1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
//////////////////////////////////////////////////////////////////
// //
// PLINK (c) 2005-2007 Shaun Purcell //
// //
// This file is distributed under the GNU General Public //
// License, Version 2. Please see the file COPYING for more //
// details //
// //
//////////////////////////////////////////////////////////////////
#include <iostream>
#include <iomanip>
#include <fstream>
#include <sstream>
#include <cmath>
#include <vector>
#include <map>
#include <cassert>
#include "plink.h"
#include "options.h"
#include "helper.h"
#include "genogroup.h"
#include "phase.h"
#include "haplowindow.h"
extern ofstream LOG;
using namespace std;
////////////////////////////////////////////////
// Original, single window EM algorithm, without
// genoGrouping -- this is now used for the meta-EM
void HaploPhase::performEM_original()
{
vector_t uc(nh, 0); // unambigous counts
vector_t ac(nh, 0); // ambigous counts
// Count numbers of unambigous haplotypes
// as these stay constant throughout EM
for (int i=0; i<P.n; i++)
{
if (P.sample[i]->founder && include[i])
{
if (!ambig[i])
{
uc[hap1[i][0]]++;
if ( ! (haploid || (X && P.sample[i]->sex)))
uc[hap2[i][0]]++;
}
}
}
//////////////////
// Begin E-M
double sampleLogLikelihood = 0;
for (int j=0; j<= par::haplo_plem_meta_iter; j++)
{
///////////
// E-step
for (int i=0; i<P.n; i++)
{
if (P.sample[i]->founder && include[i])
{
if (ambig[i])
{
double s=0;
// Haploid phases...
if (haploid || (X && P.sample[i]->sex))
{
for (int z=0; z<hap1[i].size(); z++)
{
pp[i][z] = f[hap1[i][z]];
s += pp[i][z];
}
}
else // ... or diploid
{
for (int z=0; z<hap1[i].size(); z++)
{
pp[i][z] = f[hap1[i][z]] * f[hap2[i][z]];
if (hap1[i][z] != hap2[i][z])
pp[i][z] *= 2;
s += pp[i][z];
}
}
for (int z=0; z<hap1[i].size(); z++)
pp[i][z] /= s;
}
}
}
///////////
// M-step
// unambiguous counts
for (int h=0; h<nh; h++)
f[h] = uc[h];
// then add the fractional ones
for (int i=0; i<P.n; i++)
if (P.sample[i]->founder && include[i])
if (ambig[i])
{
if (haploid || (X && P.sample[i]->sex))
{
for (int z=0; z<hap1[i].size(); z++)
f[hap1[i][z]] += pp[i][z];
}
else
for (int z=0; z<hap1[i].size(); z++)
{
f[hap1[i][z]] += pp[i][z];
f[hap2[i][z]] += pp[i][z];
}
}
// validN is the total number of *chromosomes*
for (int h=0; h<nh; h++)
f[h] /= (double)validN;
///////////////////////
// Update likelihood
if (j % par::haplo_plem_meta_likelihood_iter == 0)
{
double lnl = 0;
for (int i=0; i<P.n; i++)
{
if (P.sample[i]->founder && include[i])
{
double lk = 0;
if (haploid || (X && P.sample[i]->sex))
{
for (int z=0; z<hap1[i].size(); z++)
lk += f[hap1[i][z]];
}
else
for (int z=0; z<hap1[i].size(); z++)
{
lk += f[hap1[i][z]] * f[hap2[i][z]];
if (hap1[i][z] != hap2[i][z])
lk += f[hap1[i][z]] * f[hap2[i][z]];
}
lnl -= log(lk);
}
}
if (j > 0 &&
sampleLogLikelihood - lnl < par::haplo_plem_meta_tol )
{
break;
}
sampleLogLikelihood = lnl;
}
}
}
|