1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
|
//////////////////////////////////////////////////////////////////
// //
// PLINK (c) 2005-2008 Shaun Purcell //
// //
// This file is distributed under the GNU General Public //
// License, Version 2. Please see the file COPYING for more //
// details //
// //
//////////////////////////////////////////////////////////////////
#include <iostream>
#include <iomanip>
#include <fstream>
#include <sstream>
#include <cmath>
#include <vector>
#include <map>
#include <cassert>
#include "plink.h"
#include "options.h"
#include "helper.h"
#include "genogroup.h"
#include "phase.h"
#include "haplowindow.h"
extern Plink * PP;
void displayFamTran(map<FamilyTransmissions,double> & pmap, int fi, HaploPhase * HP)
{
cout << "FAMILY " << fi << " : " << PP->sample[fi]->fid << "\n";
map<FamilyTransmissions,double>::iterator i = pmap.begin();
cout << setw(12) << "PATERNAL" << " "
<< setw(12) << "MATERNAL" << " "
<< " -> "
<< setw(12) << "OFFSPRING" << " "
<< setw(8) << "PROB" << "\n";
while ( i != pmap.end() )
{
const FamilyTransmissions * f = &(i->first);
cout << setw(12) << (HP->haplotypeName( f->pt ) + "/" + HP->haplotypeName( f->pu ) ) << " "
<< setw(12) << (HP->haplotypeName( f->mt ) + "/" + HP->haplotypeName( f->mu ) ) << " "
<< " -> "
<< setw(12) << (HP->haplotypeName( f->pt ) + "/" + HP->haplotypeName( f->mt ) ) << " "
<< setw(8) << i->second << "\n";
++i;
}
cout << "\n";
}
void HaploPhase::validateNonfounder(int i,
vector<bool> & s1,
vector<bool> & s2)
{
// Flipping allele-coding for homozygotes
for (int s=0; s<ns; s++)
{
if (par::SNP_major)
{
s1[s] = P.SNP[S[s]]->one[i];
s2[s] = P.SNP[S[s]]->two[i];
}
else
{
s1[s] = P.sample[i]->one[S[s]];
s2[s] = P.sample[i]->two[S[s]];
}
if (s1[s] == s2[s])
{
s1[s] = !s1[s];
s2[s] = !s2[s];
}
}
//////////////////////////////////////////////////////////
// Count amount of missing genotype data at this position
int nm = 0;
for (int s=0; s<ns; s++)
if (s1[s] && !s2[s])
nm++;
// If any missing genotypes, this person counts
// as ambiguous
if (nm>0)
ambig[i] = true;
// But if too much missing genotype data, then
// we should not even try to phase this individual
// for this region; note -- females should always be
// missing all genotypes for Y, so we don't need to
// worry about allowing for a special case here.
if ( (double)nm/(double)ns >= par::hap_missing_geno )
{
include[i] = false;
}
///////////////////////////////////////////////
// 2 or more hets at any loci -> ambiguous
// Haploid genotypes should never be heterozygous,
// so we are okay here w.r.t X chromosome
int het=0;
for (int s=0; s<ns; s++)
if ( (!s1[s]) && s2[s])
het++;
if (het>1)
ambig[i] = true;
return;
}
bool HaploPhase::consistentNonfounderPhaseGivenGenotypes(vector<bool> & s1,
vector<bool> & s2,
int h1, int h2)
{
// This function works for autosomal, haploid and sex chromosomes
// Template haplotypes
vector<bool> & t1 = hap[h1];
vector<bool> & t2 = hap[h2];
for (int s=0; s<ns; s++)
{
// Ignore missing genotypes (observed; template will never be
// missing)
if ( s1[s] && !s2[s] )
continue;
// Template homozygous?
// (Haploid templates will always be homozygous)
if ( t1[s] == t2[s] )
{
if ( s1[s] != t1[s] ||
s2[s] != t2[s] )
return false;
}
else // heterozygous template
{
if ( s1[s] == s2[s] )
return false;
}
}
// Looks like is does match
return true;
}
bool HaploPhase::consistentNonfounderMalePhaseGivenXGenotypes(vector<bool> & s1,
vector<bool> & s2,
int h2)
{
// This function works for haploid individuals (male X offspring);
// only the mother transmitted the X
// Template haplotypes
vector<bool> & t1 = hap[h2];
for (int s=0; s<ns; s++)
{
// Ignore missing genotypes (observed; template will never be
// missing)
if ( s1[s] && !s2[s] )
continue;
// Haploid templates will always be homozygous
// Haploid genotype should always be homozygous too
if ( s1[s] != t1[s] )
return false;
}
// Looks like is does match
return true;
}
bool HaploPhase::consistentNonfounderPhaseGivenParents(int i,
int h1, int h2,
int p1, int p2,
int m1, int m2)
{
// Given offspring haplotypes and parental haplotypes, identify
// whether or not this offspring genotype is possible
if ( X && P.sample[i]->sex )
{
// We should only have specified possible homozygous phases --
// therefore, if male X chr, we only need to check that it is
// consistent with at least one maternal X
if ( h1 == m1 || h1 == m2 )
return true;
}
return (h1 == p1 && h2 == m1 ) ||
(h1 == p1 && h2 == m2 ) ||
(h1 == p2 && h2 == m1 ) ||
(h1 == p2 && h2 == m2 ) ||
(h1 == m1 && h2 == p1 ) ||
(h1 == m1 && h2 == p2 ) ||
(h1 == m2 && h2 == p1 ) ||
(h1 == m2 && h2 == p2 );
}
void HaploPhase::resolveWithKids(int i)
{
// Consider the founders in each family, who
// have at least 1 child, and a genotyped spouse
// We require a full family, with two parents
// if ( ! f->parents ) return;
// int pati = pat->
// Individual * pat = f->pat;
// Individual * mat = f->mat;
// A/a B/b A/a B/b -> A/A B/B
// AB / AB
// for (int i=0; i< P.family[f].size(); i++)
// cout << P.family[f]->fid << "\t"
// << P.family[f]->iid << "\t"
// << P.family[f]->pat->iid << "\t"
// << P.family[f]->mat->iid << "\n";
}
void HaploPhase::phaseAndScoreNonfounder(int i)
{
//////////////////////////////////////////////
// Always try to phase this offspring
include[i] = true;
//////////////////////////////////////////////
// Link this individual up with their parents
int father = P.sample[i]->ip;
int mother = P.sample[i]->im;
bool nofather = false;
bool nomother = false;
if (father==-1)
nofather = true;
else if (!include[father])
nofather = true;
if (mother==-1)
nomother = true;
else if (!include[mother])
nomother = true;
// For TDT purposes, we require both parents to be 'observed'
// i.e. so we never we to consider the "AllPhases" list (so
// we now do not bother generating it, i.e. enumerateAllPhases()
// function call is commented out in the main loop above
if ( nofather || nomother )
{
include[i] = false;
return;
}
int pat_phases = hap1[father].size();
int mat_phases = hap1[mother].size();
// Too much ambiguity?
if (pat_phases * mat_phases >= par::hap_max_nf_phases )
{
include[i] = false;
return;
}
// Keep track of transmitted and non-transmitted
// haplotypes if performing a TDT-type analysis
vector<vector<int> > trans1(0);
vector<vector<int> > untrans1(0);
/////////////////////////////////////////
// Perform fill-in phasing for offspring
// Step 1. Enumerate possible offspring phases
// or set to not include if too much missing,
// and populate s1/s2 with genotype data for
// region
vector<bool> s1(ns);
vector<bool> s2(ns);
validateNonfounder(i,s1,s2);
//////////////////////////////////////////////
// Do we want to attempt to reconstruct phase?
if ( ! include[i] )
{
return;
}
////////////////////////////////////////////////
// Step 2. Joint distribution of parental phases
double psum = 0;
int pcnt=1;
// Set offspring posterior probability list to nil
pp[i].clear();
// Consider all possible pairs of parental phases and implied
// possible haplotypic transmissions
// If no mother or father exists, we are using the standard
// ph[] enumeration of all possible haplotypes: NOT SUPPORTED
// CURRENTLY, BUT WE COULD IMPLEMENT AGAIN FOR SIBLINGS
vector<int> & pathap1 = nofather ? ph_hap1 : hap1[father];
vector<int> & pathap2 = nofather ? ph_hap2 : hap2[father];
vector<int> & mathap1 = nomother ? ph_hap1 : hap1[mother];
vector<int> & mathap2 = nomother ? ph_hap2 : hap2[mother];
map<FamilyTransmissions,double> & pmap = phasemap[i];
for (int z1=0; z1 < pat_phases ; z1++)
for (int z2=0; z2 < mat_phases ; z2++)
{
int p1 = pathap1[z1];
int p2 = pathap2[z1];
int m1 = mathap1[z2];
int m2 = mathap2[z2];
// Legacy code: we no longer take this approach, but
// the code is left here to show how to call the function
// // Obtain possible offspring phases, given offspring
// // genotypes and parental haplotypes
// enumerateNonfounderPhase(i, // offspring individual
// s1, s2, // offspring genotypes
// p1, p2, // paternal haplotypes
// m1, m2, // maternal haplotypes
// phap1, phap2); // return possible offspring haplotypes
// Given parental phases, there are four possible autosomal
// offspring tranmissions (for autosomes). We should enumerate
// these and see which are consistent with the observed
// offspring genotypes
// Autosome(PM) Haploid* X(->female) X(->male)
// 00 0 00 *0
// 01 1 01 *1
// 10
// 11
// * not implemented; i.e. for now these are skipped
// (i.e. this function is never called) -- this will be added
// in future versions; haploid genotypes are coded as
// homozygous; but for the haploid case, we need special code
// in place to indicate MT transmission, etc.
// For the autosomal X case, when transmitting to males, we
// need a special function, however, as we do not want to
// consider at all the paternal (homozygous/haploid) X
// genotype (i.e. Y was transmitted...)
// For female offspring on the X, we do want to look at the
// paternal X for concordance, but we should only look at one
// copy (as the father should always be homozygous/haploid).
vector<FamilyTransmissions> offspring(4);
vector<bool> possible(4,false);
int npossible = 0;
for (int tr_pat = 0; tr_pat < 2; tr_pat++)
for (int tr_mat = 0; tr_mat < 2; tr_mat++)
{
// Handle special cases of non-autosomal chromosomes
if ( X )
{
// If boy, haploid and X must have come from mother
// (0 paternal possible transmissions)
// If girl, diploid, but father can only send one
// possible X (only 1 possible paternal
// transmission)
if ( tr_pat == 1 )
continue;
}
// Offspring haplotypes
// Store: c is 0..3 coding
// first two are for maternal transmissions
// so we can take a short cut and just consider
// first two positions for X (where there is
// no variation in paternal transmission conditional
// on offspring sex)
int c = tr_mat + tr_pat*2;
// Paternal transmission
if ( tr_pat == 0 )
{
offspring[c].pt = p1;
offspring[c].pu = p2;
}
else
{
offspring[c].pt = p2;
offspring[c].pu = p1;
}
// Maternal transmission
if ( tr_mat == 0 )
{
offspring[c].mt = m1;
offspring[c].mu = m2;
}
else
{
offspring[c].mt = m2;
offspring[c].mu = m1;
}
// Is this offspring phase compatible with the offspring
// genotypes?
if ( X && P.sample[i]->sex )
{
// Only consider maternal X transmission to male
if ( consistentNonfounderMalePhaseGivenXGenotypes(s1,s2,
offspring[c].mt) )
{
possible[c] = true;
npossible++;
}
}
else if ( consistentNonfounderPhaseGivenGenotypes(s1,s2,
offspring[c].pt,
offspring[c].mt) )
{
// Add this to list of possible offspring phases,
// keeping track of frequency
// If we were to revert to using absent parents,
// then ph_freq[] should have been populated by
// enumerateAllPhases()
possible[c] = true;
npossible++;
}
} // Next of 2/4 (max) possible parental transmissions
// Need to scale these 0->4 possibilities to sum to correct
// value
// At least one possible phase?
if ( npossible > 0 )
{
double p = 1;
if (ambig[father])
p *= pp[father][z1];
if (ambig[mother])
p *= pp[mother][z2];
// We explicitly consider both phases, so we remove this line
// if (h1!=h2)
// p *= 2;
p /= (double)npossible;
int numposs = 4; // Autosomal
if ( X ) numposs = 2; // X transmission
for (int j=0; j<numposs; j++)
{
if ( possible[j] )
{
map<FamilyTransmissions,double>::iterator
ip = pmap.find( offspring[j] );
if ( ip == pmap.end() )
pmap.insert( make_pair(offspring[j] , p) );
else
ip->second += p;
// Keep track of total probability
psum += p;
}
}
}
// Consider next possible parental phase
}
/////////////////////////////////////
// Extract possible offspring phases and populate
// standard metrics
pp[i].clear();
hap1[i].clear();
hap2[i].clear();
///////////////////////////////////////////////////////
// Store the possible offspring phases (transmissions
// only), and keep track of the probabilities
map<FamilyTransmissions,double>::iterator ip = pmap.begin();
include[i] = ambig[i] = true;
if ( pmap.size() == 0 )
{
include[i] = false;
}
else if ( pmap.size() == 1 )
{
ambig[i] = false;
int h1 = ip->first.pt;
int h2 = ip->first.mt;
if ( h1 < h2 )
{
hap1[i].push_back( h1 );
hap2[i].push_back( h2 );
}
else
{
hap1[i].push_back( h2 );
hap2[i].push_back( h1 );
}
}
else
{
// More than one possible phase for this offspring
map<int2,int> mapBack;
while ( ip != pmap.end() )
{
int2 h;
h.p1 = ip->first.pt;
h.p2 = ip->first.mt;
if ( h.p2 < h.p1 )
{
int t = h.p1;
h.p1 = h.p2;
h.p2 = t;
}
// Have we already seen this pair of transmitted haplotypes?
map<int2,int>::iterator im = mapBack.find(h);
if ( im != mapBack.end() )
{
int k = im->second;
pp[i][k] += ip->second;
}
else
{
int t = pp[i].size();
mapBack.insert(make_pair(h,t));
pp[i].push_back( ip->second );
hap1[i].push_back( h.p1 );
hap2[i].push_back( h.p2 );
}
// Next family transmission
ip++;
}
}
////////////////////////////
// Normalise probabilities
if (ambig[i])
for (int z=0; z < pp[i].size(); z++)
pp[i][z] /= psum;
map<FamilyTransmissions,double>::iterator itp = pmap.begin();
while ( itp != pmap.end() )
{
itp->second /= psum;
++itp;
}
///////////////////////////////////////////////////////////
// Score haplotype transmissions for this trio, and add to
// tabulation of sample T and U counts
if (par::test_hap_TDT || par::proxy_TDT)
transmissionCount(i,pmap);
return;
}
void HaploPhase::transmissionCount(int i,
map<FamilyTransmissions,double> & pmap )
{
// For debugging only:
// displayFamTran(pmap,i,this);
map<FamilyTransmissions,double>::iterator ip = pmap.begin();
int t = subhaplotypes ? nt : nh;
////////////////////////////////////
// Consider each possible phase set
while ( ip != pmap.end() )
{
vector<int> t1(t,0);
vector<int> u1(t,0);
FamilyTransmissions f = ip->first;
double posterior = ip->second;
// This function works fine for X chromosome as is.
// i.e. fathers haploid/homozygous/uninformative;
// son's/daughters genotype will always reflect X maternal
// transmission
int h1, h2, p1, p2, m1, m2;
if ( subhaplotypes )
{
// Collapse from a 0..nh space to a 0..nt space, via
// downcoding<> We can assume the haplotype codes given here
// will always be valid (i.e. map between 0 and nh) and that the
// downcoding map will always have an appropriate key
// AACCA 0 0 -AC--
// ACCAC 1 1 -XX--
// AACCC 2 0 -AC--
// CCCCC 3 1 -XX--
h1 = downcoding.find( f.pt )->second;
h2 = downcoding.find( f.mt )->second;
p1 = downcoding.find( f.pt )->second;
p2 = downcoding.find( f.pu )->second;
m1 = downcoding.find( f.mt )->second;
m2 = downcoding.find( f.mu )->second;
}
else
{
h1 = f.pt;
h2 = f.mt;
p1 = f.pt;
p2 = f.pu;
m1 = f.mt;
m2 = f.mu;
}
scoreTransmissions(h1,h2,p1,p2,m1,m2,t1,u1);
///////////////////////////////////////////
// Update sample totals for each haplotype
// and also accumulate the empirical variance
// of the transmissions
for (int h=0; h<t; h++)
{
trans[h] += t1[h] * ip->second;
untrans[h] += u1[h] * ip->second;
}
// Consider next family transmission set
++ip;
}
}
void HaploPhase::scoreTransmissions(int h1, int h2,
int p1, int p2,
int m1, int m2,
vector<int> & t1,
vector<int> & u1)
{
// Return of vector of T and U (0,1,2) for each haplotype
// for this particular trio
// Father heterozygous?
if ( p1 != p2 )
{
// Mother homozygous?
if ( m1 == m2 )
{
// then select a kid allele that matches,
// and score the other one for transmission
if ( h1 == m1 )
{
t1[h2]++;
if (p1==h2)
u1[p2]++;
else
u1[p1]++;
}
else
{
t1[h1]++;
if (p1==h1)
u1[p2]++;
else
u1[p1]++;
}
}
else
{
// Both parents are heterozygous,
// Transmitted alleles are unambiguous
t1[h1]++;
t1[h2]++;
// Untransmitted alleles
// i.e. which two are left over
// after accounting for the two
// transmitted alleles
bool pat_accounted = false;
bool mat_accounted = false;
if (p1 != h1 && p1 != h2 )
{
u1[p1]++;
pat_accounted = true;
}
else if (p2 != h1 && p2 != h2 )
{
u1[p2]++;
pat_accounted = true;
}
if (m1 != h1 && m1 != h2 )
{
u1[m1]++;
mat_accounted = true;
}
else if (m2 != h1 && m2 != h2 )
{
u1[m2]++;
mat_accounted = true;
}
// This only happens with AB x AB -> AB
if ( ! (pat_accounted || mat_accounted ))
{
u1[h1]++;
u1[h2]++;
}
else if ( ( ( !pat_accounted ) && mat_accounted ) ||
( pat_accounted && (!mat_accounted) ) )
{
// If only 1 untransmitted allele accounted for, it must
// be the doubled allele that is untransmitted
if (p1 == m1 || p1 == m2 )
u1[p1]++;
else
u1[p2]++;
}
// AB AB BB -- 2 accounted for
// AA
// AB AB AB -- 0 accounted for
// AB
// AB AC BA -- 1 accounted for
// AC
// AC AB BA -- 1 accounted for
// AC
// AB CD DB -- 2 accounted for
// AC
}
}
else if ( m1 != m2 )
{
// Mother heterozygous, father homozygous
if (h1 == p1 )
{
t1[h2]++;
if (m1==h2)
u1[m2]++;
else
u1[m1]++;
}
else
{
t1[h1]++;
if (m1==h1)
u1[m2]++;
else
u1[m1]++;
}
}
return;
}
|