1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
#include "include/pgenlib_read.h"
#include "include/pgenlib_write.h"
// #define SUBSET_TEST
int32_t main(int32_t argc, char** argv) {
#ifdef __cplusplus
using namespace plink2;
#endif
PglErr reterr = kPglRetSuccess;
unsigned char* pgfi_alloc = nullptr;
unsigned char* pgr_alloc = nullptr;
unsigned char* spgw_alloc = nullptr;
uintptr_t* genovec = nullptr;
uintptr_t* raregeno = nullptr;
uintptr_t* sample_include = nullptr;
uint32_t* sample_include_cumulative_popcounts = nullptr;
uint32_t* difflist_sample_ids = nullptr;
FILE* outfile = nullptr;
PgenHeaderCtrl header_ctrl;
STPgenWriter spgw;
uint32_t write_sample_ct;
PgenFileInfo pgfi;
PgenReader pgr;
PreinitPgfi(&pgfi);
PreinitPgr(&pgr);
PreinitSpgw(&spgw);
{
if ((argc < 3) || (argc > 6)) {
fputs(
"Usage:\n"
"pgen_compress [-i] <input .bed or .pgen> <output filename> [sample_ct]\n"
" * sample_ct is required when loading a .bed file\n"
" * -i causes the index to be saved to a separate .pgen.pgi file (usually it's\n"
" embedded at the front of the .pgen); this is compatible with fully\n"
" sequential .pgen writing\n"
"pgen_compress -u <input .pgen> <output .bed>\n"
, stdout);
goto main_ret_INVALID_CMDLINE;
}
const uint32_t write_separate_index = (argv[1][0] == '-') && (argv[1][1] == 'i') && (argv[1][2] == '\0');
const uint32_t decompress = (argv[1][0] == '-') && (argv[1][1] == 'u') && (argv[1][2] == '\0');
const uint32_t input_idx = 1 + write_separate_index + decompress;
uint32_t sample_ct = 0xffffffffU;
if (S_CAST(uint32_t, argc) == input_idx + 3) {
if (ScanPosintDefcap(argv[input_idx + 2], &sample_ct)) {
fprintf(stderr, "error: invalid sample_ct\n");
goto main_ret_INVALID_CMDLINE;
}
}
char errstr_buf[kPglErrstrBufBlen];
uintptr_t cur_alloc_cacheline_ct;
reterr = PgfiInitPhase1(argv[input_idx], nullptr, 0xffffffffU, sample_ct, &header_ctrl, &pgfi, &cur_alloc_cacheline_ct, errstr_buf);
if (reterr) {
fputs(errstr_buf, stderr);
goto main_ret_1;
}
sample_ct = pgfi.raw_sample_ct;
if (!sample_ct) {
fprintf(stderr, "error: sample_ct == 0\n");
goto main_ret_INVALID_CMDLINE;
}
const uint32_t variant_ct = pgfi.raw_variant_ct;
if (!variant_ct) {
fprintf(stderr, "error: variant_ct == 0\n");
goto main_ret_INVALID_CMDLINE;
}
if (cachealigned_malloc(cur_alloc_cacheline_ct * kCacheline, &pgfi_alloc)) {
goto main_ret_NOMEM;
}
uint32_t max_vrec_width;
// todo: test block-fread
reterr = PgfiInitPhase2(header_ctrl, 0, 0, 0, 0, variant_ct, &max_vrec_width, &pgfi, pgfi_alloc, &cur_alloc_cacheline_ct, errstr_buf);
if (reterr) {
fputs(errstr_buf, stderr);
goto main_ret_1;
}
if (cachealigned_malloc(cur_alloc_cacheline_ct * kCacheline, &pgr_alloc)) {
goto main_ret_NOMEM;
}
// modify this when trying block-fread
reterr = PgrInit(argv[input_idx], max_vrec_width, &pgfi, &pgr, pgr_alloc);
if (reterr) {
fprintf(stderr, "PgrInit error %u\n", S_CAST(uint32_t, reterr));
goto main_ret_1;
}
if (S_CAST(uint32_t, argc) == input_idx + 3) {
printf("%u variant%s detected.\n", variant_ct, (variant_ct == 1)? "" : "s");
} else {
printf("%u variant%s and %u sample%s detected.\n", variant_ct, (variant_ct == 1)? "" : "s", sample_ct, (sample_ct == 1)? "" : "s");
}
if (cachealigned_malloc(NypCtToVecCt(sample_ct) * kBytesPerVec, &genovec)) {
goto main_ret_NOMEM;
}
if (decompress) {
outfile = fopen(argv[3], FOPEN_WB);
if (!outfile) {
goto main_ret_OPEN_FAIL;
}
PgrSampleSubsetIndex pssi;
PgrClearSampleSubsetIndex(&pgr, &pssi);
const uintptr_t final_mask = (k1LU << ((sample_ct % kBitsPerWordD2) * 2)) - k1LU;
const uint32_t final_widx = NypCtToWordCt(sample_ct) - 1;
const uint32_t variant_byte_ct = (sample_ct + 3) / 4;
fwrite("l\x1b\x01", 3, 1, outfile);
for (uint32_t vidx = 0; vidx < variant_ct; ) {
reterr = PgrGet(nullptr, pssi, sample_ct, vidx, &pgr, genovec);
if (reterr) {
fprintf(stderr, "\nread error %u, vidx=%u\n", S_CAST(uint32_t, reterr), vidx);
goto main_ret_1;
}
PgrPlink2ToPlink1InplaceUnsafe(sample_ct, genovec);
if (final_mask) {
genovec[final_widx] &= final_mask;
}
fwrite(genovec, variant_byte_ct, 1, outfile);
++vidx;
if (!(vidx % 100000)) {
printf("\r%u.%um variants decompressed.", vidx / 1000000, (vidx / 100000) % 10);
fflush(stdout);
}
}
if (fclose_null(&outfile)) {
goto main_ret_WRITE_FAIL;
}
printf("\n");
goto main_ret_1;
}
#ifdef SUBSET_TEST
// write_sample_ct = sample_ct - 3;
write_sample_ct = 3;
#else
write_sample_ct = sample_ct;
#endif
// Demonstrate that, when write_separate_index is true, variant_ct_limit
// can be an overestimate.
// Also demonstrate automatic 8-bit -> 4-bit index compaction when
// write_separate_index is true, we declare that hardcall-phase is present,
// but we never write any hardcall-phase data.
uint32_t max_vrec_len;
reterr = SpgwInitPhase1(argv[input_idx + 1], nullptr, nullptr, write_separate_index? (variant_ct * 2) : variant_ct, write_sample_ct, 0, write_separate_index? kPgenWriteSeparateIndex : kPgenWriteBackwardSeek, write_separate_index? kfPgenGlobalHardcallPhasePresent : kfPgenGlobal0, 2, &spgw, &cur_alloc_cacheline_ct, &max_vrec_len);
if (reterr) {
fprintf(stderr, "compression phase 1 error %u\n", S_CAST(uint32_t, reterr));
goto main_ret_1;
}
if (cachealigned_malloc(cur_alloc_cacheline_ct * kCacheline, &spgw_alloc)) {
goto main_ret_NOMEM;
}
SpgwInitPhase2(max_vrec_len, &spgw, spgw_alloc);
const uint32_t max_simple_difflist_len = sample_ct / kBitsPerWordD2;
const uint32_t max_returned_difflist_len = 2 * (sample_ct / kPglMaxDifflistLenDivisor);
const uint32_t max_difflist_len = 2 * (write_sample_ct / kPglMaxDifflistLenDivisor);
if (cachealigned_malloc(RoundUpPow2((max_returned_difflist_len + 3) / 4, kCacheline), &raregeno) ||
cachealigned_malloc(RoundUpPow2((sample_ct + 7) / 8, kCacheline), &sample_include) ||
cachealigned_malloc(RoundUpPow2((1 + (sample_ct / kBitsPerWord)) * sizeof(int32_t), kCacheline), &sample_include_cumulative_popcounts) ||
cachealigned_malloc(RoundUpPow2((max_returned_difflist_len + 1) * sizeof(int32_t), kCacheline), &difflist_sample_ids)) {
goto main_ret_NOMEM;
}
#ifdef SUBSET_TEST
fill_ulong_zero(BitCtToWordCt(sample_ct), sample_include);
SetBit(123, sample_include);
SetBit(127, sample_include);
SetBit(320, sample_include);
// ClearBit(123, sample_include);
// ClearBit(127, sample_include);
// ClearBit(320, sample_include);
#else
SetAllBits(sample_ct, sample_include);
#endif
FillCumulativePopcounts(sample_include, 1 + (sample_ct / kBitsPerWord), sample_include_cumulative_popcounts);
PgrSampleSubsetIndex pssi;
PgrSetSampleSubsetIndex(sample_include_cumulative_popcounts, &pgr, &pssi);
for (uint32_t vidx = 0; vidx < variant_ct; ) {
uint32_t difflist_common_geno;
uint32_t difflist_len;
reterr = PgrGetDifflistOrGenovec(sample_include, pssi, write_sample_ct, max_simple_difflist_len, vidx, &pgr, genovec, &difflist_common_geno, raregeno, difflist_sample_ids, &difflist_len);
if (reterr) {
fprintf(stderr, "\nread error %u, vidx=%u\n", S_CAST(uint32_t, reterr), vidx);
goto main_ret_1;
}
if (difflist_common_geno == 0xffffffffU) {
ZeroTrailingBits(write_sample_ct * 2, genovec);
reterr = SpgwAppendBiallelicGenovec(genovec, &spgw);
} else if (difflist_len <= max_difflist_len) {
ZeroTrailingBits(2 * difflist_len, raregeno);
difflist_sample_ids[difflist_len] = write_sample_ct;
reterr = SpgwAppendBiallelicDifflistLimited(raregeno, difflist_sample_ids, difflist_common_geno, difflist_len, &spgw);
} else {
PgrDifflistToGenovecUnsafe(raregeno, difflist_sample_ids, difflist_common_geno, write_sample_ct, difflist_len, genovec);
ZeroTrailingBits(write_sample_ct * 2, genovec);
reterr = SpgwAppendBiallelicGenovec(genovec, &spgw);
}
if (reterr) {
fprintf(stderr, "\ncompress/write error %u, vidx=%u\n", S_CAST(uint32_t, reterr), vidx);
goto main_ret_1;
}
++vidx;
if (!(vidx % 100000)) {
printf("\r%u.%um variants compressed.", vidx / 1000000, (vidx / 100000) % 10);
fflush(stdout);
}
}
}
printf("\n");
reterr = SpgwFinish(&spgw);
while (0) {
main_ret_NOMEM:
reterr = kPglRetNomem;
break;
main_ret_OPEN_FAIL:
reterr = kPglRetOpenFail;
break;
main_ret_WRITE_FAIL:
reterr = kPglRetWriteFail;
break;
main_ret_INVALID_CMDLINE:
reterr = kPglRetInvalidCmdline;
break;
}
main_ret_1:
CleanupPgr(&pgr, &reterr);
CleanupPgfi(&pgfi, &reterr);
CleanupSpgw(&spgw, &reterr);
if (pgfi_alloc) {
aligned_free(pgfi_alloc);
}
if (pgr_alloc) {
aligned_free(pgr_alloc);
}
if (spgw_alloc) {
aligned_free(spgw_alloc);
}
if (genovec) {
aligned_free(genovec);
}
if (raregeno) {
aligned_free(raregeno);
}
if (sample_include) {
aligned_free(sample_include);
}
if (sample_include_cumulative_popcounts) {
aligned_free(sample_include_cumulative_popcounts);
}
if (difflist_sample_ids) {
aligned_free(difflist_sample_ids);
}
if (outfile) {
fclose(outfile);
}
return S_CAST(int32_t, reterr);
}
|