1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
//////////////////////////////////////////////////////////////////
// //
// PLINK (c) 2005-2006 Shaun Purcell //
// //
// This file is distributed under the GNU General Public //
// License, Version 2. Please see the file COPYING for more //
// details //
// //
//////////////////////////////////////////////////////////////////
#include <iostream>
#include <iomanip>
#include <vector>
#include <cmath>
#include "plink.h"
#include "helper.h"
#include "stats.h"
#include "perm.h"
void Plink::perm_testGXE2(Perm & perm)
{
// Assumes SNP-major mode
if (!par::SNP_major) Ind2SNP();
// This procedure is only for continuous traits
if (par::bt)
error("Can only use --gxe option with continuous phenotypes");
// GxE test statistics
vector<double> original;
// Empirical p-valuess
perm.setTests(nl_all);
// Construct a binary covariate for GxE
// Individuals who are missing for the
// covariate will already have been set
// to missing for the phenotype -- also
// allow for 0 to equal missing here
// (i.e. use affection status coding)
for (int i=0; i<n; i++)
{
if (sample[i]->covar == 0)
sample[i]->missing = true;
else if (sample[i]->covar == 2)
sample[i]->bcovar = false;
else
sample[i]->bcovar = true;
}
////////////////////////////////
// Set up permutation structure
perm.setPermClusters(*this);
perm.originalOrder();
////////////////////////////////////
// If we do perform permutation,
// check the permutation procedure here:
// i.e. pperson->bcovar or gperson->bcovar
////////////////////////////////////
// Quantitative trait regression
original = testQAssocGXE2(true,perm);
////////////////////////////////////
// No permutations for now
shutdown();
}
/////////////////////////////////////////////
// Simple quantitative trait association test
// Assumes SNP-major mode
vector<double> Plink::testQAssocGXE2(bool print_results ,
Perm & perm )
{
vector<double> results(nl_all);
ofstream ASC;
if (print_results)
{
string f = par::output_file_name + ".qassoc.gxe";
printLOG("Writing QT GxE association results to [ " + f + " ] \n");
ASC.open(f.c_str(),ios::out);
ASC << setw(4) << "CHR" << " "
<< setw(par::pp_maxsnp) << "SNP" << " "
<< setw(8) << "NMISS1" << " "
<< setw(10) << "BETA1" << " "
<< setw(10) << "SE1" << " "
<< setw(8) << "NMISS2" << " "
<< setw(10) << "BETA2" << " "
<< setw(10) << "SE2" << " "
<< setw(8) << "Z_GXE" << " "
<< setw(12) << "P_GXE" << " "
<< "\n";
ASC.precision(4);
}
// Iterate over each locus
vector<CSNP*>::iterator s = SNP.begin();
int l = 0;
while ( s != SNP.end() )
{
// Skip possibly
if (par::adaptive_perm && !perm.snp_test[l])
{
// advance to next SNP
s++;
l++;
continue;
}
double g_mean1=0;
double g_var1=0;
double qt_mean1=0;
double qt_var1=0;
double qt_g_covar1=0;
int nanal1 = 0;
double g_mean2=0;
double g_var2=0;
double qt_mean2=0;
double qt_var2=0;
double qt_g_covar2=0;
int nanal2=0;
///////////////////////////////
// Iterate over each individual
vector<Individual*>::iterator person = sample.begin();
vector<bool>::iterator i1 = (*s)->one.begin();
vector<bool>::iterator i2 = (*s)->two.begin();
while ( person != sample.end() )
{
// Permuted self
Individual * pperson = (*person)->pperson;
// Genotype
bool s1 = *i1;
bool s2 = *i2;
if (!pperson->missing)
{
if ( ! ( s1 && !s2) ) // 10 = missing
{
if (pperson->bcovar)
qt_mean1 += pperson->phenotype;
else
qt_mean2 += pperson->phenotype;
if ( (!s1) && (!s2) ) // 00 = hom(11)
{
if (pperson->bcovar) g_mean1+=2;
else g_mean2+=2;
}
else if ( (!s1) && s2) // 01 = het(12)
{
if (pperson->bcovar) g_mean1++;
else g_mean2++;
}
if (pperson->bcovar) nanal1++;
else nanal2++;
}
}
// Next person
i1++;
i2++;
person++;
}
// Calculate mean
qt_mean1 /= (double)nanal1;
g_mean1 /= (double)nanal1;
qt_mean2 /= (double)nanal2;
g_mean2 /= (double)nanal2;
// Iterate over individuals again
person = sample.begin();
i1 = (*s)->one.begin();
i2 = (*s)->two.begin();
while ( person != sample.end() )
{
// Permuted self
Individual * pperson = (*person)->pperson;
// Genotype
bool s1 = *i1;
bool s2 = *i2;
if (!pperson->missing)
{
if ( ! ( s1 && !s2) ) // 10 = missing
{
if (pperson->bcovar)
qt_var1 += (pperson->phenotype-qt_mean1) * ( pperson->phenotype-qt_mean1 ) ;
else
qt_var2 += (pperson->phenotype-qt_mean2) * ( pperson->phenotype-qt_mean2 ) ;
double g = 0;
if ( (!s1) && (!s2) ) // 00 = hom(11)
g=2;
else if ( (!s1) && s2 ) // 01 = het(12)
g=1;
if (pperson->bcovar)
{
g_var1 += (g-g_mean1) * ( g-g_mean1 ) ;
qt_g_covar1 += ( pperson->phenotype - qt_mean1 ) * ( g - g_mean1 ) ;
}
else
{
g_var2 += (g-g_mean2) * ( g-g_mean2 ) ;
qt_g_covar2 += ( pperson->phenotype - qt_mean2 ) * ( g - g_mean2 ) ;
}
}
}
// Next individual
i1++;
i2++;
person++;
}
qt_var1 /= (double)nanal1 - 1;
g_var1 /= (double)nanal1 - 1;
qt_g_covar1 /= (double)nanal1 - 1;
qt_var2 /= (double)nanal2 - 1;
g_var2 /= (double)nanal2 - 1;
qt_g_covar2 /= (double)nanal2 - 1;
double beta1 = qt_g_covar1 / g_var1;
double vbeta1 = (qt_var1/g_var1 - (qt_g_covar1*qt_g_covar1)/(g_var1*g_var1) ) / (nanal1-2);
double beta2 = qt_g_covar2 / g_var2;
double vbeta2 = (qt_var2/g_var2 - (qt_g_covar2*qt_g_covar2)/(g_var2*g_var2) ) / (nanal2-2);
double Z = (beta1-beta2) / sqrt( vbeta1 + vbeta2 ) ;
if (print_results)
{
ASC << setw(4) << locus[l]->chr << " "
<< setw(par::pp_maxsnp) << locus[l]->name << " ";
if (realnum(Z))
{
ASC << setw(8) << nanal1 << " "
<< setw(10) << beta1 << " "
<< setw(10) << sqrt(vbeta1) << " "
<< setw(8) << nanal2 << " "
<< setw(10) << beta2 << " "
<< setw(10) << sqrt(vbeta2) << " "
<< setw(8) << Z << " "
<< setw(12) << chiprobP(Z*Z,1) << "\n";
}
else
{
ASC << setw(8) << "NA" << " "
<< setw(10) << "NA" << " "
<< setw(10) << "NA" << " "
<< setw(8) << "NA" << " "
<< setw(10) << "NA" << " "
<< setw(10) << "NA" << " "
<< setw(8) << "NA" << " "
<< setw(12) << "NA" << "\n";
}
}
results[l] = Z;
// Advance to next SNP
s++;
l++;
}
if (print_results)
ASC.close();
return results;
}
|