;
bool same = true;
for (int c=0; c<klist[k]->person.size(); c++)
{
Individual * person = klist[k]->person[c];
// Skip any individuals who we've already
// analysed as a family
if ( person->family->sibship ||
person->family->parents )
continue;
bool s1 = person->one[l];
bool s2 = person->two[l];
// Skip if offspring has missing genotype
if ( s1 && !s2 ) continue;
// Are we seeing any genotypic discordance?
// Only consider families where we do (i.e.
// ignore (het, het) pairs, for example
if ( c>0 &&
( s1 != klist[k]->person[c-1]->one[l] ||
s2 != klist[k]->person[c-1]->two[l] ) )
same = false;
// Only consider affected children
if ( person->pperson->aff )
{
if ( ! s1 )
affectedAlleleCount++;
if ( ! s2 )
affectedAlleleCount++;
affectedCount++;
}
if ( ! s1 )
alleleCount++;
if ( ! s2 )
alleleCount++;
childCount++;
} // next individual in cluster
// S = n | A affected individuals
// E = 2 k n/(n+m)
// V = 2 k nm/(n+m)^2
if ( (!same) && childCount > 1 )
{
double D = alleleCount;
double N = 2 * childCount;
double A = 2 * affectedCount;
double expected = A * ( D / N ) ;
double variance = A *(D/N)*(1-D/N)*((N-A)/(N-1));
numerator += ( affectedAlleleCount - expected );
denom += variance;
totalCount += affectedAlleleCount;
totalExpected += expected;
}
} // Next cluster of unrelateds
//////////////////////////////
// Calculate DFAM statistic
double chisq = numerator*numerator;
chisq /= denom;
//////////////////////////////
// Display asymptotic results
if (print_results)
{
double pvalue = chiprobP(chisq,1);
// Skip?, if filtering p-values
if ( par::pfilter && pvalue > par::pfvalue )
continue;
TDT.precision(4);
TDT << setw(4) << locus[l]->chr << " "
<< setw(par::pp_maxsnp) << locus[l]->name << " "
<< setw(4) << locus[l]->allele1 << " "
<< setw(4) << locus[l]->allele2 << " "
<< setw(8) << totalCount << " "
<< setw(8) << totalExpected << " ";
if ( realnum(chisq) )
{
TDT << setw(12) << chisq << " "
<< setw(12) << pvalue << " ";
}
else
TDT << setw(12) << "NA" << " "
<< setw(12) << "NA" << " ";
TDT << "\n";
}
/////////////////////////////////
// Save statistic for permutation
res[l] = chisq;
} // next locus
//////////////////////////////
// Close output file, if open
if (print_results)
TDT.close();
///////////////////////////////////////////
// Return chosen statistic for permutation
return res;
}
|