1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
//////////////////////////////////////////////////////////////////
// //
// PLINK (c) 2005-2009 Shaun Purcell //
// //
// This file is distributed under the GNU General Public //
// License, Version 2. Please see the file COPYING for more //
// details //
// //
//////////////////////////////////////////////////////////////////
#include <iostream>
#include <iomanip>
#include <cmath>
#include <sstream>
#include "whap.h"
#include "helper.h"
#include "plink.h"
#include "options.h"
#include "perm.h"
#include "nlist.h"
#include "phase.h"
#include "model.h"
#include "linear.h"
#include "logistic.h"
#include "stats.h"
//////////////////////////////////////////////////////////////
// Implements --hap-logistic and --hap-linear functions
// Use framework provided by --chap/whap.cpp
// can perform either omnibus or haplotype specific tests
vector_t Plink::glmHaplotypeTest(bool print, Perm & perm)
{
///////////////////////////////////////////////
// //
// Some basic setup first //
// //
///////////////////////////////////////////////
// Use basic GLM function to fit linear and logistic
// models: although, let it know that there will not
// be a 'main' SNP
par::assoc_glm_without_main_snp = true;
// Return a single result
vector_t results;
// Haplotypes at this position have already been phased
// Record the number of common haplotypes
int nch = 0;
set<int> commonHaplotypes;
for (int h=0; h < haplo->nh; h++)
if ( haplo->f[h] >= par::min_hf )
{
++nch;
commonHaplotypes.insert(h);
}
// if ( ! par::test_hap_GLM_omnibus )
// haplo->HTEST << setw( haplo->ns + 1 ) << haplo->haplotypeName(0) << " ";
if ( nch < 2 )
{
haplo->HTEST << setw(4) << haplo->ns << " "
<< setw(4) << nch << " "
<< setw(4) << locus[haplo->S[0]]->chr << " "
<< setw(12) << locus[haplo->S[0]]->bp << " "
<< setw(12) << locus[haplo->S[haplo->ns-1]]->bp << " "
<< setw(par::pp_maxsnp) << locus[haplo->S[0]]->name << " "
<< setw(par::pp_maxsnp) << locus[haplo->S[haplo->ns-1]]->name << " ";
if ( ! par::test_hap_GLM_omnibus )
{
if ( nch==1 )
haplo->HTEST << setw(12) << haplo->haplotypeName(0) << " ";
else
haplo->HTEST << setw(12) << "NA" << " ";
haplo->HTEST << setw(8) << "NA" << " "
<< setw(8) << "NA" << " "
<< setw(8) << "NA" << " "
<< setw(8) << "NA" << "\n";
}
else
haplo->HTEST << setw(8) << "NA" << " "
<< setw(8) << "NA" << "\n";
results.push_back( 0 );
return results;
}
// Single SNP association
if ( par::test_hap_GLM_omnibus )
{
haplo->HTEST << setw(4) << haplo->ns << " "
<< setw(4) << nch << " "
<< setw(4) << locus[haplo->S[0]]->chr << " "
<< setw(12) << locus[haplo->S[0]]->bp << " "
<< setw(12) << locus[haplo->S[haplo->ns-1]]->bp << " "
<< setw(par::pp_maxsnp) << locus[haplo->S[0]]->name << " "
<< setw(par::pp_maxsnp) << locus[haplo->S[haplo->ns-1]]->name << " ";
// H-1 omnibus (H0 is ref.)
haplo->sets.clear();
set<int>::iterator i = commonHaplotypes.begin();
// Skip first haplotype (this is reference)
// All rare haplotypes will therefore be
// lumped in with the reference
++i;
while ( i != commonHaplotypes.end() )
{
haplo->sets.insert(*i);
++i;
}
// Fit model
glmAssoc(false,*pperm);
// Report results
haplo->result = model->isValid() ? model->getStatistic() : 0;
haplo->pvalue = par::bt ?
chiprobP(haplo->result,1) : ((LinearModel*)model)->getPValue();
// Calculate omnibus tests of H-1 terms
// Assumes the terms are: e.g. for 4 haplotypes
// 0 intercept
// 1 haplotype 2 of H
// 2 haplotype 3 of H
// 3 haplotype 4 of H
int df = nch-1;
vector_t h;
h.resize(df,0);
matrix_t H;
sizeMatrix(H,df,model->getNP());
for (int j=0; j<df; j++)
H[j][j+1] = 1;
double chisq = model->isValid() ? model->linearHypothesis(H,h) : 0;
double pvalue = chiprobP(chisq,df);
if ( model->isValid() )
{
haplo->HTEST << setw(8) << chisq << " "
<< setw(8) << pvalue << "\n";
}
else
{
haplo->HTEST << setw(8) << "NA" << " "
<< setw(8) << "NA" << "\n";
}
// Clean up
delete model;
// Return 1-p, as will be different DF for different windows
results.push_back( 1 - pvalue );
return results;
}
// Otherwise, we are performing H haplotype specific tests
set<int>::iterator i = commonHaplotypes.begin();
while ( i != commonHaplotypes.end() )
{
haplo->sets.clear();
haplo->sets.insert(*i);
// Fit model
glmAssoc(false,*pperm);
// Report results
vector_t coef = model->getCoefs();
// Note: the different direction of OR
haplo->odds = par::bt ? exp(coef[1]) : coef[1];
haplo->result = model->isValid() ? model->getStatistic() : 0;
haplo->pvalue = par::bt ? chiprobP(haplo->result,1) : ((LinearModel*)model)->getPValue();
// Calculate omnibus tests of H-1 terms
haplo->HTEST << setw(4) << haplo->ns << " "
<< setw(4) << nch << " "
<< setw(4) << locus[haplo->S[0]]->chr << " "
<< setw(12) << locus[haplo->S[0]]->bp << " "
<< setw(12) << locus[haplo->S[haplo->ns-1]]->bp << " "
<< setw(par::pp_maxsnp) << locus[haplo->S[0]]->name << " "
<< setw(par::pp_maxsnp) << locus[haplo->S[haplo->ns-1]]->name << " ";
haplo->HTEST << setw(12) << haplo->haplotypeName(*i) << " "
<< setw(8) << haplo->f[*i] << " ";
if ( model->isValid() )
{
haplo->HTEST << setw(8) << haplo->odds << " "
<< setw(8) << haplo->result << " "
<< setw(8) << haplo->pvalue << "\n";
}
else
{
haplo->HTEST << setw(8) << "NA" << " "
<< setw(8) << "NA" << " "
<< setw(8) << "NA" << "\n";
}
// Clean up
delete model;
// Return chi-sq (always 1df)
results.push_back( haplo->result );
// Next common haplotype
++i;
}
return results;
}
|