File: qfam.cpp

package info (click to toggle)
plink 1.07%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 3,040 kB
  • sloc: cpp: 69,728; makefile: 123; sh: 12
file content (844 lines) | stat: -rw-r--r-- 20,132 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844


//////////////////////////////////////////////////////////////////
//                                                              //
//           PLINK (c) 2005-2009 Shaun Purcell                  //
//                                                              //
// This file is distributed under the GNU General Public        //
// License, Version 2.  Please see the file COPYING for more    //
// details                                                      //
//                                                              //
//////////////////////////////////////////////////////////////////


#include <iostream>
#include <iomanip>
#include <map>
#include <cmath>

#include "plink.h"
#include "helper.h"
#include "options.h"
#include "linear.h"
#include "perm.h"
#include "crandom.h"
#include "stats.h"



void setCovariatesForSNP(Plink & P, int l)
{
  vector<Individual*>::iterator gperson = P.sample.begin();
  
  while ( gperson != P.sample.end() )
    {
	 
      // Assume a non-missing genotype
      (*gperson)->flag = true;
      
      bool s1 = (*gperson)->one[l];
      bool s2 = (*gperson)->two[l];	     
      
      if ( ! s1 ) 
	{
	  if ( ! s2 ) 
	    (*gperson)->T = 1;
	  else          
	    (*gperson)->T = 0;
	} 
      else
	{
	  if ( ! s2 ) 
	    (*gperson)->flag = false;
	  else 
	    (*gperson)->T = -1;
	}
      
      // Next individual
      gperson++;  	 
    }
  
}


void scoreBetween(Plink & P , int l)
{
  
  vector<Family*>::iterator f = P.family.begin();
  
  // Construct family B score for this SNP
  
  int fc=0;
  while ( f != P.family.end() )
    {
      
      if (par::verbose)
	{
	  
	  if ( (*f)->singleton )
	    {
	      cout << "SINGLETON(S)\t" 
		   << (*f)->kid[0]->fid << " : ";
	      for (int k=0; k < (*f)->kid.size() ;k++)
		cout << (*f)->kid[k]->iid << " ";
	      cout << "\n";
	    }
	  else if ( (*f)->sibship )
	    {
	      cout << "SIBSHIP  \t" << (*f)->kid[0]->fid << " : ";
	      for ( int k=0; k<(*f)->kid.size(); k++)
		cout << (*f)->kid[k]->iid << " ";
	      cout << "\n";
	    }
	  else if ( (*f)->parents )
	    {
	      cout << "W/ PARENTS\t" << (*f)->pat->fid << " : ";
	      cout << (*f)->pat->iid << " x " << (*f)->mat->iid << " -> ";
	      for ( int k=0; k<(*f)->kid.size(); k++)
		cout << (*f)->kid[k]->iid << " ";
	      cout << "\n";	     
	    }
	  else
	    cout << "UNDEFINED\t" 
		 << (*f)->pat->fid << " "
		 << (*f)->pat->iid << "\n";
	}
      
      
      double B = 0;
      bool Bset = false;
      
      // Include this entire family?
      (*f)->include = true;
      
      // Flag to indicate inclusion in parenQTDT (both parents genotyped)
      (*f)->discordant_parents = true;
      
      // Two theoretically genotyped parents?
      if ( (*f)->parents )
	{
	  // Two actually genotyped parents?
	  if ( (*f)->pat->flag && (*f)->mat->flag )
	    {
	      B = ( (*f)->pat->T + (*f)->mat->T ) * 0.5 ;
	      Bset = true;
	    }
	  else
	    (*f)->discordant_parents = false;
	}
      
      
      
      // Did this individual have parental genotype information to set B? If not...
      
      if ( !Bset ) 
	{
	  // Use sibling genotypes? This will default to one's own
	  // genotype (i.e. sibship of size 1 (singletons are coded 
	  // offspring here)
	     
	  // Number of sibling
	  int nsib = (*f)->kid.size();
	  
	  // Number of genotyped sibling
	     int nsib2 = nsib;
	     
	     for (int k=0; k<nsib; k++)
	       {
		 if ( (*f)->kid[k]->flag )
		   B += (*f)->kid[k]->T;
		 else
		   nsib2--;
	       }
	     
	     if (nsib2==0)
	       {
		 // No non-missing offspring in family
		 // so does not matter what we set here
		 (*f)->include = false;		 
		 B = -9;
	       }
	     else
	       B /= (double)nsib2;
	}
      
      // Store between family score
      (*f)->B = B;
      
      // Next family
      f++;
      fc++;
    }
}


void scoreBandW(Plink & P, int l , vector<bool> & include) 
{
  
  // Initially, everybody is included

  vector<Individual*>::iterator gperson = P.sample.begin();
  int i=0;
     
  while ( gperson != P.sample.end() )
    {
	 
      Individual * pperson = (*gperson)->pperson;

      if ( ! pperson->family ) 
	error("Internal problem: no family assigned for [ " 
	      + pperson->fid + " " + pperson->iid + " ]\n");

      // Valid phenotype...
      if ( ( ! pperson->missing ) )
	{
	  // ... and genotype?
	  if ( (*gperson)->flag )
	    {
	      
	      Family * f = (*gperson)->family;
	      
	      // Are we modelling parental phenotypes?
	      if ( par::QFAM_total ||              // total association test...
		   par::QFAM_between ||            // ...between association test...
		   ( par::QFAM_within2     
		     && f			
		     && f->discordant_parents ) || // ...parenQTDT...
		   ! (*gperson)->founder )         // ...or, not a founder
		{
		  
		  // Between-family component
		  (*gperson)->B = f ? f->B : 0;
		  
		  // Within-family component
		  (*gperson)->W = (*gperson)->T - (*gperson)->B;
		  
		}
	      else
		include[i] = false;	      
	    }
	  else include[i] = false;
	}
      else include[i] = false;
      
      // Next person
      gperson++;
      i++;
    }
     
}

//////////////////////////////////////////////////////////////////////
//
// For QFAM, and unlike all other tests, we use two different ways of
// permuting: either standard (all SNPs per replicate) or on a per SNP
// adaptive basis (i.e. all perms for a SNP; then move on to next
// SNP). This saves the work of constructing the family, etc, as we
// need to do each time.
//


void Plink::perm_testQTDT(Perm & perm)
{

  //////////////////////////////
  // Use individual-major coding
  
  if (par::SNP_major) 
    SNP2Ind();
  
  
  // for now, no covariates
  if ( par::clist_number > 0 ) 
    error("Cannot specify covariates with QFAM for now...\n");


  ////////////////////////////////////////////////
  // Specify special adaptive QFAM mode (i.e. one SNP
  // at a time)



  /////////////////////////////
  // Set up permutation indices
  
  vector<int> pbetween(family.size());
  vector<bool> pwithin(family.size(),false);
  for (int i=0; i < family.size(); i++)
    pbetween[i] = i;
  
  
  ///////////////
  // Output files

  string f = ".qfam";
  if (par::QFAM_within1) f += ".within";
  else if (par::QFAM_within2) f += ".parents";
  else if (par::QFAM_between) f += ".between";
  else if (par::QFAM_total) f += ".total";
  
  printLOG("Writing QFAM statistics to [ " + par::output_file_name + f + " ]\n");
  
  if (!par::permute) 
    printLOG("** Warning ** QFAM results require permutation to correct for family structure\n");
  else
    printLOG("Important: asymptotic p-values not necessarily corrected for family-structure:\n"
	     "           use empirical p-values for robust p-values from QFAM\n"
	     "           and consult the above file only for parameter estimates\n");
  

  ofstream QOUT((par::output_file_name+f).c_str(),ios::out); // dummy
  QOUT.precision(4);
  QOUT << setw(4) << "CHR" << " " 
       << setw(par::pp_maxsnp) << "SNP" << " " 
       << setw(10) << "BP" << " "
       << setw(4) << "A1" << " "
       << setw(10) << "TEST" << " "
       << setw(8) << "NIND" << " "
       << setw(10) << "BETA" << " ";
  if (par::display_ci)    
    QOUT << setw(8) << "SE" << " "
	 << setw(8) << "LOWER" << " "
	 << setw(8) << "UPPER" << " ";	    	      
  QOUT << setw(12) << "STAT" << " "
       << setw(12) << "P\n";


  //////////////////////
  // Familial clustering

  // C holds which family an individual belongs to 
  // (as element in the family[] array
  
  vector<int> C;
  map<Family*,int> famcnt;
  for (int f = 0 ; f < family.size() ; f++)
    famcnt.insert( make_pair( family[f] , f ) );      
  
  vector<Individual*>::iterator person = sample.begin(); 
  while ( person != sample.end() )
    {
      map<Family*,int>::iterator f = famcnt.find( (*person)->family );
      
      if ( f == famcnt.end() )
	error("Internal error in QFAM, allocating families to individuals...\n");
      else
	C.push_back( f->second );
      
      person++;  
    } 
  
  printLOG(int2str(family.size())+" nuclear families in analysis\n");
      
  if ( family.size()<2 )
    error("Halting: not enough nuclear families for this analysis\n");
  


  ////////////////////
  // Run original QFAM

  perm.setTests(nl_all);
  perm.setPermClusters(*this);

  // Force adaptive perm
  par::adaptive_perm = true;

  vector_t orig = calcQTDT(C, QOUT, false, perm, pbetween, pwithin);

  QOUT.close(); 



  ////////////////
  // Permutation

  if ( ! par::permute ) 
    return;
  
  // Adpative permutation will already have been conducted in original 
  // function call for QFAM (i.e. per-SNP adaptive permutation)

  if (!par::silent)
    cout << "\n\n";
  

  ////////////////////
  // Display results
  
  ofstream TDT;   

  f += ".perm";    
  TDT.open((par::output_file_name+f).c_str(),ios::out);
  printLOG("Writing QFAM permutation results to [ " 
	   + par::output_file_name + f + " ] \n"); 
  TDT.precision(4);
  
  TDT << setw(4) << "CHR" << " "
      << setw(par::pp_maxsnp) << "SNP" << " ";
  
  if (par::perm_TDT_basic) TDT << setw(12) << "STAT" << " ";
  
  TDT << setw(12) << "EMP1" << " ";
  TDT << setw(12) << "NP" << " " << "\n";  
  
  for (int l=0; l<nl_all; l++)
    {	
      
      TDT << setw(4) << locus[l]->chr << " "
	  << setw(par::pp_maxsnp) << locus[l]->name << " "; 
      
      if (orig[l] < -0.5)
	TDT << setw(12) << "NA"  << " " 
	    << setw(12) << "NA"  << " " 
	    << setw(12) << "NA";
      else
	{
	  TDT << setw(12) << orig[l] << " "
	      << setw(12) << perm.pvalue(l) << " "
	      << setw(12) << perm.reps_done(l);	  
	}
      TDT << "\n";
    }
  
  TDT.close();

  
  // Adjusted p-values, assumes 1-df chi-squares
  
  if (par::multtest)
    {
      
      vector<double> obp(0);
      for (int l=0; l<nl_all;l++)
	obp.push_back(inverse_chiprob(perm.pvalue(l),1));      
      
      multcomp(obp,f);
    }

  
   
}

vector_t Plink::calcQTDT(vector<int> & C,
			 ofstream & QOUT,
			 bool permuting, 
			 Perm & perm,
			 vector<int> & pbetween, 
			 vector<bool> & pwithin)
{
  

  /////////////////////////
  // Iterate over each SNP
  
  vector_t results(nl_all);
  
  for (int l=0; l<nl_all; l++)
    {     
      
      // Note: when using adaptive permutation in QFAM, we do not skip
      // a failed SNP here, as we permute on a per-SNP basis instead;
      // i.e. for this particular SNP we will perform enough
      // permutations to assess significance in this first instance of the 
      // call to calcQTDT().  
      
      // Skip X markers for now
      
      if (par::chr_sex[locus[l]->chr] || 
	  par::chr_haploid[locus[l]->chr])
	{
 	  results[l] = -1;
 	  continue;
	}
      
      if (par::verbose)
	cout << "\n ******************************************\n"
	     << "  LOCUS " << locus[l]->name << "\n\n";
      
      
      ////////////////////////////////////////////////////////////////
      // Create X vector that encodes the genotype for each individual
      // as 1,0,-1 (or -9 for missing)
      
      // Use the per-person 'flag' variable to indicate a non-missing genotype
      // at this SNP (i.e. for gperson)
      
      // Use 'covar' to store the X= 1,0,-1 codes for this SNP
      
      setCovariatesForSNP(*this,l);
      
      
      ///////////////////////////////////////
      // Score between and within components
	
      scoreBetween(*this,l);
	
      // Now, for each individual, set B and W 

      vector<bool> include(n,true);
      
      scoreBandW(*this,l,include);
     

      // Now we have created the family structure, B and W and flagged who is missing
      // in terms of genotype and phenotype
      
      // We can either proceed to return one value for this (in max(T) mode)
      // or to exhaust all permutations
      
     
      /////////////////////////
      // Prune out missing data (already done?)
     
      vector<Family*>::iterator f = family.begin();
      while ( f != family.end() ) 
        {
 	 if ( ! (*f)->include ) 
 	   {
 	     if ( (*f)->pat ) 
 	       (*f)->pat->flag = false;
	     
 	     if ( (*f)->mat ) 
 	       (*f)->mat->flag = false;
		 
 	     for ( int k = 0 ; k < (*f)->kid.size() ; k++) 
	       (*f)->kid[k]->flag = false;
	     
 	   }
 	 f++;
        }
     
     
      // Prune individuals
      for (int i=0; i<n; i++)
        if ( (!sample[i]->flag) || sample[i]->missing ) 
	  include[i] = false;
                    

     /////////////////////////
     // Optional display
     
     if (par::verbose)
       {
	 
	 for (int i=0; i<n; i++)
	   {
	     if ( include[i] ) 
	       cout << "INC\t";
	     else
	       cout << "EXC\t";
	     
	     cout << C[i] << "\t"
		  << sample[i]->fid << " " << sample[i]->iid << "\t"
		  << sample[i]->phenotype << "\t"
		  << genotype(*this,i,l) << " "
		  << sample[i]->T << " "
		  << sample[i]->B << " "
		  << sample[i]->W ;
	     cout << "\n";
	   }
	 cout << "\n\n";
       }
     
     
     
     ///////////////////////////////////
     // Form linear model
     
     Model * lm;
     LinearModel * m = new LinearModel(this);
     lm = m;
     
     // Copy pattern of missing data over, with 
     // some additional exclusions based on family 
     // structure
     
     lm->setMissing(include);
     
     // Add independent variables: T, B and/or W
     // and set the test parameter
     // (intercept is 0)
     
     // Covariates  Model
     // 0 Total
     // 1 Between
     // 2 Within
     
     // Model
     // 0      Intercept      Intercept
     // 1      Total          Between
     // 2      n/a            Within
     
     if (par::QFAM_total) 
       {
	 lm->label.push_back("TOT");
	 lm->testParameter = 1;	     
       }
     else if (par::QFAM_between)
       {
	 lm->label.push_back("BET");
	 //	 lm->label.push_back("WITH");
	 lm->testParameter = 1;	     
       }
     else if (par::QFAM_within1 || par::QFAM_within2) 
       {
	 //	 lm->label.push_back("BET");
	 lm->label.push_back("WITH");
	 lm->testParameter = 1;	     
       }
     
     // Build design matrix
     lm->buildDesignMatrix();
     
     // Fit linear model
     if ( par::QFAM_total && par::qt )
       lm->fitUnivariateLM();
     else
       lm->fitLM();

     // Check for multi-collinearity
     lm->validParameters();
     
     // Calculate Original Test statistic
     results[l] = lm->getStatistic();

     // Store,return and display this value?
     
     lm->displayResults(QOUT,locus[l]);

     
     ///////////////////
     // Now, permutation
     
     // 1) We have the complete, non-missing data: permute only this
     //    i.e. we do not need to worry about missing data; we are
     //    no longer controlling the correlation between SNPs, as we
     //    are permuting genotype, so we do not need to worry about this
     //    in any case.
     
     // 2) Keep the same Model in each case: directly re-state the X 
     //    variables in the design matrix, then re-fit model. This 
     //    will avoid the cost of building the model, pruning for missing
     //    data, etc, each iteration
     
     
     // Store original, and set up permutations
     // (i.e. return pperson to original order)

     perm.nextSNP();
     double original = results[l];
     

     ////////////////////////
     // Adaptive permutation
     
     ///////////////////////////////////////////////////
     // Set up permutation indices, specific to this SNP
     
     int tc = 0;

     while ( true ) 
       {
	 
	 // Permute between and within family components
	 
	 permute(pbetween);
	 
	 for (int i=0; i<family.size(); i++)
	   {
	     if (CRandom::rand() < 0.5) pwithin[i] = true;
	     else pwithin[i] = false;
	   }
	 
	 // Edit pbetween for this SNP, so that we keep missing 
	 // B components constant
	 
	 for (int f=0; f<pbetween.size(); f++)
	   {
	     
	     if ( 
		 // Permuted family is all missing
		 ( ! family[pbetween[f]]->include ) 
		 &&
		 // Recipient family is not...
		 family[f]->include )
	       {
		 // ... then swap 
		 
		 //   F  P(F)    -->
		 //   0  2       -->   0  2
		 //   1  0       -->   1  0
		 //   2  3*      -->   2  4
		 //   3* 4       -->   3* 3*
		 //   4  1       -->   4  1
		 //   ...
		 
		 // e.g. 3* is missing, so swap 3* and 4 in P(F), so 2
		 // and 4 end up together instead, 3* is invarint
		 
		 int missing_family = pbetween[f];
		 int swap_in_family = pbetween[pbetween[f]];
		 pbetween[missing_family] = missing_family;
		 pbetween[f] = swap_in_family;
		 
// 		 if (par::verbose)
// 		   {
// 		     cout << "FAM " << f << " (NOT MISS) has " << missing_family << " (MISS)\n";
// 		     cout << "FAM " << missing_family << " (MISS) has " << swap_in_family << " (?)\n";
// 		     cout << "SWAP MADE ..\n";
// 		     cout << "FAM " << f << "  has " << pbetween[f] << "\n";
// 		     cout << "FAM " << missing_family << " has " << pbetween[missing_family] << "\n\n";
// 		   }
		 
		 // And re-check this new pairing
		 f--;
		 
	       }		 
	   }
	 

// 	 if (par::verbose)
// 	   for (int f=0; f<pbetween.size(); f++)
// 	     {
// 	       if ( ! family[pbetween[f]]->include ) 
// 		 cout << " Permuted family is all missing " << f << "\t" << family[pbetween[f]]->kid[0]->fid << "\n";
// 	       if ( ! family[f]->include ) 
// 		 cout << " Recipient family is all missing " << f << "\t" << family[f]->kid[0]->fid << "\n";
// 	     }


//  	 if (true)
//  	   {
//  	     for (int i=0; i<n; i++)
//  	       {
//  		 cout << sample[i]->fid << "\t"
//  		      << include[i] << "\t"
//  		      << C[i] << "\t"
//  		      << pbetween[C[i]] << "\t"
//  		      << sample[i]->family->include << "\t"
//  		      << family[C[i]]->include << "\t"
//  		      << family[pbetween[C[i]]]->include << "\n";
//  	       }
//  	   }




	 //////////////////////////////////
	 // Reconstitute genotypes
	 // and fit back into LinearModel
	 
 	 int c=0;
 	 for (int i=0; i<n; i++)
 	   {
 	     if (include[i])
 	       {
 		 Family * pfam = family[ pbetween[C[i]] ];
 		 Individual * person = sample[i];
		 
 		 if ( par::QFAM_total )
 		   lm->X[c++][1] = pwithin[C[i]] ? pfam->B + person->W : pfam->B - person->W;
 		 else if ( par::QFAM_between )
 		   {
 		     lm->X[c++][1] = pfam->B;
 		   }
 		 else
 		   {
 		     lm->X[c++][1] = pwithin[C[i]] ? person->W : - person->W;
 		   }
		 
// 		 cout << "added " << person->fid << " " 
// 		      << person->iid << " " 
// 		      << lm->X[c-1][1] << "\n";


 	       }
 	   }
// 	 cout << "\n\n";



		 
	 ////////////////////////////////////
	 // Re-fit model
	 
	 if ( par::QFAM_total && par::qt )
	   lm->fitUnivariateLM();
	 else
	   lm->fitLM();
	 
	 // Check for multi-collinearity
	 lm->validParameters();
	 

	 // Calculate Original Test statistic; 

	 // Should not encounter this too much, but if not valid,
	 // count conservatively.

	 double r = lm->isValid() ? lm->getStatistic() : original + 1 ;
	 
// 	 cout << "Permutation ... \n";
// 	 if ( ! lm->isValid() )
// 	   cout << "NOT VALID>.. \n";

// 	 int c2 = 0;

// 	 for (int i=0; i<n; i++)
// 	   {
// 	     if ( include[i] ) 
// 	       cout << "INC\t";
// 	     else
// 	       cout << "EXC\t";
	     	     
// 	     cout << C[i] << "\t"
// 		  << sample[i]->fid << " " << sample[i]->iid << "\t"
// 		  << sample[i]->phenotype << "\t"
// 		  << genotype(*this,i,l) << " ";

// 	     if ( include[i] )
// 	       cout << lm->X[c2++][1] << " ";
// 	     else 
// 	       cout << "NA" << " ";
// 	     cout << "\n";
// 	   }
// 	 cout << "\n\n";






	 // Reset in case the previous model was not valid

	 lm->setValid();
	 
	 ////////////////////////////////////
	 // Test / update / are we finished ? 
	 
	 if ( perm.updateSNP( r , original , l ) )
	   {
	     if ( ! par::silent )
	       {
		 cout << "Adaptive permutation done for " 
		      << l+1 << " of " << nl_all << " SNPs            \r";
		 cout.flush(); 
	       }
	     break; // We are done for this SNP
	   }
	 
	 
       } // Next adaptive permutation

      
     // Clear up
     delete lm;
          
   } // Next SNP
 
 return results;
 
}