1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
|
#ifndef __PLINK2_CMDLINE_H__
#define __PLINK2_CMDLINE_H__
// This library is part of PLINK 2.0, copyright (C) 2005-2025 Shaun Purcell,
// Christopher Chang.
//
// This program is free software: you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License as published by the
// Free Software Foundation, either version 3 of the License, or (at your
// option) any later version.
//
// This library is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
// for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// Cross-platform logging, command-line parsing, workspace
// initialization/allocation, basic multithreading code, and a few numeric
// constants.
#include "include/plink2_bits.h"
#include "include/plink2_htable.h"
#include "include/plink2_memory.h"
#include "include/plink2_string.h"
#include "include/plink2_thread.h"
#include <errno.h>
#include <stdarg.h>
#ifndef _WIN32
# include <sys/stat.h>
#endif
#ifdef _WIN32
# define NULL_STREAM_NAME "nul"
#else
# define NULL_STREAM_NAME "/dev/null"
#endif
#ifdef __cplusplus
namespace plink2 {
#endif
CONSTI32(kLogbufSize, 2 * kMaxMediumLine);
// must be at least 2 * kMaxMediumLine + 2 to support generic token loader.
CONSTI32(kTextbufSize, 2 * kMaxMediumLine + 256);
// when g_textbuf is used as a generic I/O buffer, this is a convenient
// power-of-2 size (must be <= kTextbufSize).
CONSTI32(kTextbufMainSize, 2 * kMaxMediumLine);
// "slen" is now used to indicate string lengths excluding terminating nulls,
// while "blen" includes the terminator.
// Maximum length of chromosome, variant, FID, IID, cluster, and set IDs (not
// including terminating null). This value supports up to 8 IDs per line
// (maximum so far is 5, for e.g. --hom).
// Assumed by plink2_pvar to be a multiple of 16.
CONSTI32(kMaxIdSlen, 16000);
CONSTI32(kMaxIdBlen, kMaxIdSlen + 1);
// Don't see a better option than #define for this.
#define MAX_ID_SLEN_STR "16000"
// allow extensions like .model.trend.fisher.set.score.adjusted
CONSTI32(kMaxOutfnameExtBlen, 39);
// All global variables not initialized at compile time start with g_ (even if
// they're initialized very early and never changed afterwards, like
// g_one_char_strs).
extern char g_textbuf[];
extern const char* g_one_char_strs;
extern FILE* g_logfile;
// Mostly-safe log buffer (length kLogbufSize, currently 256k). Good practice
// to use snprintf when writing an entire line to it in a single statement.
// Warning: Do NOT put allele codes or arbitrary-length lists in here.
extern char g_logbuf[];
extern uint32_t g_debug_on;
extern uint32_t g_log_failed;
// for --warning-errcode
extern uint32_t g_stderr_written_to;
// Warning: Do NOT include allele codes (unless they're guaranteed to be SNPs)
// in log strings; they can overflow the buffer.
void logputs_silent(const char* str);
void logputs(const char* str);
void logerrputs(const char* str);
void logputsb();
void logerrputsb();
HEADER_INLINE void logprintf(const char* fmt, ...) {
va_list args;
va_start(args, fmt);
vsnprintf(g_logbuf, kLogbufSize, fmt, args);
logputsb();
}
HEADER_INLINE void logerrprintf(const char* fmt, ...) {
va_list args;
va_start(args, fmt);
vsnprintf(g_logbuf, kLogbufSize, fmt, args);
logerrputsb();
}
// input for WordWrapB/logprintfww should have no intermediate '\n's. If
// suffix_len is 0, there should be a terminating \n.
HEADER_INLINE void WordWrapB(uint32_t suffix_len) {
WordWrap(suffix_len, g_logbuf);
}
HEADER_INLINE void logpreprintfww(const char* fmt, ...) {
va_list args;
va_start(args, fmt);
vsnprintf(g_logbuf, kLogbufSize, fmt, args);
WordWrapB(0);
}
HEADER_INLINE void logprintfww(const char* fmt, ...) {
va_list args;
va_start(args, fmt);
vsnprintf(g_logbuf, kLogbufSize, fmt, args);
WordWrapB(0);
logputsb();
}
HEADER_INLINE void logerrprintfww(const char* fmt, ...) {
va_list args;
va_start(args, fmt);
vsnprintf(g_logbuf, kLogbufSize, fmt, args);
WordWrapB(0);
logerrputsb();
}
// 5 = length of "done." suffix, which is commonly used
HEADER_INLINE void logprintfww5(const char* fmt, ...) {
va_list args;
va_start(args, fmt);
vsnprintf(g_logbuf, kLogbufSize, fmt, args);
WordWrapB(5);
logputsb();
}
HEADER_INLINE void DebugPrintf(const char* fmt, ...) {
if (g_debug_on) {
va_list args;
va_start(args, fmt);
vsnprintf(g_logbuf, kLogbufSize, fmt, args);
logputsb();
}
}
HEADER_INLINE void DPrintf(const char* fmt, ...) {
if (g_debug_on) {
va_list args;
va_start(args, fmt);
vsnprintf(g_logbuf, kLogbufSize, fmt, args);
logputsb();
}
}
// Returns kPglRetOpenFail if file doesn't exist, or kPglRetRewindFail if file
// is process-substitution/named-pipe. Does not print an error message.
PglErr ForceNonFifo(const char* fname);
BoolErr fopen_checked(const char* fname, const char* mode, FILE** target_ptr);
HEADER_INLINE IntErr fputs_checked(const char* str, FILE* outfile) {
fputs(str, outfile);
return ferror_unlocked(outfile);
}
BoolErr fwrite_flush2(char* buf_flush, FILE* outfile, char** write_iter_ptr);
HEADER_INLINE BoolErr fwrite_uflush2(unsigned char* buf_flush, FILE* outfile, unsigned char** write_iter_ptr) {
return fwrite_flush2(R_CAST(char*, buf_flush), outfile, R_CAST(char**, write_iter_ptr));
}
HEADER_INLINE BoolErr fwrite_ck(char* buf_flush, FILE* outfile, char** write_iter_ptr) {
if ((*write_iter_ptr) < buf_flush) {
return 0;
}
return fwrite_flush2(buf_flush, outfile, write_iter_ptr);
}
// fclose_null defined in plink2_base.h
BoolErr fclose_flush_null(char* buf_flush, char* write_iter, FILE** outfile_ptr);
HEADER_INLINE BoolErr fclose_uflush_null(unsigned char* buf_flush, unsigned char* write_iter, FILE** outfile_ptr) {
return fclose_flush_null(R_CAST(char*, buf_flush), R_CAST(char*, write_iter), outfile_ptr);
}
// This should only be used when the file can only be open on error-early-exit;
// otherwise we care about fclose's error code.
HEADER_INLINE void fclose_cond(FILE* fptr) {
if (fptr) {
fclose(fptr);
}
}
HEADER_INLINE uint32_t ClipU32(uint32_t val, uint32_t lbound, uint32_t ubound) {
if (val >= ubound) {
return ubound;
}
return MAXV(val, lbound);
}
int32_t u32cmp(const void* aa, const void* bb);
int32_t double_cmp(const void* aa, const void* bb);
int32_t double_cmp_decr(const void* aa, const void* bb);
int32_t u64cmp(const void* aa, const void* bb);
#ifndef __cplusplus
int32_t u64cmp_decr(const void* aa, const void* bb);
#endif
HEADER_INLINE uint32_t U32ArrMax(const uint32_t* unsorted_arr, uintptr_t len) {
const uint32_t* unsorted_arr_end = &(unsorted_arr[len]);
#ifndef __cplusplus
const uint32_t* unsorted_arr_iter = unsorted_arr;
uint32_t uimax = *unsorted_arr_iter++;
while (unsorted_arr_iter < unsorted_arr_end) {
const uint32_t cur_val = *unsorted_arr_iter++;
if (cur_val > uimax) {
uimax = cur_val;
}
}
return uimax;
#else
return *std::max_element(unsorted_arr, unsorted_arr_end);
#endif
}
HEADER_INLINE float FArrMax(const float* unsorted_arr, uintptr_t len) {
const float* unsorted_arr_end = &(unsorted_arr[len]);
#if defined(__APPLE__) || !defined(__cplusplus)
// std::max_element doesn't seem to be performant for floats/doubles on OS X
const float* unsorted_arr_iter = unsorted_arr;
float fmax = *unsorted_arr_iter++;
while (unsorted_arr_iter < unsorted_arr_end) {
const float cur_val = *unsorted_arr_iter++;
if (cur_val > fmax) {
fmax = cur_val;
}
}
return fmax;
#else
return *std::max_element(unsorted_arr, unsorted_arr_end);
#endif
}
HEADER_INLINE double DArrMax(const double* unsorted_arr, uintptr_t len) {
const double* unsorted_arr_end = &(unsorted_arr[len]);
#if defined(__APPLE__) || !defined(__cplusplus)
const double* unsorted_arr_iter = unsorted_arr;
double dmax = *unsorted_arr_iter++;
while (unsorted_arr_iter < unsorted_arr_end) {
const double cur_val = *unsorted_arr_iter++;
if (cur_val > dmax) {
dmax = cur_val;
}
}
return dmax;
#else
return *std::max_element(unsorted_arr, unsorted_arr_end);
#endif
}
float DestructiveMedianF(uintptr_t len, float* unsorted_arr);
double DestructiveMedianD(uintptr_t len, double* unsorted_arr);
// This makes a temporary g_bigstack allocation.
// Must be safe to read up to (kBytesPerWord - 1) bytes past end of strbox.
// Results may technically vary between runs when duplicate elements are
// present; it's assumed that this doesn't matter because all duplicates will
// be handled in the same manner.
// id_map is new_to_old_idx.
BoolErr SortStrboxIndexed(uintptr_t str_ct, uintptr_t max_str_blen, uint32_t use_nsort, char* strbox, uint32_t* id_map);
// Offset of std::lower_bound, i.e. # of elements < needle.
// Requires arr_length > 0.
uintptr_t LowerBoundNonemptyU32(const uint32_t* sorted_u32_arr, uintptr_t arr_length, uint32_t needle);
HEADER_INLINE uintptr_t LowerBoundU32(const uint32_t* sorted_u32_arr, uintptr_t arr_length, uint32_t needle) {
if (!arr_length) {
return 0;
}
return LowerBoundNonemptyU32(sorted_u32_arr, arr_length, needle);
}
HEADER_INLINE uintptr_t LowerBoundConstrainedNonemptyU32(const uint32_t* sorted_u32_arr, uintptr_t start_idx, uintptr_t end_idx, uint32_t needle) {
return start_idx + LowerBoundNonemptyU32(&(sorted_u32_arr[start_idx]), end_idx - start_idx, needle);
}
// Same as above, but optimized for case where result is probably close to the
// front, and tolerates end_idx (== arr_length) == 0.
uintptr_t Expsearch0U32(const uint32_t* sorted_u32_arr, uintptr_t end_idx, uint32_t needle);
HEADER_INLINE uintptr_t ExpsearchU32(const uint32_t* sorted_u32_arr, uintptr_t start_idx, uintptr_t end_idx, uint32_t needle) {
return start_idx + Expsearch0U32(&(sorted_u32_arr[start_idx]), end_idx - start_idx, needle);
}
#ifdef __LP64__
uintptr_t Expsearch0U64(const uint64_t* sorted_u64_arr, uintptr_t end_idx, uint64_t needle);
HEADER_INLINE uintptr_t ExpsearchU64(const uint64_t* sorted_u64_arr, uintptr_t start_idx, uintptr_t end_idx, uint64_t needle) {
return start_idx + Expsearch0U64(&(sorted_u64_arr[start_idx]), end_idx - start_idx, needle);
}
HEADER_INLINE uintptr_t ExpsearchW(const uintptr_t* sorted_w_arr, uintptr_t start_idx, uintptr_t end_idx, uintptr_t needle) {
return ExpsearchU64(R_CAST(const uint64_t*, sorted_w_arr), start_idx, end_idx, needle);
}
#else
HEADER_INLINE uintptr_t ExpsearchW(const uintptr_t* sorted_w_arr, uintptr_t start_idx, uintptr_t end_idx, uintptr_t needle) {
return ExpsearchU32(R_CAST(const uint32_t*, sorted_w_arr), start_idx, end_idx, needle);
}
#endif
uintptr_t LowerBoundNonemptyU64(const uint64_t* sorted_u64_arr, uintptr_t arr_length, uint64_t needle);
HEADER_INLINE uintptr_t LowerBoundNonemptyW(const uintptr_t* sorted_w_arr, uintptr_t arr_length, uintptr_t needle) {
#ifdef __LP64__
return LowerBoundNonemptyU64(R_CAST(const uint64_t*, sorted_w_arr), arr_length, needle);
#else
return LowerBoundNonemptyU32(R_CAST(const uint32_t*, sorted_w_arr), arr_length, needle);
#endif
}
HEADER_INLINE uintptr_t LowerBoundConstrainedNonemptyW(const uintptr_t* sorted_w_arr, uintptr_t start_idx, uintptr_t end_idx, uintptr_t needle) {
return start_idx + LowerBoundNonemptyW(&(sorted_w_arr[start_idx]), end_idx - start_idx, needle);
}
uintptr_t LowerBoundNonemptyD(const double* sorted_dbl_arr, uintptr_t arr_length, double needle);
uintptr_t Expsearch0D(const double* sorted_dbl_arr, uintptr_t end_idx, double needle);
HEADER_INLINE uintptr_t ExpsearchD(const double* sorted_dbl_arr, uintptr_t start_idx, uintptr_t end_idx, double needle) {
return start_idx + Expsearch0D(&(sorted_dbl_arr[start_idx]), end_idx - start_idx, needle);
}
uintptr_t UpperBoundNonemptyU32(const uint32_t* sorted_u32_arr, uintptr_t arr_length, uint32_t needle);
HEADER_INLINE uintptr_t UpperBoundConstrainedNonemptyU32(const uint32_t* sorted_u32_arr, uintptr_t start_idx, uintptr_t end_idx, uint32_t needle) {
return start_idx + UpperBoundNonemptyU32(&(sorted_u32_arr[start_idx]), end_idx - start_idx, needle);
}
uintptr_t UpperBoundNonemptyU64(const uint64_t* sorted_u64_arr, uintptr_t arr_length, uint64_t needle);
HEADER_INLINE uintptr_t UpperBoundConstrainedNonemptyU64(const uint64_t* sorted_u64_arr, uintptr_t start_idx, uintptr_t end_idx, uint64_t needle) {
return start_idx + UpperBoundNonemptyU64(&(sorted_u64_arr[start_idx]), end_idx - start_idx, needle);
}
HEADER_INLINE uintptr_t UpperBoundNonemptyW(const uintptr_t* sorted_w_arr, uintptr_t arr_length, uintptr_t needle) {
#ifdef __LP64__
return UpperBoundNonemptyU64(R_CAST(const uint64_t*, sorted_w_arr), arr_length, needle);
#else
return UpperBoundNonemptyU32(R_CAST(const uint32_t*, sorted_w_arr), arr_length, needle);
#endif
}
HEADER_INLINE uintptr_t UpperBoundConstrainedNonemptyW(const uintptr_t* sorted_w_arr, uintptr_t start_idx, uintptr_t end_idx, uintptr_t needle) {
return start_idx + UpperBoundNonemptyW(&(sorted_w_arr[start_idx]), end_idx - start_idx, needle);
}
// Requires sorted_w_arr[start_idx] <= needle.
HEADER_INLINE uintptr_t LastLeqU32(const uint32_t* sorted_u32_arr, uintptr_t start_idx, uintptr_t end_idx, uint32_t needle) {
return UpperBoundConstrainedNonemptyU32(sorted_u32_arr, start_idx, end_idx, needle) - 1;
}
HEADER_INLINE uintptr_t LastLeqU64(const uint64_t* sorted_u64_arr, uintptr_t start_idx, uintptr_t end_idx, uint64_t needle) {
return UpperBoundConstrainedNonemptyU64(sorted_u64_arr, start_idx, end_idx, needle) - 1;
}
HEADER_INLINE uintptr_t LastLeqW(const uintptr_t* sorted_w_arr, uintptr_t start_idx, uintptr_t end_idx, uintptr_t needle) {
return UpperBoundConstrainedNonemptyW(sorted_w_arr, start_idx, end_idx, needle) - 1;
}
// Requires sorted_w_arr[start_idx] <= needle, and needle < maxint.
HEADER_INLINE uintptr_t ExpsearchLastLeqU32(const uint32_t* sorted_u32_arr, uintptr_t start_idx, uintptr_t end_idx, uint32_t needle) {
return ExpsearchU32(sorted_u32_arr, start_idx, end_idx, needle + 1) - 1;
}
HEADER_INLINE uintptr_t ExpsearchLastLeqW(const uintptr_t* sorted_w_arr, uintptr_t start_idx, uintptr_t end_idx, uintptr_t needle) {
return ExpsearchW(sorted_w_arr, start_idx, end_idx, needle + 1) - 1;
}
uint32_t IdxToUidx(const uintptr_t* bitvec, const uint32_t* cumulative_popcounts, uint32_t widx_start, uint32_t widx_end, uint32_t idx);
uintptr_t IdxToUidxW(const uintptr_t* bitvec, const uintptr_t* cumulative_popcounts, uintptr_t widx_start, uintptr_t widx_end, uintptr_t idx);
uint32_t ExpsearchIdxToUidx(const uintptr_t* bitvec, const uint32_t* cumulative_popcounts, uint32_t widx_end, uint32_t idx, uint32_t* widx_startp);
uintptr_t ExpsearchIdxToUidxW(const uintptr_t* bitvec, const uintptr_t* cumulative_popcounts, uintptr_t widx_end, uintptr_t idx, uintptr_t* widx_startp);
HEADER_INLINE uint32_t IsCmdlineFlag(const char* param) {
unsigned char ucc = param[1];
return ((*param == '-') && ((ucc > '9') || ((ucc < '0') && (ucc != '.') && (ucc != '\0'))));
}
HEADER_INLINE CXXCONST_CP IsCmdlineFlagStart(const char* param) {
unsigned char ucc = param[1];
if ((*param == '-') && ((ucc > '9') || ((ucc < '0') && (ucc != '.') && (ucc != '\0')))) {
return S_CAST(CXXCONST_CP, &(param[1 + (ucc == '-')]));
}
return nullptr;
}
#ifdef __cplusplus
HEADER_INLINE char* IsCmdlineFlagStart(char* param) {
return const_cast<char*>(IsCmdlineFlagStart(const_cast<const char*>(param)));
}
#endif
uint32_t GetParamCt(const char* const* argvk, uint32_t argc, uint32_t flag_idx);
BoolErr EnforceParamCtRange(const char* flag_name, uint32_t param_ct, uint32_t min_ct, uint32_t max_ct);
// PglErr SortCmdlineFlags(uint32_t max_flag_blen, uint32_t flag_ct, char* flag_buf, uint32_t* flag_map);
BoolErr CleanupLogfile(uint32_t print_end_time);
CONSTI32(kNonBigstackMin, 67108864);
CONSTI32(kBigstackMinMib, 640);
CONSTI32(kBigstackDefaultMib, 2048);
static const double kSmallishEpsilon = 0.00000000002910383045673370361328125;
static const double kRecip2m32 = 0.00000000023283064365386962890625;
static const double k2m64 = 18446744073709551616.0;
static const double kLnPvalError = 9.0;
static const double kDblNormalMin = 2.2250738585072013e-308;
// probably time to flip arena_alloc and bigstack_alloc definitions...
PglErr InitLogfile(uint32_t always_stderr, char* outname, char* outname_end);
BoolErr CleanupLogfile(uint32_t print_end_time);
// manually managed, very large double-ended stack
extern unsigned char* g_bigstack_base;
extern unsigned char* g_bigstack_end;
uintptr_t GetDefaultAllocMib();
// caller is responsible for freeing bigstack_ua
PglErr InitBigstack(uintptr_t malloc_size_mib, uintptr_t* malloc_mib_final_ptr, unsigned char** bigstack_ua_ptr);
HEADER_INLINE uintptr_t bigstack_left() {
return g_bigstack_end - g_bigstack_base;
}
HEADER_INLINE void* bigstack_alloc_raw(uintptr_t size) {
// Assumes caller has already forced size to a multiple of
// kCacheline, and verified that enough space is available.
assert(!(size % kCacheline));
unsigned char* alloc_ptr = g_bigstack_base;
g_bigstack_base += size;
return alloc_ptr;
}
HEADER_INLINE void* bigstack_alloc_raw_rd(uintptr_t size) {
// Same as bigstack_alloc_raw(), except for rounding up size.
unsigned char* alloc_ptr = g_bigstack_base;
g_bigstack_base += RoundUpPow2(size, kCacheline);
return alloc_ptr;
}
// Basic 64-byte-aligned allocation at bottom of stack.
// Note that --make-pgen switches gracefully to a less memory-hungry algorithm
// when it encounters an allocation failure with its default algorithm. Since
// it can only happen once, unlikely() is still justified, but keep an eye on
// this.
HEADER_INLINE void* bigstack_alloc(uintptr_t size) {
size = RoundUpPow2(size, kCacheline);
if (unlikely(bigstack_left() < size)) {
g_failed_alloc_attempt_size = size;
return nullptr;
}
return bigstack_alloc_raw(size);
}
// When we only want vector-alignment.
HEADER_INLINE void* bigstack_allocv(uintptr_t size) {
size = RoundUpPow2(size, kCacheline);
if (unlikely(bigstack_left() < size)) {
g_failed_alloc_attempt_size = size;
return nullptr;
}
return bigstack_alloc_raw(size);
}
// Don't want uint64_t -> uintptr_t truncation to hide insufficient-memory
// scenarios in 32-bit builds.
HEADER_INLINE void* bigstack_alloc64(uint64_t size) {
size = RoundUpPow2U64(size, kCacheline);
if (unlikely(bigstack_left() < size)) {
g_failed_alloc_attempt_size = size;
return nullptr;
}
return bigstack_alloc_raw(size);
}
// Typesafe, return-0-iff-success interfaces. (See also bigstack_calloc_...
// further below.)
// This interface deliberately not provided for bigstack_alloc_raw() and
// bigstack_alloc_raw_rd() (and I wouldn't blame a future maintainer for
// entirely eliminating those functions).
HEADER_INLINE BoolErr bigstack_alloc_c(uintptr_t ct, char** c_arr_ptr) {
*c_arr_ptr = S_CAST(char*, bigstack_alloc(ct));
return !(*c_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_d(uintptr_t ct, double** d_arr_ptr) {
*d_arr_ptr = S_CAST(double*, bigstack_alloc(ct * sizeof(double)));
return !(*d_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_f(uintptr_t ct, float** f_arr_ptr) {
*f_arr_ptr = S_CAST(float*, bigstack_alloc(ct * sizeof(float)));
return !(*f_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_i8(uintptr_t ct, int8_t** i8_arr_ptr) {
*i8_arr_ptr = S_CAST(int8_t*, bigstack_alloc(ct * sizeof(int8_t)));
return !(*i8_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_i16(uintptr_t ct, int16_t** i16_arr_ptr) {
*i16_arr_ptr = S_CAST(int16_t*, bigstack_alloc(ct * sizeof(int16_t)));
return !(*i16_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_i32(uintptr_t ct, int32_t** i32_arr_ptr) {
*i32_arr_ptr = S_CAST(int32_t*, bigstack_alloc(ct * sizeof(int32_t)));
return !(*i32_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_uc(uintptr_t ct, unsigned char** uc_arr_ptr) {
*uc_arr_ptr = S_CAST(unsigned char*, bigstack_alloc(ct));
return !(*uc_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_u16(uintptr_t ct, uint16_t** u16_arr_ptr) {
*u16_arr_ptr = S_CAST(uint16_t*, bigstack_alloc(ct * sizeof(int16_t)));
return !(*u16_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_u32(uintptr_t ct, uint32_t** u32_arr_ptr) {
*u32_arr_ptr = S_CAST(uint32_t*, bigstack_alloc(ct * sizeof(int32_t)));
return !(*u32_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_w(uintptr_t ct, uintptr_t** w_arr_ptr) {
*w_arr_ptr = S_CAST(uintptr_t*, bigstack_alloc(ct * sizeof(intptr_t)));
return !(*w_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_hw(uintptr_t ct, Halfword** hw_arr_ptr) {
*hw_arr_ptr = S_CAST(Halfword*, bigstack_alloc(ct * sizeof(Halfword)));
return !(*hw_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_i64(uintptr_t ct, int64_t** i64_arr_ptr) {
*i64_arr_ptr = S_CAST(int64_t*, bigstack_alloc(ct * sizeof(int64_t)));
return !(*i64_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_u64(uintptr_t ct, uint64_t** u64_arr_ptr) {
*u64_arr_ptr = S_CAST(uint64_t*, bigstack_alloc(ct * sizeof(int64_t)));
return !(*u64_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_v(uintptr_t ct, VecW** v_arr_ptr) {
*v_arr_ptr = S_CAST(VecW*, bigstack_alloc(ct * sizeof(VecW)));
return !(*v_arr_ptr);
}
// some versions of gcc give aliasing warnings if we use bigstack_alloc_w()
// for everything
// if sizeof(intptr_t) != sizeof(uintptr_t*), we're doomed anyway, so I won't
// bother with that static assert...
HEADER_INLINE BoolErr bigstack_alloc_wp(uintptr_t ct, uintptr_t*** ulp_arr_ptr) {
*ulp_arr_ptr = S_CAST(uintptr_t**, bigstack_alloc(ct * sizeof(intptr_t)));
return !(*ulp_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_cp(uintptr_t ct, char*** cp_arr_ptr) {
*cp_arr_ptr = S_CAST(char**, bigstack_alloc(ct * sizeof(intptr_t)));
return !(*cp_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_kcp(uintptr_t ct, const char*** kcp_arr_ptr) {
*kcp_arr_ptr = S_CAST(const char**, bigstack_alloc(ct * sizeof(intptr_t)));
return !(*kcp_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_kcpp(uintptr_t ct, const char**** kcpp_arr_ptr) {
*kcpp_arr_ptr = S_CAST(const char***, bigstack_alloc(ct * sizeof(intptr_t)));
return !(*kcpp_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_i16p(uintptr_t ct, int16_t*** i16p_arr_ptr) {
*i16p_arr_ptr = S_CAST(int16_t**, bigstack_alloc(ct * sizeof(intptr_t)));
return !(*i16p_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_i32p(uintptr_t ct, int32_t*** i32p_arr_ptr) {
*i32p_arr_ptr = S_CAST(int32_t**, bigstack_alloc(ct * sizeof(intptr_t)));
return !(*i32p_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_ucp(uintptr_t ct, unsigned char*** ucp_arr_ptr) {
*ucp_arr_ptr = S_CAST(unsigned char**, bigstack_alloc(ct * sizeof(intptr_t)));
return !(*ucp_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_u16p(uintptr_t ct, uint16_t*** u16p_arr_ptr) {
*u16p_arr_ptr = S_CAST(uint16_t**, bigstack_alloc(ct * sizeof(intptr_t)));
return !(*u16p_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_u32p(uintptr_t ct, uint32_t*** u32p_arr_ptr) {
*u32p_arr_ptr = S_CAST(uint32_t**, bigstack_alloc(ct * sizeof(intptr_t)));
return !(*u32p_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_u64p(uintptr_t ct, uint64_t*** u64p_arr_ptr) {
*u64p_arr_ptr = S_CAST(uint64_t**, bigstack_alloc(ct * sizeof(intptr_t)));
return !(*u64p_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_fp(uintptr_t ct, float*** fp_arr_ptr) {
*fp_arr_ptr = S_CAST(float**, bigstack_alloc(ct * sizeof(intptr_t)));
return !(*fp_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_dp(uintptr_t ct, double*** dp_arr_ptr) {
*dp_arr_ptr = S_CAST(double**, bigstack_alloc(ct * sizeof(intptr_t)));
return !(*dp_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_vp(uintptr_t ct, VecW*** vp_arr_ptr) {
*vp_arr_ptr = S_CAST(VecW**, bigstack_alloc(ct * sizeof(intptr_t)));
return !(*vp_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_wpp(uintptr_t ct, uintptr_t**** wpp_arr_ptr) {
*wpp_arr_ptr = S_CAST(uintptr_t***, bigstack_alloc(ct * sizeof(intptr_t)));
return !(*wpp_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_cpp(uintptr_t ct, char**** cpp_arr_ptr) {
*cpp_arr_ptr = S_CAST(char***, bigstack_alloc(ct * sizeof(intptr_t)));
return !(*cpp_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_u32pp(uintptr_t ct, uint32_t**** u32pp_arr_ptr) {
*u32pp_arr_ptr = S_CAST(uint32_t***, bigstack_alloc(ct * sizeof(intptr_t)));
return !(*u32pp_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc_vpp(uintptr_t ct, VecW**** vpp_arr_ptr) {
*vpp_arr_ptr = S_CAST(VecW***, bigstack_alloc(ct * sizeof(VecW)));
return !(*vpp_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_allocv_w(uintptr_t ct, uintptr_t** w_arr_ptr) {
*w_arr_ptr = S_CAST(uintptr_t*, bigstack_allocv(ct * sizeof(intptr_t)));
return !(*w_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc64_c(uint64_t ct, char** c_arr_ptr) {
*c_arr_ptr = S_CAST(char*, bigstack_alloc64(ct));
return !(*c_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc64_d(uint64_t ct, double** d_arr_ptr) {
*d_arr_ptr = S_CAST(double*, bigstack_alloc64(ct * sizeof(double)));
return !(*d_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc64_f(uint64_t ct, float** f_arr_ptr) {
*f_arr_ptr = S_CAST(float*, bigstack_alloc64(ct * sizeof(float)));
return !(*f_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc64_uc(uint64_t ct, unsigned char** uc_arr_ptr) {
*uc_arr_ptr = S_CAST(unsigned char*, bigstack_alloc64(ct));
return !(*uc_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_alloc64_u32(uint64_t ct, uint32_t** u32_arr_ptr) {
*u32_arr_ptr = S_CAST(uint32_t*, bigstack_alloc64(ct * sizeof(int32_t)));
return !(*u32_arr_ptr);
}
typedef struct LlStrStruct {
NONCOPYABLE(LlStrStruct);
struct LlStrStruct* next;
char str[];
} LlStr;
// bigstack_end_alloc_llstr is usually better for small allocations like this.
HEADER_INLINE BoolErr bigstack_alloc_llstr(uintptr_t str_blen, LlStr** llstr_arr_ptr) {
*llstr_arr_ptr = S_CAST(LlStr*, bigstack_alloc(str_blen + sizeof(LlStr)));
return !(*llstr_arr_ptr);
}
BoolErr bigstack_calloc_uc(uintptr_t ct, unsigned char** uc_arr_ptr);
BoolErr bigstack_calloc_d(uintptr_t ct, double** d_arr_ptr);
BoolErr bigstack_calloc_f(uintptr_t ct, float** f_arr_ptr);
BoolErr bigstack_calloc_u16(uintptr_t ct, uint16_t** u16_arr_ptr);
BoolErr bigstack_calloc_u32(uintptr_t ct, uint32_t** u32_arr_ptr);
BoolErr bigstack_calloc_w(uintptr_t ct, uintptr_t** w_arr_ptr);
BoolErr bigstack_calloc_u64(uintptr_t ct, uint64_t** u64_arr_ptr);
BoolErr bigstack_calloc_v(uintptr_t ct, VecW** v_arr_ptr);
BoolErr bigstack_calloc_wp(uintptr_t ct, uintptr_t*** wp_arr_ptr);
BoolErr bigstack_calloc_cp(uintptr_t ct, char*** cp_arr_ptr);
BoolErr bigstack_calloc_kcp(uintptr_t ct, const char*** kcp_arr_ptr);
BoolErr bigstack_calloc_cpp(uintptr_t ct, char**** cpp_arr_ptr);
HEADER_INLINE BoolErr bigstack_calloc_c(uintptr_t ct, char** c_arr_ptr) {
return bigstack_calloc_uc(ct, R_CAST(unsigned char**, c_arr_ptr));
}
HEADER_INLINE BoolErr bigstack_calloc_i16(uintptr_t ct, int16_t** i16_arr_ptr) {
return bigstack_calloc_u16(ct, R_CAST(uint16_t**, i16_arr_ptr));
}
HEADER_INLINE BoolErr bigstack_calloc_i32(uintptr_t ct, int32_t** i32_arr_ptr) {
return bigstack_calloc_u32(ct, R_CAST(uint32_t**, i32_arr_ptr));
}
HEADER_INLINE BoolErr bigstack_calloc_i64(uintptr_t ct, int64_t** i64_arr_ptr) {
return bigstack_calloc_u64(ct, R_CAST(uint64_t**, i64_arr_ptr));
}
HEADER_INLINE BoolErr bigstack_calloc_u32p(uintptr_t ct, uint32_t*** u32p_arr_ptr) {
return bigstack_calloc_w(ct, R_CAST(uintptr_t**, u32p_arr_ptr));
}
#ifdef __LP64__
HEADER_INLINE BoolErr bigstack_calloc64_d(uint64_t ct, double** d_arr_ptr) {
return bigstack_calloc_d(ct, d_arr_ptr);
}
#else
BoolErr bigstack_calloc64_d(uint64_t ct, double** d_arr_ptr);
#endif
#if __cplusplus >= 201103L
template <class T> BoolErr BigstackAllocX(uintptr_t ct, T** x_arr_ptr) {
*x_arr_ptr = S_CAST(T*, bigstack_alloc(ct * sizeof(T)));
return !(*x_arr_ptr);
}
// todo: define all BigstackAlloc functions in terms of ArenaAlloc; then these
// can be namespaced, and we only need ARENA_ALLOC_X and ARENA_ALLOC_STD_ARRAY
// macros
# define BIGSTACK_ALLOC_X(tt, ct, pp) plink2::BigstackAllocX<tt>((ct), (pp))
# define BIGSTACK_ALLOC_STD_ARRAY(tt, arr_size, len, pp) plink2::BigstackAllocX<std::array<tt, arr_size>>((len), (pp))
#else
# define BIGSTACK_ALLOC_X(tt, ct, pp) (!((*(pp)) = S_CAST(tt*, bigstack_alloc((ct) * sizeof(tt)))))
# define BIGSTACK_ALLOC_STD_ARRAY(tt, arr_size, len, pp) (!((*(pp)) = S_CAST(STD_ARRAY_PTR_TYPE(tt, arr_size), bigstack_alloc((len) * (arr_size * sizeof(tt))))))
#endif
HEADER_INLINE void BigstackReset(void* new_base) {
g_bigstack_base = S_CAST(unsigned char*, new_base);
}
HEADER_INLINE void BigstackEndReset(void* new_end) {
g_bigstack_end = S_CAST(unsigned char*, new_end);
}
HEADER_INLINE void BigstackDoubleReset(void* new_base, void* new_end) {
BigstackReset(new_base);
BigstackEndReset(new_end);
}
// assumes we've already been writing to wptr and have previously performed
// bounds-checking.
HEADER_INLINE void BigstackFinalizeW(__maybe_unused const uintptr_t* wptr, uintptr_t ct) {
assert(wptr == R_CAST(const uintptr_t*, g_bigstack_base));
g_bigstack_base += RoundUpPow2(ct * sizeof(intptr_t), kCacheline);
assert(g_bigstack_base <= g_bigstack_end);
}
HEADER_INLINE void BigstackFinalizeU32(__maybe_unused const uint32_t* u32ptr, uintptr_t ct) {
assert(u32ptr == R_CAST(const uint32_t*, g_bigstack_base));
g_bigstack_base += RoundUpPow2(ct * sizeof(int32_t), kCacheline);
assert(g_bigstack_base <= g_bigstack_end);
}
HEADER_INLINE void BigstackFinalizeU64(__maybe_unused const uint64_t* u64ptr, uintptr_t ct) {
assert(u64ptr == R_CAST(const uint64_t*, g_bigstack_base));
g_bigstack_base += RoundUpPow2(ct * sizeof(int64_t), kCacheline);
assert(g_bigstack_base <= g_bigstack_end);
}
HEADER_INLINE void BigstackFinalizeC(__maybe_unused const char* cptr, uintptr_t ct) {
assert(cptr == R_CAST(const char*, g_bigstack_base));
g_bigstack_base += RoundUpPow2(ct, kCacheline);
assert(g_bigstack_base <= g_bigstack_end);
}
HEADER_INLINE void BigstackFinalizeCp(__maybe_unused const char* const* cpptr, uintptr_t ct) {
assert(cpptr == R_CAST(const char* const*, g_bigstack_base));
g_bigstack_base += RoundUpPow2(ct * sizeof(intptr_t), kCacheline);
assert(g_bigstack_base <= g_bigstack_end);
}
HEADER_INLINE void BigstackBaseSet(const void* unaligned_base) {
g_bigstack_base = R_CAST(unsigned char*, RoundUpPow2(R_CAST(uintptr_t, unaligned_base), kCacheline));
}
// When using BigstackBaseSet() after a loop where tmp_alloc_end is fixed, the
// latter should be initialized with BigstackEndRoundedDown().
// If tmp_alloc_end is not fixed, BigstackBaseSetChecked() should be called
// instead.
HEADER_INLINE BoolErr BigstackBaseSetChecked(const void* unaligned_base) {
g_bigstack_base = R_CAST(unsigned char*, RoundUpPow2(R_CAST(uintptr_t, unaligned_base), kCacheline));
return (g_bigstack_base > g_bigstack_end);
}
HEADER_INLINE unsigned char* BigstackEndRoundedDown() {
return R_CAST(unsigned char*, RoundDownPow2(R_CAST(uintptr_t, g_bigstack_end), kCacheline));
}
HEADER_INLINE void BigstackShrinkTop(const void* rebase, uintptr_t new_size) {
// could assert that this doesn't go in the wrong direction?
g_bigstack_base = R_CAST(unsigned char*, RoundUpPow2(R_CAST(uintptr_t, rebase) + new_size, kCacheline));
}
HEADER_INLINE void BigstackEndSet(const void* unaligned_end) {
g_bigstack_end = R_CAST(unsigned char*, RoundDownPow2(R_CAST(uintptr_t, unaligned_end), kEndAllocAlign));
}
// assumes size is divisible by kEndAllocAlign
// assumes enough space is available
HEADER_INLINE void* bigstack_end_alloc_raw(uintptr_t size) {
assert(!(size % kEndAllocAlign));
g_bigstack_end -= size;
return g_bigstack_end;
}
HEADER_INLINE void* bigstack_end_alloc_raw_rd(uintptr_t size) {
g_bigstack_end -= RoundUpPow2(size, kEndAllocAlign);
return g_bigstack_end;
}
HEADER_INLINE void* bigstack_end_alloc_presized(uintptr_t size) {
const uintptr_t cur_bigstack_left = bigstack_left();
if (size > cur_bigstack_left) {
g_failed_alloc_attempt_size = size;
return nullptr;
}
return bigstack_end_alloc_raw(size);
}
HEADER_INLINE void* bigstack_end_alloc(uintptr_t size) {
size = RoundUpPow2(size, kEndAllocAlign);
return bigstack_end_alloc_presized(size);
}
HEADER_INLINE void* bigstack_end_alloc64_presized(uint64_t size) {
const uintptr_t cur_bigstack_left = bigstack_left();
if (size > cur_bigstack_left) {
g_failed_alloc_attempt_size = size;
return nullptr;
}
return bigstack_end_alloc_raw(size);
}
HEADER_INLINE void* bigstack_end_alloc64(uint64_t size) {
size = RoundUpPow2U64(size, kEndAllocAlign);
return bigstack_end_alloc64_presized(size);
}
HEADER_INLINE BoolErr bigstack_end_alloc_c(uintptr_t ct, char** c_arr_ptr) {
*c_arr_ptr = S_CAST(char*, bigstack_end_alloc(ct));
return !(*c_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_end_alloc_d(uintptr_t ct, double** d_arr_ptr) {
*d_arr_ptr = S_CAST(double*, bigstack_end_alloc(ct * sizeof(double)));
return !(*d_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_end_alloc_f(uintptr_t ct, float** f_arr_ptr) {
*f_arr_ptr = S_CAST(float*, bigstack_end_alloc(ct * sizeof(float)));
return !(*f_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_end_alloc_i32(uintptr_t ct, int32_t** i32_arr_ptr) {
*i32_arr_ptr = S_CAST(int32_t*, bigstack_end_alloc(ct * sizeof(int32_t)));
return !(*i32_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_end_alloc_uc(uintptr_t ct, unsigned char** uc_arr_ptr) {
*uc_arr_ptr = S_CAST(unsigned char*, bigstack_end_alloc(ct));
return !(*uc_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_end_alloc_u32(uintptr_t ct, uint32_t** u32_arr_ptr) {
*u32_arr_ptr = S_CAST(uint32_t*, bigstack_end_alloc(ct * sizeof(int32_t)));
return !(*u32_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_end_alloc_w(uintptr_t ct, uintptr_t** w_arr_ptr) {
*w_arr_ptr = S_CAST(uintptr_t*, bigstack_end_alloc(ct * sizeof(intptr_t)));
return !(*w_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_end_alloc_i64(uintptr_t ct, int64_t** i64_arr_ptr) {
*i64_arr_ptr = S_CAST(int64_t*, bigstack_end_alloc(ct * sizeof(int64_t)));
return !(*i64_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_end_alloc_u64(uintptr_t ct, uint64_t** u64_arr_ptr) {
*u64_arr_ptr = S_CAST(uint64_t*, bigstack_end_alloc(ct * sizeof(int64_t)));
return !(*u64_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_end_alloc_llstr(uintptr_t str_blen, LlStr** llstr_arr_ptr) {
*llstr_arr_ptr = S_CAST(LlStr*, bigstack_end_alloc(str_blen + sizeof(LlStr)));
return !(*llstr_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_end_alloc_cp(uintptr_t ct, char*** cp_arr_ptr) {
*cp_arr_ptr = S_CAST(char**, bigstack_end_alloc(ct * sizeof(intptr_t)));
return !(*cp_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_end_alloc_kcp(uintptr_t ct, const char*** kcp_arr_ptr) {
*kcp_arr_ptr = S_CAST(const char**, bigstack_end_alloc(ct * sizeof(intptr_t)));
return !(*kcp_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_end_alloc_ucp(uintptr_t ct, unsigned char*** ucp_arr_ptr) {
*ucp_arr_ptr = S_CAST(unsigned char**, bigstack_end_alloc(ct * sizeof(intptr_t)));
return !(*ucp_arr_ptr);
}
BoolErr bigstack_end_calloc_uc(uintptr_t ct, unsigned char** uc_arr_ptr);
BoolErr bigstack_end_calloc_d(uintptr_t ct, double** d_arr_ptr);
BoolErr bigstack_end_calloc_f(uintptr_t ct, float** f_arr_ptr);
BoolErr bigstack_end_calloc_u32(uintptr_t ct, uint32_t** u32_arr_ptr);
BoolErr bigstack_end_calloc_w(uintptr_t ct, uintptr_t** w_arr_ptr);
BoolErr bigstack_end_calloc_u64(uintptr_t ct, uint64_t** u64_arr_ptr);
BoolErr bigstack_end_calloc_wp(uintptr_t ct, uintptr_t*** wp_arr_ptr);
BoolErr bigstack_end_calloc_cp(uintptr_t ct, char*** cp_arr_ptr);
HEADER_INLINE BoolErr bigstack_end_calloc_c(uintptr_t ct, char** c_arr_ptr) {
return bigstack_end_calloc_uc(ct, R_CAST(unsigned char**, c_arr_ptr));
}
HEADER_INLINE BoolErr bigstack_end_calloc_i32(uintptr_t ct, int32_t** i32_arr_ptr) {
return bigstack_end_calloc_u32(ct, R_CAST(uint32_t**, i32_arr_ptr));
}
HEADER_INLINE BoolErr bigstack_end_calloc_i64(uintptr_t ct, int64_t** i64_arr_ptr) {
return bigstack_end_calloc_u64(ct, R_CAST(uint64_t**, i64_arr_ptr));
}
HEADER_INLINE BoolErr bigstack_end_calloc_kcp(uintptr_t ct, const char*** kcp_arr_ptr) {
return bigstack_end_calloc_cp(ct, K_CAST(char***, kcp_arr_ptr));
}
#ifdef __LP64__
HEADER_INLINE BoolErr bigstack_end_calloc64_w(uint64_t ct, uintptr_t** w_arr_ptr) {
return bigstack_end_calloc_w(ct, w_arr_ptr);
}
#else
BoolErr bigstack_end_calloc64_w(uint64_t ct, uintptr_t** w_arr_ptr);
#endif
HEADER_INLINE void bigstack_end_clalign() {
g_bigstack_end = BigstackEndRoundedDown();
}
HEADER_INLINE void* bigstack_end_clalloc(uintptr_t size) {
// assumes g_bigstack_end is cacheline-aligned by e.g. a
// bigstack_end_clalign() call.
size = RoundUpPow2(size, kCacheline);
return bigstack_end_alloc_presized(size);
}
HEADER_INLINE BoolErr bigstack_end_clalloc_c(uintptr_t ct, char** c_arr_ptr) {
*c_arr_ptr = S_CAST(char*, bigstack_end_clalloc(ct));
return !(*c_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_end_clalloc_d(uintptr_t ct, double** d_arr_ptr) {
*d_arr_ptr = S_CAST(double*, bigstack_end_clalloc(ct * sizeof(double)));
return !(*d_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_end_clalloc_v(uintptr_t ct, VecW** v_arr_ptr) {
*v_arr_ptr = S_CAST(VecW*, bigstack_end_clalloc(ct * sizeof(VecW)));
return !(*v_arr_ptr);
}
HEADER_INLINE BoolErr bigstack_end_clalloc_cp(uintptr_t ct, char*** cp_arr_ptr) {
*cp_arr_ptr = S_CAST(char**, bigstack_end_clalloc(ct * sizeof(intptr_t)));
return !(*cp_arr_ptr);
}
// most of the non-global arena interface (necessary for some multithreaded
// code) now in include/plink2_memory; arena_alloc_raw() and
// arena_alloc_raw_rd() in include/plink2_base
BoolErr PushLlStr(const char* str, LlStr** ll_stack_ptr);
// Does not require null-termination.
// BoolErr push_llstr_counted(const char* str, uint32_t slen, LlStr** ll_stack_ptr);
void llstr_free_cond(LlStr* llstr_head);
typedef struct L32StrStruct {
NONCOPYABLE(L32StrStruct);
uint32_t len;
char str[];
} L32Str;
// assumes multistr is nonempty
// BoolErr CountAndMeasureMultistrAlloc(const char* multistr, uintptr_t max_str_ct, const char** strptr_arr, uint32_t* str_ct_ptr, uintptr_t* max_blen_ptr);
// assumes multistr is nonempty
BoolErr CountAndMeasureMultistrReverseAlloc(const char* multistr, uintptr_t max_str_ct, uint32_t* str_ct_ptr, uintptr_t* max_blen_ptr, const char*** strptr_arrp);
// er, should benchmark this against hash table and InMultistr()
BoolErr MultistrToStrboxDedupArenaAlloc(unsigned char* arena_top, const char* multistr, unsigned char** arena_bottom_ptr, char** sorted_strbox_ptr, uint32_t* str_ct_ptr, uintptr_t* max_blen_ptr);
HEADER_INLINE BoolErr MultistrToStrboxDedupAlloc(const char* multistr, char** sorted_strbox_ptr, uint32_t* str_ct_ptr, uintptr_t* max_blen_ptr) {
return MultistrToStrboxDedupArenaAlloc(g_bigstack_end, multistr, &g_bigstack_base, sorted_strbox_ptr, str_ct_ptr, max_blen_ptr);
}
void DivisionMagicNums(uint32_t divisor, uint64_t* multp, uint32_t* __restrict pre_shiftp, uint32_t* __restrict post_shiftp, uint32_t* __restrict incrp);
// ZeroU32Arr, ZeroWArr, ZeroU64Arr, SetAllWArr, SetAllU32Arr currently defined
// in plink2_base.h
HEADER_INLINE void ZeroVecArr(uintptr_t entry_ct, VecW* vvec) {
memset(vvec, 0, entry_ct * kBytesPerVec);
}
HEADER_INLINE void SetAllU64Arr(uintptr_t entry_ct, uint64_t* u64arr) {
// bugfix (1 Feb 2018): forgot to multiply by 2 in 32-bit case
SetAllWArr(entry_ct * (sizeof(int64_t) / kBytesPerWord), R_CAST(uintptr_t*, u64arr));
}
HEADER_INLINE void ZeroI32Arr(uintptr_t entry_ct, int32_t* i32arr) {
memset(i32arr, 0, entry_ct * sizeof(int32_t));
}
HEADER_INLINE void SetAllI32Arr(uintptr_t entry_ct, int32_t* i32arr) {
for (uintptr_t ulii = 0; ulii != entry_ct; ulii++) {
*i32arr++ = -1;
}
}
HEADER_INLINE void ZeromovFArr(uintptr_t entry_ct, float** farr_ptr) {
float* farr = *farr_ptr;
for (uintptr_t ulii = 0; ulii != entry_ct; ulii++) {
*farr++ = 0.0;
}
*farr_ptr = farr;
}
HEADER_INLINE void ZeromovDArr(uintptr_t entry_ct, double** darr_ptr) {
double* darr = *darr_ptr;
for (uintptr_t ulii = 0; ulii != entry_ct; ulii++) {
*darr++ = 0.0;
}
*darr_ptr = darr;
}
// SetAllBits, IsSet, SetBit, ClearBit, AdvTo1Bit, AdvTo0Bit, AdvBoundedTo1Bit,
// FindLast1BitBefore, AllWordsAreZero, FillBitsNz, ClearBitsNz defined in
// plink2_bits.h
// Useful when we don't want to think about the signedness of a 32-bit int.
HEADER_INLINE void SetBitI(int32_t loc, uintptr_t* bitarr) {
SetBit(S_CAST(uint32_t, loc), bitarr);
}
HEADER_INLINE void FlipBit(uintptr_t loc, uintptr_t* bitarr) {
bitarr[loc / kBitsPerWord] ^= k1LU << (loc % kBitsPerWord);
}
// floor permitted to be -1, though not smaller than that.
int32_t FindLast1BitBeforeBounded(const uintptr_t* bitarr, uint32_t loc, int32_t floor);
// This can be made a tiny bit faster than memequal() in isolation, but the
// difference is almost certainly too small to justify additional i-cache
// pressure.
HEADER_INLINE uint32_t wordsequal(const uintptr_t* word_arr1, const uintptr_t* word_arr2, uintptr_t word_ct) {
return memequal(word_arr1, word_arr2, word_ct * kBytesPerWord);
}
// BitvecAnd(), BitvecInvmask(), BitvecOr(), BitvecInvert(), BitvecXorCopy(),
// BitvecInvertCopy(), AlignedBitarrInvert(), and AlignedBitarrInvertCopy() in
// plink2_bits.h
void BitvecAndCopy(const uintptr_t* __restrict source1_bitvec, const uintptr_t* __restrict source2_bitvec, uintptr_t word_ct, uintptr_t* target_bitvec);
void BitvecInvmaskCopy(const uintptr_t* __restrict source_bitvec, const uintptr_t* __restrict exclude_bitvec, uintptr_t word_ct, uintptr_t* target_bitvec);
void BitvecXor(const uintptr_t* __restrict arg_bitvec, uintptr_t word_ct, uintptr_t* main_bitvec);
void BitvecInvertAndMask(const uintptr_t* __restrict include_bitvec, uintptr_t word_ct, uintptr_t* __restrict main_bitvec);
// void BitvecOrNot(const uintptr_t* __restrict arg_bitvec, uintptr_t word_ct, uintptr_t* main_bitvec);
// yes || (!no)
// 'AlignedBitarr' instead of Bitvec since this takes bit_ct instead of word_ct
// as the size argument, and zeroes trailing bits.
void AlignedBitarrOrnotCopy(const uintptr_t* __restrict argyes_bitvec, const uintptr_t* __restrict argno_bitvec, uintptr_t bit_ct, uintptr_t* __restrict target_bitvec);
// Address C-only incompatible-pointer-types-discards-qualifiers warning.
#ifdef __cplusplus
# define TO_CONSTU32PCONSTP(u32_pp) (u32_pp)
#else
# define TO_CONSTU32PCONSTP(u32_pp) ((const uint32_t* const*)(u32_pp))
#endif
HEADER_INLINE void U32VecAdd(const VecU32* arg_u32vec, uintptr_t vec_ct, VecU32* main_u32vec) {
for (uintptr_t vidx = 0; vidx != vec_ct; ++vidx) {
main_u32vec[vidx] += arg_u32vec[vidx];
}
}
HEADER_INLINE void U32CastVecAdd(const uint32_t* arg_u32arr, uintptr_t vec_ct, uint32_t* main_u32arr) {
U32VecAdd(R_CAST(const VecU32*, arg_u32arr), vec_ct, R_CAST(VecU32*, main_u32arr));
}
HEADER_INLINE void I32CastVecAdd(const int32_t* arg_i32arr, uintptr_t vec_ct, int32_t* main_i32arr) {
U32VecAdd(R_CAST(const VecU32*, arg_i32arr), vec_ct, R_CAST(VecU32*, main_i32arr));
}
HEADER_INLINE void U32VecSub(const VecU32* arg_u32vec, uintptr_t vec_ct, VecU32* main_u32vec) {
for (uintptr_t vidx = 0; vidx != vec_ct; ++vidx) {
main_u32vec[vidx] -= arg_u32vec[vidx];
}
}
HEADER_INLINE void U32CastVecSub(const uint32_t* arg_u32arr, uintptr_t vec_ct, uint32_t* main_u32arr) {
U32VecSub(R_CAST(const VecU32*, arg_u32arr), vec_ct, R_CAST(VecU32*, main_u32arr));
}
HEADER_INLINE void U32VecMaskedAdd(const VecU32* mask_u32vec, const VecU32* arg_u32vec, uintptr_t vec_ct, VecU32* main_u32vec) {
for (uintptr_t vidx = 0; vidx != vec_ct; ++vidx) {
main_u32vec[vidx] += mask_u32vec[vidx] & arg_u32vec[vidx];
}
}
HEADER_INLINE void U32CastVecMaskedAdd(const uint32_t* mask_u32arr, const uint32_t* arg_u32arr, uintptr_t vec_ct, uint32_t* main_u32arr) {
U32VecMaskedAdd(R_CAST(const VecU32*, mask_u32arr), R_CAST(const VecU32*, arg_u32arr), vec_ct, R_CAST(VecU32*, main_u32arr));
}
HEADER_INLINE void U32VecInvmaskedAdd(const VecU32* invmask_u32vec, const VecU32* arg_u32vec, uintptr_t vec_ct, VecU32* main_u32vec) {
for (uintptr_t vidx = 0; vidx != vec_ct; ++vidx) {
main_u32vec[vidx] += vecu32_and_notfirst(invmask_u32vec[vidx], arg_u32vec[vidx]);
}
}
HEADER_INLINE void U32CastVecInvmaskedAdd(const uint32_t* invmask_u32arr, const uint32_t* arg_u32arr, uintptr_t vec_ct, uint32_t* main_u32arr) {
U32VecInvmaskedAdd(R_CAST(const VecU32*, invmask_u32arr), R_CAST(const VecU32*, arg_u32arr), vec_ct, R_CAST(VecU32*, main_u32arr));
}
HEADER_INLINE void U32VecAdd2(const VecU32* arg1_u32vec, const VecU32* arg2_u32vec, uintptr_t vec_ct, VecU32* main_u32vec) {
for (uintptr_t vidx = 0; vidx != vec_ct; ++vidx) {
main_u32vec[vidx] += arg1_u32vec[vidx] + arg2_u32vec[vidx];
}
}
HEADER_INLINE void U32CastVecAdd2(const uint32_t* arg1_u32arr, const uint32_t* arg2_u32arr, uintptr_t vec_ct, uint32_t* main_u32arr) {
U32VecAdd2(R_CAST(const VecU32*, arg1_u32arr), R_CAST(const VecU32*, arg2_u32arr), vec_ct, R_CAST(VecU32*, main_u32arr));
}
HEADER_INLINE void U32VecAssignAdd2(const VecU32* arg1_u32vec, const VecU32* arg2_u32vec, uintptr_t vec_ct, VecU32* main_u32vec) {
for (uintptr_t vidx = 0; vidx != vec_ct; ++vidx) {
main_u32vec[vidx] = arg1_u32vec[vidx] + arg2_u32vec[vidx];
}
}
HEADER_INLINE void U32CastVecAssignAdd2(const uint32_t* arg1_u32arr, const uint32_t* arg2_u32arr, uintptr_t vec_ct, uint32_t* main_u32arr) {
U32VecAssignAdd2(R_CAST(const VecU32*, arg1_u32arr), R_CAST(const VecU32*, arg2_u32arr), vec_ct, R_CAST(VecU32*, main_u32arr));
}
HEADER_INLINE void U32VecMaskedAdd2(const VecU32* mask_u32vec, const VecU32* arg1_u32vec, const VecU32* arg2_u32vec, uintptr_t vec_ct, VecU32* main_u32vec) {
for (uintptr_t vidx = 0; vidx != vec_ct; ++vidx) {
main_u32vec[vidx] += mask_u32vec[vidx] & (arg1_u32vec[vidx] + arg2_u32vec[vidx]);
}
}
HEADER_INLINE void U32CastVecMaskedAdd2(const uint32_t* mask_u32arr, const uint32_t* arg1_u32arr, const uint32_t* arg2_u32arr, uintptr_t vec_ct, uint32_t* main_u32arr) {
U32VecMaskedAdd2(R_CAST(const VecU32*, mask_u32arr), R_CAST(const VecU32*, arg1_u32arr), R_CAST(const VecU32*, arg2_u32arr), vec_ct, R_CAST(VecU32*, main_u32arr));
}
HEADER_INLINE void U32VecAddSub(const VecU32* add_u32vec, const VecU32* sub_u32vec, uintptr_t vec_ct, VecU32* main_u32vec) {
for (uintptr_t vidx = 0; vidx != vec_ct; ++vidx) {
main_u32vec[vidx] += add_u32vec[vidx] - sub_u32vec[vidx];
}
}
HEADER_INLINE void U32CastVecAddSub(const uint32_t* add_u32arr, const uint32_t* sub_u32arr, uintptr_t vec_ct, uint32_t* main_u32arr) {
U32VecAddSub(R_CAST(const VecU32*, add_u32arr), R_CAST(const VecU32*, sub_u32arr), vec_ct, R_CAST(VecU32*, main_u32arr));
}
HEADER_INLINE void U32VecAdd3(const VecU32* arg1_u32vec, const VecU32* arg2_u32vec, const VecU32* arg3_u32vec, uintptr_t vec_ct, VecU32* main_u32vec) {
for (uintptr_t vidx = 0; vidx != vec_ct; ++vidx) {
main_u32vec[vidx] += arg1_u32vec[vidx] + arg2_u32vec[vidx] + arg3_u32vec[vidx];
}
}
HEADER_INLINE void U32CastVecAdd3(const uint32_t* arg1_u32arr, const uint32_t* arg2_u32arr, const uint32_t* arg3_u32arr, uintptr_t vec_ct, uint32_t* main_u32arr) {
U32VecAdd3(R_CAST(const VecU32*, arg1_u32arr), R_CAST(const VecU32*, arg2_u32arr), R_CAST(const VecU32*, arg3_u32arr), vec_ct, R_CAST(VecU32*, main_u32arr));
}
HEADER_INLINE void U32VecAssignAdd3(const VecU32* arg1_u32vec, const VecU32* arg2_u32vec, const VecU32* arg3_u32vec, uintptr_t vec_ct, VecU32* main_u32vec) {
for (uintptr_t vidx = 0; vidx != vec_ct; ++vidx) {
main_u32vec[vidx] = arg1_u32vec[vidx] + arg2_u32vec[vidx] + arg3_u32vec[vidx];
}
}
HEADER_INLINE void U32CastVecAssignAdd3(const uint32_t* arg1_u32arr, const uint32_t* arg2_u32arr, const uint32_t* arg3_u32arr, uintptr_t vec_ct, uint32_t* main_u32arr) {
U32VecAssignAdd3(R_CAST(const VecU32*, arg1_u32arr), R_CAST(const VecU32*, arg2_u32arr), R_CAST(const VecU32*, arg3_u32arr), vec_ct, R_CAST(VecU32*, main_u32arr));
}
HEADER_INLINE void U32VecSub3(const VecU32* arg1_u32vec, const VecU32* arg2_u32vec, const VecU32* arg3_u32vec, uintptr_t vec_ct, VecU32* main_u32vec) {
for (uintptr_t vidx = 0; vidx != vec_ct; ++vidx) {
main_u32vec[vidx] -= arg1_u32vec[vidx] + arg2_u32vec[vidx] + arg3_u32vec[vidx];
}
}
HEADER_INLINE void U32CastVecSub3(const uint32_t* arg1_u32arr, const uint32_t* arg2_u32arr, const uint32_t* arg3_u32arr, uintptr_t vec_ct, uint32_t* main_u32arr) {
U32VecSub3(R_CAST(const VecU32*, arg1_u32arr), R_CAST(const VecU32*, arg2_u32arr), R_CAST(const VecU32*, arg3_u32arr), vec_ct, R_CAST(VecU32*, main_u32arr));
}
HEADER_INLINE void U32VecAssignAdd5(const VecU32* arg1_u32vec, const VecU32* arg2_u32vec, const VecU32* arg3_u32vec, const VecU32* arg4_u32vec, const VecU32* arg5_u32vec, uintptr_t vec_ct, VecU32* main_u32vec) {
for (uintptr_t vidx = 0; vidx != vec_ct; ++vidx) {
main_u32vec[vidx] = arg1_u32vec[vidx] + arg2_u32vec[vidx] + arg3_u32vec[vidx] + arg4_u32vec[vidx] + arg5_u32vec[vidx];
}
}
HEADER_INLINE void U32CastVecAssignAdd5(const uint32_t* arg1_u32arr, const uint32_t* arg2_u32arr, const uint32_t* arg3_u32arr, const uint32_t* arg4_u32arr, const uint32_t* arg5_u32arr, uintptr_t vec_ct, uint32_t* main_u32arr) {
U32VecAssignAdd5(R_CAST(const VecU32*, arg1_u32arr), R_CAST(const VecU32*, arg2_u32arr), R_CAST(const VecU32*, arg3_u32arr), R_CAST(const VecU32*, arg4_u32arr), R_CAST(const VecU32*, arg5_u32arr), vec_ct, R_CAST(VecU32*, main_u32arr));
}
// This usually makes a temporary g_bigstack allocation.
HEADER_INLINE BoolErr SortStrptrArrIndexed(uint32_t str_ct, uint32_t leave_first_alone, uint32_t overread_ok, uint32_t use_nsort, const char** strptrs, uint32_t* new_to_old_idx, uint32_t* old_to_new_idx) {
const uint32_t str_sort_ct = str_ct - leave_first_alone;
if ((str_sort_ct > 1) && (bigstack_left() < str_sort_ct * sizeof(StrSortIndexedDeref))) {
return 1;
}
SortStrptrArrIndexed2(str_ct, leave_first_alone, overread_ok, use_nsort, strptrs, new_to_old_idx, old_to_new_idx, g_bigstack_base);
return 0;
}
// basic linear scan
// returns -1 on failure to find, -2 if duplicate
int32_t GetVariantUidxWithoutHtable(const char* idstr, const char* const* variant_ids, const uintptr_t* variant_include, uint32_t variant_ct);
BoolErr HtableGoodSizeAlloc(uint32_t item_ct, uintptr_t bytes_avail, uint32_t** htable_ptr, uint32_t* htable_size_ptr);
// returned index in duplicate-pair case is unfiltered
// uint32_t populate_strbox_subset_htable(const uintptr_t* __restrict subset_mask, const char* strbox, uintptr_t raw_str_ct, uintptr_t str_ct, uintptr_t max_str_blen, uint32_t str_htable_size, uint32_t* str_htable);
// assumes cur_id_slen < max_str_blen.
// requires cur_id to be null-terminated.
uint32_t StrboxHtableFind(const char* cur_id, const char* strbox, const uint32_t* id_htable, uintptr_t max_str_blen, uint32_t cur_id_slen, uint32_t id_htable_size);
uint32_t StrboxHtableFindNnt(const char* cur_id, const char* strbox, const uint32_t* id_htable, uintptr_t max_str_blen, uint32_t cur_id_slen, uint32_t id_htable_size);
// Assumes cur_id is null-terminated.
// Returns string-index if cur_id is already in the table, UINT32_MAX if it was
// added.
uint32_t StrboxHtableAdd(const char* cur_id, const char* strbox, uintptr_t max_str_blen, uint32_t cur_id_slen, uint32_t id_htable_size, uint32_t value, uint32_t* id_htable);
// useful for duplicate detection: returns 0 on no duplicates, a positive index
// of a duplicate pair if they're present
uint32_t PopulateStrboxHtable(const char* strbox, uint32_t str_ct, uintptr_t max_str_blen, uint32_t str_htable_size, uint32_t* str_htable);
uint32_t PopulateStrboxSubsetHtableDup(const char* strbox, const uintptr_t* subset_mask, uint32_t str_ct, uintptr_t max_str_blen, uint32_t str_htable_size, uint32_t* str_htable);
// last variant_ids entry must be at least kMaxIdBlen bytes before end of
// bigstack
uint32_t VariantIdDupflagHtableFind(const char* idbuf, const char* const* variant_ids, const uint32_t* id_htable, uint32_t cur_id_slen, uint32_t id_htable_size, uint32_t max_id_slen);
uint32_t VariantIdDupHtableFind(const char* idbuf, const char* const* variant_ids, const uint32_t* id_htable, const uint32_t* htable_dup_base, uint32_t cur_id_slen, uint32_t id_htable_size, uint32_t max_id_slen, uint32_t* llidx_ptr);
// This still perform a temporary bigstack allocation; 'noalloc' here just
// means that sorted_strbox and id_map must be allocated in advance. (Overread
// must be safe.)
PglErr CopySortStrboxSubsetNoalloc(const uintptr_t* __restrict subset_mask, const char* __restrict orig_strbox, uintptr_t str_ct, uintptr_t max_str_blen, uint32_t collapse_idxs, uint32_t use_nsort, char* __restrict sorted_strbox, uint32_t* __restrict id_map);
PglErr CopySortStrboxSubset(const uintptr_t* __restrict subset_mask, const char* __restrict orig_strbox, uintptr_t str_ct, uintptr_t max_str_blen, uint32_t collapse_idxs, uint32_t use_nsort, char** sorted_strbox_ptr, uint32_t** id_map_ptr);
typedef struct RangeListStruct {
NONCOPYABLE(RangeListStruct);
char* names;
unsigned char* starts_range;
uint32_t name_ct;
uint32_t name_max_blen;
} RangeList;
void InitRangeList(RangeList* range_list_ptr);
void CleanupRangeList(RangeList* range_list_ptr);
// bitarr assumed to be initialized (but not necessarily zero-initialized)
BoolErr NumericRangeListToBitarr(const RangeList* range_list_ptr, uint32_t bitarr_size, uint32_t offset, uint32_t ignore_overflow, uintptr_t* bitarr);
// returns UINT32_MAX on parsing error
uint32_t NumericRangeListMax(const RangeList* range_list_ptr);
PglErr StringRangeListToBitarr(const char* header_line, const RangeList* range_list_ptr, const char* __restrict sorted_ids, const uint32_t* __restrict id_map, const char* __restrict range_list_flag, const char* __restrict file_descrip, uint32_t token_ct, uint32_t fixed_len, uint32_t comma_delim, uintptr_t* bitarr, int32_t* __restrict seen_idxs);
PglErr StringRangeListToBitarrAlloc(const char* header_line, const RangeList* range_list_ptr, const char* __restrict range_list_flag, const char* __restrict file_descrip, uint32_t token_ct, uint32_t fixed_len, uint32_t comma_delim, uintptr_t** bitarr_ptr);
HEADER_INLINE uint32_t IntersectionIsEmpty(const uintptr_t* bitvec1, const uintptr_t* bitvec2, uintptr_t word_ct) {
#ifdef USE_SSE42
const uintptr_t fullvec_ct = word_ct / kWordsPerVec;
# ifdef USE_AVX2
const __m256i* bitvvec1 = R_CAST(const __m256i*, bitvec1);
const __m256i* bitvvec2 = R_CAST(const __m256i*, bitvec2);
for (uintptr_t vidx = 0; vidx != fullvec_ct; ++vidx) {
if (!_mm256_testz_si256(bitvvec1[vidx], bitvvec2[vidx])) {
return 0;
}
}
# else
const __m128i* bitvvec1 = R_CAST(const __m128i*, bitvec1);
const __m128i* bitvvec2 = R_CAST(const __m128i*, bitvec2);
for (uintptr_t vidx = 0; vidx != fullvec_ct; ++vidx) {
if (!_mm_testz_si128(bitvvec1[vidx], bitvvec2[vidx])) {
return 0;
}
}
# endif
word_ct = word_ct & (kWordsPerVec - 1);
bitvec1 = R_CAST(const uintptr_t*, &(bitvvec1[fullvec_ct]));
bitvec2 = R_CAST(const uintptr_t*, &(bitvvec2[fullvec_ct]));
#endif
for (uintptr_t widx = 0; widx != word_ct; ++widx) {
if (bitvec1[widx] & bitvec2[widx]) {
return 0;
}
}
return 1;
}
uint32_t IntersectionRangeIsEmpty(const uintptr_t* bitarr1, const uintptr_t* bitarr2, uintptr_t start_idx, uintptr_t end_idx);
// could use testz here, but it's more awkward
HEADER_INLINE uint32_t UnionIsFull(const uintptr_t* bitarr1, const uintptr_t* bitarr2, uintptr_t bit_ct) {
const uintptr_t fullword_ct = bit_ct / kBitsPerWord;
for (uintptr_t widx = 0; widx != fullword_ct; ++widx) {
if ((bitarr1[widx] | bitarr2[widx]) != ~k0LU) {
return 0;
}
}
const uint32_t trailing_bit_ct = bit_ct % kBitsPerWord;
if (trailing_bit_ct) {
if ((bitarr1[fullword_ct] | bitarr2[fullword_ct]) != ((k1LU << trailing_bit_ct) - k1LU)) {
return 0;
}
}
return 1;
}
// PopcountWordsIntersect moved to plink2_bits
void PopcountWordsIntersect3val(const uintptr_t* __restrict bitvec1, const uintptr_t* __restrict bitvec2, uint32_t word_ct, uint32_t* __restrict popcount1_ptr, uint32_t* __restrict popcount2_ptr, uint32_t* __restrict popcount_intersect_ptr);
// uintptr_t count_11_longs(const uintptr_t* genovec, uintptr_t word_ct);
// (see CountNyp in pgenlib_misc for that functionality)
// Must be safe to read from bitarr[start_idx / kBitsPerWord].
uint32_t AllBitsAreZero(const uintptr_t* bitarr, uintptr_t start_idx, uintptr_t end_idx);
// does not assume relevant bits of target_bitarr are zero
HEADER_INLINE void CopyBits(uintptr_t src_word, uint64_t target_start_bitidx, uint32_t len, void* target_bitarr) {
unsigned char* target_bitarr_uc = S_CAST(unsigned char*, target_bitarr);
unsigned char* update_ptr = &(target_bitarr_uc[(target_start_bitidx / kBitsPerWord) * kBytesPerWord]);
uintptr_t target_word;
CopyFromUnalignedW(&target_word, update_ptr);
const uint32_t bit_idx_start = target_start_bitidx % kBitsPerWord;
const uintptr_t shifted_new_bits = src_word << bit_idx_start;
const uint32_t bit_idx_end = bit_idx_start + len;
if (bit_idx_end <= kBitsPerWord) {
const uintptr_t invmask = bzhi_max((~k0LU) << bit_idx_start, bit_idx_end);
target_word = (target_word & (~invmask)) | shifted_new_bits;
CopyToUnalignedW(update_ptr, &target_word);
return;
}
AppendW(bzhi(target_word, bit_idx_start) | shifted_new_bits, &update_ptr);
CopyFromUnalignedW(&target_word, update_ptr);
const uint32_t remainder = bit_idx_end - kBitsPerWord;
target_word = (target_word & ((~k0LU) << remainder)) | (src_word >> (len - remainder));
CopyToUnalignedW(update_ptr, &target_word);
}
// assumes len is positive, and relevant bits of target_bitarr are zero
void CopyBitarrRange(const uintptr_t* __restrict src_bitarr, uintptr_t src_start_bitidx, uintptr_t target_start_bitidx, uintptr_t len, uintptr_t* __restrict target_bitarr);
// vertical popcount support
// VcountScramble1() and friends are here since they apply to generic
// arrays; scramble_2_4_8_32() is more plink-specific
#ifdef __LP64__
# ifdef USE_AVX2
HEADER_INLINE uint32_t VcountScramble1(uint32_t orig_idx) {
// 1->4: 0 4 8 12 16 20 24 28 32 ... 252 1 5 9 ...
// 4->8: 0 8 16 24 32 ... 248 4 12 20 ... 1 9 17 ...
// 8->32: 0 32 ... 224 8 40 ... 232 ... 248 4 36 ... 252 1 33 ...
return (orig_idx & (~255)) + ((orig_idx & 3) * 64) + ((orig_idx & 4) * 8) + (orig_idx & 24) + ((orig_idx & 224) / 32);
}
# else
HEADER_INLINE uint32_t VcountScramble1(uint32_t orig_idx) {
// 1->4: 0 4 8 12 16 20 24 28 32 ... 124 1 5 9 ...
// 4->8: 0 8 16 24 32 ... 120 4 12 20 ... 1 9 17 ...
// 8->32: 0 32 64 96 8 40 72 104 16 48 80 112 24 56 88 120 4 36 68 ... 1 33 ...
return (orig_idx & (~127)) + ((orig_idx & 3) * 32) + ((orig_idx & 4) * 4) + ((orig_idx & 24) / 2) + ((orig_idx & 96) / 32);
}
# endif
#else
// 1->4: 0 4 8 12 16 20 24 28 1 5 9 13 17 21 25 29 2 6 10 ...
// 4->8: 0 8 16 24 4 12 20 28 1 9 17 25 5 13 21 29 2 10 18 ...
// 8->32: 0 8 16 24 4 12 20 28 1 9 17 25 5 13 21 29 2 10 18 ...
HEADER_INLINE uint32_t VcountScramble1(uint32_t orig_idx) {
return (orig_idx & (~31)) + ((orig_idx & 3) * 8) + (orig_idx & 4) + ((orig_idx & 24) / 8);
}
#endif
// change acc1 type to const void* if a VecW* use case arises
HEADER_INLINE void VcountIncr1To4(const uintptr_t* acc1, uint32_t acc1_vec_ct, VecW* acc4_iter) {
const VecW m1x4 = VCONST_W(kMask1111);
const VecW* acc1_iter = R_CAST(const VecW*, acc1);
for (uint32_t vidx = 0; vidx != acc1_vec_ct; ++vidx) {
VecW loader = *acc1_iter++;
*acc4_iter = (*acc4_iter) + (loader & m1x4);
++acc4_iter;
loader = vecw_srli(loader, 1);
*acc4_iter = (*acc4_iter) + (loader & m1x4);
++acc4_iter;
loader = vecw_srli(loader, 1);
*acc4_iter = (*acc4_iter) + (loader & m1x4);
++acc4_iter;
loader = vecw_srli(loader, 1);
*acc4_iter = (*acc4_iter) + (loader & m1x4);
++acc4_iter;
}
}
HEADER_INLINE void Vcount0Incr1To4(uint32_t acc1_vec_ct, uintptr_t* acc1, VecW* acc4_iter) {
const VecW m1x4 = VCONST_W(kMask1111);
VecW* acc1_iter = R_CAST(VecW*, acc1);
for (uint32_t vidx = 0; vidx != acc1_vec_ct; ++vidx) {
VecW loader = *acc1_iter;
*acc1_iter++ = vecw_setzero();
*acc4_iter = (*acc4_iter) + (loader & m1x4);
++acc4_iter;
loader = vecw_srli(loader, 1);
*acc4_iter = (*acc4_iter) + (loader & m1x4);
++acc4_iter;
loader = vecw_srli(loader, 1);
*acc4_iter = (*acc4_iter) + (loader & m1x4);
++acc4_iter;
loader = vecw_srli(loader, 1);
*acc4_iter = (*acc4_iter) + (loader & m1x4);
++acc4_iter;
}
}
// er, should this just be the same function as unroll_incr_2_4 with extra
// parameters?...
HEADER_INLINE void VcountIncr4To8(const VecW* acc4_iter, uint32_t acc4_vec_ct, VecW* acc8_iter) {
const VecW m4 = VCONST_W(kMask0F0F);
for (uint32_t vidx = 0; vidx != acc4_vec_ct; ++vidx) {
VecW loader = *acc4_iter++;
*acc8_iter = (*acc8_iter) + (loader & m4);
++acc8_iter;
loader = vecw_srli(loader, 4);
*acc8_iter = (*acc8_iter) + (loader & m4);
++acc8_iter;
}
}
HEADER_INLINE void Vcount0Incr4To8(uint32_t acc4_vec_ct, VecW* acc4_iter, VecW* acc8_iter) {
const VecW m4 = VCONST_W(kMask0F0F);
for (uint32_t vidx = 0; vidx != acc4_vec_ct; ++vidx) {
VecW loader = *acc4_iter;
*acc4_iter++ = vecw_setzero();
*acc8_iter = (*acc8_iter) + (loader & m4);
++acc8_iter;
loader = vecw_srli(loader, 4);
*acc8_iter = (*acc8_iter) + (loader & m4);
++acc8_iter;
}
}
HEADER_INLINE void VcountIncr8To32(const VecW* acc8_iter, uint32_t acc8_vec_ct, VecW* acc32_iter) {
const VecW m8x32 = VCONST_W(kMask000000FF);
for (uint32_t vidx = 0; vidx != acc8_vec_ct; ++vidx) {
VecW loader = *acc8_iter++;
*acc32_iter = (*acc32_iter) + (loader & m8x32);
++acc32_iter;
loader = vecw_srli(loader, 8);
*acc32_iter = (*acc32_iter) + (loader & m8x32);
++acc32_iter;
loader = vecw_srli(loader, 8);
*acc32_iter = (*acc32_iter) + (loader & m8x32);
++acc32_iter;
loader = vecw_srli(loader, 8);
*acc32_iter = (*acc32_iter) + (loader & m8x32);
++acc32_iter;
}
}
HEADER_INLINE void Vcount0Incr8To32(uint32_t acc8_vec_ct, VecW* acc8_iter, VecW* acc32_iter) {
const VecW m8x32 = VCONST_W(kMask000000FF);
for (uint32_t vidx = 0; vidx != acc8_vec_ct; ++vidx) {
VecW loader = *acc8_iter;
*acc8_iter++ = vecw_setzero();
*acc32_iter = (*acc32_iter) + (loader & m8x32);
++acc32_iter;
loader = vecw_srli(loader, 8);
*acc32_iter = (*acc32_iter) + (loader & m8x32);
++acc32_iter;
loader = vecw_srli(loader, 8);
*acc32_iter = (*acc32_iter) + (loader & m8x32);
++acc32_iter;
loader = vecw_srli(loader, 8);
*acc32_iter = (*acc32_iter) + (loader & m8x32);
++acc32_iter;
}
}
void VerticalCounterUpdate(const uintptr_t* acc1, uint32_t acc1_vec_ct, uint32_t* rem15_and_255d15, VecW* acc4_8_32);
HEADER_INLINE uint32_t IdxToUidxBasic(const uintptr_t* bitvec, uint32_t idx) {
return FindNth1BitFrom(bitvec, 0, idx + 1);
}
HEADER_INLINE void ComputeUidxStartPartition(const uintptr_t* variant_include, uint64_t variant_ct, uint32_t thread_ct, uint32_t first_uidx, uint32_t* variant_uidx_starts) {
FillU32SubsetStarts(variant_include, thread_ct, first_uidx, variant_ct, variant_uidx_starts);
}
// These functions assume (bit_ct * (thread_ct - 1)) < 2^64.
// bit_ct must be positive, but can be smaller than thread_ct
// FillU32SubsetStarts moved to plink2_bits
void FillWStarts(uint32_t thread_ct, uintptr_t start, uint64_t bit_ct, uintptr_t* starts);
#ifdef __LP64__
void FillWSubsetStarts(const uintptr_t* subset, uint32_t thread_ct, uintptr_t start, uint64_t bit_ct, uintptr_t* starts);
#else
HEADER_INLINE void FillWSubsetStarts(const uintptr_t* subset, uint32_t thread_ct, uintptr_t start, uint64_t bit_ct, uintptr_t* starts) {
return FillU32SubsetStarts(subset, thread_ct, start, bit_ct, R_CAST(uint32_t*, starts));
}
#endif
// Set multiplier to 0 to only count extra alleles, 1 to also count alt1 for
// those variants (useful for HWE), 2 to count both ref and alt1 for
// multiallelic variants.
// allele_idx_offsets == nullptr ok.
uintptr_t CountExtraAlleles(const uintptr_t* variant_include, const uintptr_t* allele_idx_offsets, uint32_t variant_uidx_start, uint32_t variant_uidx_end, uint32_t multiallelic_variant_ct_multiplier);
uint32_t MaxAlleleCtSubset(const uintptr_t* variant_include, const uintptr_t* allele_idx_offsets, uint32_t raw_variant_ct, uint32_t variant_ct, uint32_t max_allele_ct);
void ComputePartitionAligned(const uintptr_t* variant_include, uint32_t orig_thread_ct, uint32_t first_variant_uidx, uint32_t cur_variant_idx, uint32_t cur_variant_ct, uint32_t alignment, uint32_t* variant_uidx_starts, uint32_t* vidx_starts);
BoolErr ParseNextRange(const char* const* argvk, uint32_t param_ct, char range_delim, uint32_t* cur_param_idx_ptr, const char** cur_arg_pptr, const char** range_start_ptr, uint32_t* rs_len_ptr, const char** range_end_ptr, uint32_t* re_len_ptr);
PglErr ParseNameRanges(const char* const* argvk, const char* errstr_append, uint32_t param_ct, uint32_t require_posint, char range_delim, RangeList* range_list_ptr);
// Analytically finds all real roots of x^3 + ax^2 + bx + c, saving them in
// solutions[] (sorted from smallest to largest), and returning the count.
// Multiple roots are only returned/counted once.
uint32_t CubicRealRoots(double coef_a, double coef_b, double coef_c, STD_ARRAY_REF(double, 3) solutions);
HEADER_INLINE double PrevFloat64(double dxx) {
uint64_t ullii;
memcpy(&ullii, &dxx, 8);
--ullii;
memcpy(&dxx, &ullii, 8);
return dxx;
}
HEADER_INLINE double NextFloat64(double dxx) {
uint64_t ullii;
memcpy(&ullii, &dxx, 8);
++ullii;
memcpy(&dxx, &ullii, 8);
return dxx;
}
// Pass in htable_dup_base_ptr == nullptr if just flagging duplicate IDs rather
// than tracking all their positions in item_ids.
// Otherwise, htable_dup_base entries are guaranteed to be filled in increasing
// order (briefly made that nondeterministic on 11 Oct 2019 and broke --rm-dup,
// not doing that again).
PglErr AllocAndPopulateIdHtableMt(const uintptr_t* subset_mask, const char* const* item_ids, uintptr_t item_ct, uintptr_t fast_size_min_extra_bytes, uint32_t max_thread_ct, uint32_t** id_htable_ptr, uint32_t** htable_dup_base_ptr, uint32_t* id_htable_size_ptr, uint32_t* dup_ct_ptr);
typedef struct HelpCtrlStruct {
NONCOPYABLE(HelpCtrlStruct);
uint32_t iters_left;
uint32_t param_ct;
const char* const* argv;
uintptr_t unmatched_ct;
uintptr_t* all_match_arr;
uintptr_t* prefix_match_arr;
uintptr_t* perfect_match_arr;
uint32_t* param_slens;
uint32_t preprint_newline;
} HelpCtrl;
void HelpPrint(const char* cur_params, HelpCtrl* help_ctrl_ptr, uint32_t postprint_newline, const char* payload);
extern const char kErrstrReadCorrupted[];
// 'r' in front for (file) read. We default to a generic "File appears to be
// corrupted" message when the C-library I/O function calls succeed (so errno
// is 0) but we determine that the logical contents of the file don't make
// sense.
HEADER_INLINE const char* rstrerror(int errnum) {
if (errnum) {
return strerror(errnum);
}
return kErrstrReadCorrupted;
}
// assumes logfile is open
void DispExitMsg(PglErr reterr);
BoolErr CheckExtraParam(const char* const* argvk, const char* permitted_modif, uint32_t* other_idx_ptr);
char ExtractCharParam(const char* ss);
PglErr CmdlineAllocString(const char* source, const char* flag_name, uint32_t max_slen, char** sbuf_ptr);
PglErr AllocFname(const char* source, const char* flagname_p, uint32_t extra_size, char** fnbuf_ptr);
PglErr AllocAndFlatten(const char* const* sources, uint32_t param_ct, uint32_t max_blen, char** flattened_buf_ptr);
typedef struct Plink2CmdlineMetaStruct {
NONCOPYABLE(Plink2CmdlineMetaStruct);
// need to be able to assign this to argv, so don't make it const char**
char** subst_argv;
char* script_buf;
char* rerun_buf;
char* flag_buf;
uint32_t* flag_map;
} Plink2CmdlineMeta;
void PreinitPlink2CmdlineMeta(Plink2CmdlineMeta* pcmp);
// Handles --script, --rerun, --help, --version, and --silent.
// subst_argv, script_buf, and rerun_buf must be initialized to nullptr.
PglErr CmdlineParsePhase1(const char* ver_str, const char* ver_str2, const char* prog_name_str, const char* notestr_null_calc2, const char* cmdline_format_str, const char* errstr_append, uint32_t max_flag_blen, PglErr(* disp_help_fn)(const char* const*, uint32_t), int* argc_ptr, char*** argv_ptr, Plink2CmdlineMeta* pcmp, uint32_t* first_arg_idx_ptr, uint32_t* flag_ct_ptr);
// Assumes CmdlineParsePhase1() has completed, flag names have been copied to
// flag_buf/flag_map, aliases handled, and PROG_NAME_STR has been copied to
// outname (no null-terminator needed). outname_end must be initialized to
// nullptr.
// This sorts the flag names so they're processed in a predictable order,
// handles --d/--out/--strict-extra-chr if present, initializes the log, and
// determines the number of processors the OS wants us to think the machine
// has.
PglErr CmdlineParsePhase2(const char* ver_str, const char* errstr_append, const char* const* argvk, uint32_t prog_name_str_slen, uint32_t max_flag_blen, int32_t argc, uint32_t flag_ct, Plink2CmdlineMeta* pcmp, char* outname, char** outname_end_ptr, char* range_delim_ptr, uint32_t* strict_extra_chr_ptr, int32_t* known_procs_ptr, uint32_t* max_thread_ct_ptr);
HEADER_INLINE void InvalidArg(const char* cur_arg) {
logpreprintfww("Error: Unrecognized flag ('%s').\n", cur_arg);
}
PglErr CmdlineParsePhase3(uintptr_t max_default_mib, uintptr_t malloc_size_mib, uint32_t memory_require, Plink2CmdlineMeta* pcmp, unsigned char** bigstack_ua_ptr);
void CleanupPlink2CmdlineMeta(Plink2CmdlineMeta* pcmp);
// order is such that (kCmpOperatorEq - x) is the inverse of x
ENUM_U31_DEF_START()
kCmpOperatorNoteq,
kCmpOperatorLe,
kCmpOperatorLeq,
kCmpOperatorGe,
kCmpOperatorGeq,
kCmpOperatorEq
ENUM_U31_DEF_END(CmpBinaryOp);
typedef struct CmpExprStruct {
// arguably too small for noncopyable to be a great idea, but the next
// iteration of this struct probably won't have that issue.
NONCOPYABLE(CmpExprStruct);
// Restrict to <key> <operator> <value> for now; key=INFO/pheno/covar.
//
// Almost certainly want to support conjunctions/disjunctions later; but
// there are complications regarding the command-line interface:
// * Phenotype/covariate names and VCFv4.2 INFO keys can contain parenthesis
// and mathematical-operator characters. And we actually need to permit at
// least the latter, since autogenerated categorical-covariate names
// contain '=' for a good reason. Some sort of escaping is probably in
// in order, but...
// * Escaping is not a big deal in a shell script, but most
// conjunctions/disjunctions can already be emulated easily enough in a
// shell script by calling plink2 multiple times. While there's some
// execution-time improvement, the main value-add from directly supporting
// logical operations in --keep-if/--extract-if-info is reduced
// interactive-use cognitive load.
// * We can't treat multiple command-line arguments differently from the
// corresponding space-containing single command-line argument; otherwise
// --rerun breaks. So "multiple-argument-form supports keys with special
// characters but not conjunctions/disjunctions; single-argument-form is
// the other way around" is not an option.
// The least-bad solution I've thought of is to add --keep-if-file/etc. flags
// which read the expression from a short text file. In that case, we'd at
// least be able to define normal quoting and escaping rules without worrying
// about confusing interactions with bash. Deferring implementation for now
// in hopes of coming up with a better idea, but this should go in before
// beta testing begins.
// Currently stores null-terminated key, followed by null-terminated value
// string. Storage format needs to be synced with ValidateAndAllocCmpExpr().
char* pheno_name;
CmpBinaryOp binary_op;
} CmpExpr;
void InitCmpExpr(CmpExpr* cmp_expr_ptr);
void CleanupCmpExpr(CmpExpr* cmp_expr_ptr);
PglErr ValidateAndAllocCmpExpr(const char* const* sources, const char* flag_name, uint32_t param_ct, CmpExpr* cmp_expr_ptr);
PglErr SearchHeaderLine(const char* header_line_iter, const char* const* search_multistrs, const char* flag_nodash, uint32_t search_col_ct, uint32_t* found_col_ct_ptr, uint32_t* found_type_bitset_ptr, uint32_t* col_skips, uint32_t* col_types);
// col_descriptor is usually a pointer to argv[...][5] (first five characters
// are "cols="). supported_ids is a multistr.
PglErr ParseColDescriptor(const char* col_descriptor_iter, const char* supported_ids, const char* cur_flag_name, uint32_t first_col_shifted, uint32_t default_cols_mask, uint32_t prohibit_empty, void* result_ptr);
// this is technically application-dependent, but let's keep this simple for
// now
// todo: recalibrate these numbers before each beta release
#ifndef __LP64__
// 2047 seems to consistently fail on both OS X and Windows
# ifdef _WIN32
CONSTI32(kMalloc32bitMibMax, 1728);
# else
# ifdef __APPLE__
CONSTI32(kMalloc32bitMibMax, 1888);
# else
CONSTI32(kMalloc32bitMibMax, 2047);
# endif
# endif
#endif
#ifdef __cplusplus
} // namespace plink2
#endif
#endif // __PLINK2_CMDLINE_H__
|