1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
|
//////////////////////////////////////////////////////////////////
// //
// PLINK (c) 2005-2006 Shaun Purcell //
// //
// This file is distributed under the GNU General Public //
// License, Version 2. Please see the file COPYING for more //
// details //
// //
//////////////////////////////////////////////////////////////////
#include <iostream>
#include <iomanip>
#include <map>
#include <vector>
#include <cmath>
#include "plink.h"
#include "sets.h"
#include "options.h"
#include "helper.h"
#include "stats.h"
#include "perm.h"
using namespace std;
// Helper function
void calcHotelSetMeanVariance(vector<CSNP*> &,
vector<double> &,
vector<double> &,
vector<vector<double> > &,
vector<Individual*>&,
int,int);
void Plink::perm_testHotel(Perm & perm)
{
if (!par::SNP_major)
Ind2SNP();
// Do not allow monomorphic alleles
if (par::min_af==0)
error("Cannot specify --maf 0 when using --T2; set --maf > 0");
// Do not allow completely missing SNPs
if (par::MAX_GENO_MISSING==1)
error("Cannot specify --geno 1 when using --T2; set --geno < 1");
// Are we using sets? If so, construct these now
if (!par::set_test)
error("You need to specify sets (--set option) with --T2");
// Do not allow quantitative traits
if (!par::bt)
error("Cannot specify --T2 with quantitative traits");
// Prune SET (0-sized sets, MAF==0 SNPs, etc)
pS->pruneSets(*this);
int ns = snpset.size();
///////////////////////////////////////////
// Count how many cases, how many controls
int caseN = 0;
int controlN = 0;
for (int i=0; i < n; i++)
if (!sample[i]->missing)
if (sample[i]->aff)
caseN++;
else
controlN++;
if ( caseN == 0 ||
controlN == 0 )
error("No cases / no controls for T(2) test");
// Multi-collinearity SNP pruning
setFlags(true);
pS->pruneMC(*this,true,par::vif_threshold);
// Empirical p-values (1 per set)
perm.setTests(ns);
////////////////////////////////
// Set up permutation structure
// (we need to perform this step
// whether or not we also
// subsequently permute)
perm.setPermClusters(*this);
perm.originalOrder();
vector<double> original = calcHotel(true,
perm,
*pS,
caseN, controlN);
////////////////////////////
// If no permutation, then
// leave now
if (!par::permute) return;
//////////////////////
// Begin permutations
bool finished = false;
while(!finished)
{
// Store permuted results
vector<double> pr(ns);
if (par::perm_genedrop)
perm.geneDrop();
else
perm.permuteInCluster();
pr = calcHotel(false,
perm,
*pS,
caseN, controlN);
////////////////////////////////
// Standard permutation counting
finished = perm.update(pr,original);
} // next permutation
if (!par::silent)
cout << "\n\n";
////////////////////
// Display results
ofstream ASC;
string f;
if (par::adaptive_perm) f = par::output_file_name + ".T2.perm";
else f = par::output_file_name + ".T2.mperm";
ASC.open(f.c_str(),ios::out);
ASC.precision(4);
printLOG("Writing permutation T2 test results to [ " + f + " ] \n");
ASC << setw(12) << "SET" << " "
<< setw(4)<< "SIZE" << " "
<< setw(12) << "EMP1" << " ";
if (par::adaptive_perm)
ASC << setw(12)<< "NP" << " ";
else
ASC << setw(12)<< "EMP2" << " ";
ASC << "\n";
for (int s=0; s<snpset.size(); s++)
{
ASC << setw(12) << setname[s] << " "
<< setw(4) << snpset[s].size() << " ";
ASC << setw(12) << perm.pvalue(s) << " ";
if (par::adaptive_perm)
ASC << setw(12) << perm.reps_done(s) << " ";
else
ASC << setw(12) << perm.max_pvalue(s) << " ";
ASC << "\n";
}
ASC.close();
}
vector<double> Plink::calcHotel(bool disp,
Perm & perm,
Set & S,
int ncase,
int ncontrol)
{
ofstream ASC;
if (disp)
{
string f = par::output_file_name + ".T2";
ASC.open(f.c_str(),ios::out);
ASC.precision(4);
printLOG("Writing T2 test results to [ " + f + " ] \n");
ASC << setw(12) << "SET" << " "
<< setw(4)<< "SIZE" << " "
<< setw(12)<< "T2" << " "
<< setw(12) << "DF1" << " "
<< setw(12)<< "DF2" << " "
<< setw(12)<< "P_HOTEL" << "\n";
}
// Number of SETs
int ns = pS->snpset.size();
vector<double> T2(ns,0);
// Consider each SET
for (int s=0; s<ns; s++)
{
// Adaptive permutation: skip possibly
if (par::adaptive_perm && !perm.snp_test[s]) continue;
// Consider each SNP, coded 1,0 and -1
// Use mean-substitution for missing alleles
int nss0 = snpset[s].size();
//////////////////////////////////////////////
// Create a vector of pointers for SNPs in set
int nss = 0;
vector<CSNP*> pSNP(0);
for (int j=0; j<nss0; j++)
{
// include this SNP? (MC considerations)
if ( pS->cur[s][j] )
{
// Add to set list
pSNP.push_back( SNP[snpset[s][j]] );
// Increase the actual number of snps in set
nss++;
}
}
vector<double> mean2(nss,0); // Case mean
vector<double> mean1(nss,0); // Control mean
vector<vector<double> > pooled; // Covariance matrix
///////////////////////////////////////
// Calculate mean and variance (pooled)
// after imputing missing SNPs
calcHotelSetMeanVariance(pSNP,mean1,mean2,pooled,sample,ncase,ncontrol);
///////////////////////////////
// 2. Calculate test statistic
for (int j1=0; j1<nss; j1++)
for (int j2=j1; j2<nss; j2++)
{
pooled[j1][j2] /= (double)(ncase+ncontrol-2);
pooled[j1][j2] *= 1/(double)ncase + 1/(double)ncontrol;
if (j1!=j2)
pooled[j2][j1] = pooled[j1][j2];
}
// Get inverse of this matix
bool flag = true;
pooled = svd_inverse(pooled,flag);
// Calculate T2 statistic
vector<double> tmp(nss,0);
for (int j1=0; j1<nss; j1++)
for (int j2=0; j2<nss; j2++)
tmp[j1] += ( mean1[j2] - mean2[j2] ) * pooled[j1][j2];
double stat_t2 = 0;
for (int j1=0; j1<nss; j1++)
stat_t2 += tmp[j1] * ( mean1[j1] - mean2[j1] );
// T(2) is distributed as (n-1)p / (n-p) F(p,n-p)
// where n = number of individuals; p = number of variables
// For two-sample T(2), replace n with n1+n2-1
// Make statistic; test against F(nss, ncase+ncontrol-1 - nss)
stat_t2 /=
(
(double)((ncase+ncontrol-2)*nss)
/ (double)(ncase+ncontrol-nss-1)
);
// Asymptotic p-value, use 1-p as test statistic
// for permutation
double T2p = pF(stat_t2,nss, ncase+ncontrol-nss-1);
T2[s] = 1 - T2p;
// cout << "\nTest STAT = " << T2[s] << "\n";
if (disp)
{
ASC << setw(12) << setname[s] << " "
<< setw(4) << snpset[s].size() << " "
<< setw(12) << stat_t2<< " "
<< setw(12) << nss << " "
<< setw(12) << ncase+ncontrol-nss-1 << " "
<< setw(12) << T2p << "\n";
}
}
return T2;
}
void calcHotelSetMeanVariance(vector<CSNP*> & pSNP,
vector<double> & mean1,
vector<double> & mean2,
vector<vector<double> > & pooled,
vector<Individual*> & sample,
int ncase,
int ncontrol)
{
int nss = mean1.size();
vector<double> mean(nss,0);
vector<int> cnt1(nss,0);
vector<int> cnt2(nss,0);
////////////////////////////
// Iterate over SNPs in SET
vector<CSNP*>::iterator ps = pSNP.begin();
int j=0;
while ( ps != pSNP.end() )
{
///////////////////////////
// Iterate over individuals
vector<Individual*>::iterator gperson = sample.begin();
vector<bool>::iterator i1 = (*ps)->one.begin();
vector<bool>::iterator i2 = (*ps)->two.begin();
int i=0;
while ( gperson != sample.end() )
{
// Permuted self
Individual * pperson = (*gperson)->pperson;
// Affected individuals
if ( ! pperson->missing )
{
if (pperson->aff)
{
if ( *i1 )
{
if ( *i2 ) // 11 homozygote
{
mean[j]++;
cnt2[j]++;
mean2[j]++;
}
}
else
{
cnt2[j]++;
if ( ! *i2 ) // 00 homozygote
{
mean[j]--;
mean2[j]--;
}
}
}
else
{
if ( *i1 )
{
if ( *i2 ) // 11 homozygote
{
mean[j]++;
cnt1[j]++;
mean1[j]++;
}
}
else
{
cnt1[j]++;
if ( ! *i2 ) // 00 homozygote
{
mean[j]--;
mean1[j]--;
}
}
}
}
// Next individual
gperson++;
i1++;
i2++;
i++;
}
// Next SNP in set
ps++;
j++;
}
// Having iterated over all individuals, we can now calculate the mean
// values, perform mean-substitution of missing data, and calculate the
// second order terms
cout.precision(8);
for (int j=0; j<nss; j++)
{
mean[j] /= (double)(cnt1[j]+cnt2[j]);
mean1[j] /= (double)cnt1[j];
mean2[j] /= (double)cnt2[j];
}
// Element of pooled covariance matrix S is
// S[x][y] = ( X[i] - mean1[i] ) ( X[j] - mean1[j] )
pooled.resize(nss);
for (int j=0; j<nss; j++)
pooled[j].resize(nss,0);
/////////////////////////////////////
// Iterate over pairs of SNPs in SET
// First SNP
vector<CSNP*>::iterator ps1 = pSNP.begin();
int j1=0;
while ( ps1 != pSNP.end() )
{
// Second SNP
vector<CSNP*>::iterator ps2 = ps1;
int j2=j1;
while ( ps2 != pSNP.end() )
{
///////////////////////////
// Iterate over individuals
vector<Individual*>::iterator gperson = sample.begin();
vector<bool>::iterator i1_1 = (*ps1)->one.begin();
vector<bool>::iterator i2_1 = (*ps1)->two.begin();
vector<bool>::iterator i1_2 = (*ps2)->one.begin();
vector<bool>::iterator i2_2 = (*ps2)->two.begin();
while ( gperson != sample.end() )
{
// Permuted self
Individual * pperson = (*gperson)->pperson;
// Set both values to sample mean
double v1 = mean[j1];
double v2 = mean[j2];
// First SNP
if ( *i1_1 )
{
if ( *i2_1 ) // 11 homozygote
{
v1 = 1;
}
}
else
{
if ( ! *i2_1 ) // 00 homozygote
{
v1 = -1;
}
else
v1 = 0; // 01 heterozygote
}
// Second SNP
if ( *i1_2 )
{
if ( *i2_2 ) // 11 homozygote
{
v2 = 1;
}
}
else
{
if ( ! *i2_2 ) // 00 homozygote
{
v2 = -1;
}
else
v2 = 0; // 01 heterozygote
}
// Contribution to covariance term
if (! pperson->missing)
{
if (pperson->aff) // affecteds
pooled[j1][j2] += ( v1 - mean2[j1] ) * ( v2 - mean2[j2] );
else // unaffecteds
pooled[j1][j2] += ( v1 - mean1[j1] ) * ( v2 - mean1[j2] );
}
// Next individual
gperson++;
i1_1++;
i2_1++;
i1_2++;
i2_2++;
}
// Next second SNP
ps2++;
j2++;
}
// Next first SNP
ps1++;
j1++;
}
// Make matrix symmetric
for (int i=0; i<nss; i++)
for (int j=i; j<nss; j++)
pooled[j][i] = pooled[i][j];
return;
}
|