1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070
|
// This file is part of PLINK 2.0, copyright (C) 2005-2025 Shaun Purcell,
// Christopher Chang.
//
// This program is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the Free
// Software Foundation, either version 3 of the License, or (at your option)
// any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
// more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "include/plink2_stats.h"
#include "plink2_compress_stream.h"
#include "plink2_filter.h"
#include "plink2_ld.h"
#include "plink2_set.h"
#include <unistd.h> // unlink()
#ifdef __cplusplus
# include <functional> // std::greater
#endif
#ifdef __cplusplus
namespace plink2 {
#endif
void InitLd(LdInfo* ldip) {
ldip->prune_flags = kfLdPrune0;
ldip->prune_window_size = 0;
ldip->prune_window_incr = 0;
ldip->prune_last_param = 0.0;
ldip->ld_console_flags = kfLdConsole0;
ldip->ld_console_varids[0] = nullptr;
ldip->ld_console_varids[1] = nullptr;
}
void CleanupLd(LdInfo* ldip) {
free_cond(ldip->ld_console_varids[0]);
free_cond(ldip->ld_console_varids[1]);
}
void InitClump(ClumpInfo* clump_ip) {
clump_ip->fnames_flattened = nullptr;
clump_ip->range_fname = nullptr;
clump_ip->test_name = nullptr;
clump_ip->id_field = nullptr;
clump_ip->a1_field = nullptr;
clump_ip->test_field = nullptr;
clump_ip->p_field = nullptr;
clump_ip->ln_bin_boundaries = nullptr;
clump_ip->ln_p1 = kLn10 * -4.0 * (1.0 - kSmallEpsilon);
clump_ip->ln_p2 = kLn10 * -2.0 * (1.0 - kSmallEpsilon);
clump_ip->r2 = 0.5 * (1.0 + kSmallEpsilon);
clump_ip->bin_bound_ct = 0;
clump_ip->bp_radius = 249999;
clump_ip->range_border = 0;
clump_ip->flags = kfClump0;
}
void CleanupClump(ClumpInfo* clump_ip) {
free_cond(clump_ip->fnames_flattened);
free_cond(clump_ip->range_fname);
free_cond(clump_ip->test_name);
free_cond(clump_ip->id_field);
free_cond(clump_ip->a1_field);
free_cond(clump_ip->test_field);
free_cond(clump_ip->p_field);
free_cond(clump_ip->ln_bin_boundaries);
}
void InitVcor(VcorInfo* vcip) {
vcip->ld_snp_list_fname = nullptr;
InitRangeList(&(vcip->ld_snp_range_list));
// We want to error out during command-line parsing when the user specifies
// matrix output with one of these filters, or inter-chr output with one of
// the radius filters.
// Unfortunately, --ld-window... flags are parsed before --r[2]-[un]phased,
// so directly initializing bp_radius and min_r2 to default values doesn't
// work out cleanly. Instead, we initialize them to out-of-range values, and
// fill in defaults during --r[2]-[un]phased parsing.
vcip->var_ct_radius = 0x7fffffff; // avoids overflows UINT32_MAX would have
vcip->bp_radius = UINT32_MAX;
vcip->cm_radius = -1.0;
vcip->min_r2 = 2.0;
vcip->flags = kfVcor0;
}
void CleanupVcor(VcorInfo* vcip) {
free_cond(vcip->ld_snp_list_fname);
CleanupRangeList(&(vcip->ld_snp_range_list));
}
void StripUnplacedNoCount(const ChrInfo* cip, uintptr_t* variant_include) {
if (IsSet(cip->chr_mask, 0)) {
const uint32_t chr_fo_idx = cip->chr_idx_to_foidx[0];
const uint32_t start_uidx = cip->chr_fo_vidx_start[chr_fo_idx];
ClearBitsNz(start_uidx, cip->chr_fo_vidx_start[chr_fo_idx + 1], variant_include);
}
if (cip->zero_extra_chrs) {
const uint32_t chr_code_end = cip->max_code + 1 + cip->name_ct;
for (uint32_t chr_idx = cip->max_code + 1; chr_idx != chr_code_end; ++chr_idx) {
const uint32_t chr_fo_idx = cip->chr_idx_to_foidx[chr_idx];
const uint32_t start_uidx = cip->chr_fo_vidx_start[chr_fo_idx];
ClearBitsNz(start_uidx, cip->chr_fo_vidx_start[chr_fo_idx + 1], variant_include);
}
}
}
// Move to plink2_common if any users outside plink2_ld.
BoolErr StripUnplaced(const uintptr_t* orig_variant_include, const ChrInfo* cip, uint32_t raw_variant_ct, uint32_t* skipped_variant_ctp, uintptr_t** new_variant_includep) {
uint32_t skipped_variant_ct = 0;
if (IsSet(cip->chr_mask, 0)) {
skipped_variant_ct = CountChrVariantsUnsafe(orig_variant_include, cip, 0);
}
const uint32_t chr_code_end = cip->max_code + 1 + cip->name_ct;
if (cip->zero_extra_chrs) {
for (uint32_t chr_idx = cip->max_code + 1; chr_idx != chr_code_end; ++chr_idx) {
if (IsSet(cip->chr_mask, chr_idx)) {
skipped_variant_ct += CountChrVariantsUnsafe(orig_variant_include, cip, cip->chr_idx_to_foidx[chr_idx]);
}
}
}
*skipped_variant_ctp = skipped_variant_ct;
if (!skipped_variant_ct) {
*new_variant_includep = nullptr;
return 0;
}
const uint32_t raw_variant_ctl = BitCtToWordCt(raw_variant_ct);
if (unlikely(bigstack_alloc_w(raw_variant_ctl, new_variant_includep))) {
return 1;
}
uintptr_t* new_variant_include = *new_variant_includep;
memcpy(new_variant_include, orig_variant_include, raw_variant_ctl * sizeof(intptr_t));
StripUnplacedNoCount(cip, new_variant_include);
return 0;
}
static inline const uintptr_t* StripUnplacedK(const uintptr_t* orig_variant_include, const ChrInfo* cip, uint32_t raw_variant_ct, uint32_t* skipped_variant_ctp) {
uintptr_t* new_variant_include;
if (unlikely(StripUnplaced(orig_variant_include, cip, raw_variant_ct, skipped_variant_ctp, &new_variant_include))) {
return nullptr;
}
return new_variant_include? new_variant_include : orig_variant_include;
}
// Returns number of skipped variants.
uint32_t StripUnplacedMut(const ChrInfo* cip, uintptr_t* variant_include) {
uint32_t skipped_variant_ct = 0;
if (IsSet(cip->chr_mask, 0)) {
skipped_variant_ct = CountChrVariantsUnsafe(variant_include, cip, 0);
}
const uint32_t chr_code_end = cip->max_code + 1 + cip->name_ct;
if (cip->zero_extra_chrs) {
for (uint32_t chr_idx = cip->max_code + 1; chr_idx != chr_code_end; ++chr_idx) {
if (IsSet(cip->chr_mask, chr_idx)) {
// bugfix (15 Jan 2025): passed wrong last parameter
skipped_variant_ct += CountChrVariantsUnsafe(variant_include, cip, chr_idx);
}
}
}
if (!skipped_variant_ct) {
return 0;
}
StripUnplacedNoCount(cip, variant_include);
return skipped_variant_ct;
}
#ifdef USE_AVX2
// todo: see if either approach in avx_jaccard_index.c in
// github.com/CountOnes/hamming_weight helps here.
static inline int32_t DotprodAvx2(const VecW* __restrict hom1_iter, const VecW* __restrict ref2het1_iter, const VecW* __restrict hom2_iter, const VecW* __restrict ref2het2_iter, uintptr_t vec_ct) {
// popcount(hom1 & hom2) - 2 * popcount(hom1 & hom2 & (ref2het1 ^ ref2het2))
// ct must be a multiple of 4.
VecW cnt = vecw_setzero();
VecW ones_both = vecw_setzero();
VecW ones_neg = vecw_setzero();
VecW twos_both = vecw_setzero();
VecW twos_neg = vecw_setzero();
for (uintptr_t vec_idx = 0; vec_idx < vec_ct; vec_idx += 4) {
VecW count1_both = hom1_iter[vec_idx] & hom2_iter[vec_idx];
VecW cur_xor = ref2het1_iter[vec_idx] ^ ref2het2_iter[vec_idx];
VecW count1_neg = count1_both & cur_xor;
VecW count2_both = hom1_iter[vec_idx + 1] & hom2_iter[vec_idx + 1];
cur_xor = ref2het1_iter[vec_idx + 1] ^ ref2het2_iter[vec_idx + 1];
VecW count2_neg = count2_both & cur_xor;
const VecW twos_both_a = Csa256(count1_both, count2_both, &ones_both);
const VecW twos_neg_a = Csa256(count1_neg, count2_neg, &ones_neg);
count1_both = hom1_iter[vec_idx + 2] & hom2_iter[vec_idx + 2];
cur_xor = ref2het1_iter[vec_idx + 2] ^ ref2het2_iter[vec_idx + 2];
count1_neg = count1_both & cur_xor;
count2_both = hom1_iter[vec_idx + 3] & hom2_iter[vec_idx + 3];
cur_xor = ref2het1_iter[vec_idx + 3] ^ ref2het2_iter[vec_idx + 3];
count2_neg = count2_both & cur_xor;
const VecW twos_both_b = Csa256(count1_both, count2_both, &ones_both);
const VecW twos_neg_b = Csa256(count1_neg, count2_neg, &ones_neg);
const VecW fours_both = Csa256(twos_both_a, twos_both_b, &twos_both);
const VecW fours_neg = Csa256(twos_neg_a, twos_neg_b, &twos_neg);
// tried continuing to eights, not worth it
// deliberate unsigned-int64 overflow here
cnt = cnt + PopcountVecAvx2(fours_both) - vecw_slli(PopcountVecAvx2(fours_neg), 1);
}
cnt = cnt - PopcountVecAvx2(twos_neg);
cnt = vecw_slli(cnt, 2);
const VecW twos_sum = PopcountVecAvx2(twos_both) - PopcountVecAvx2(ones_neg);
cnt = cnt + vecw_slli(twos_sum, 1);
cnt = cnt + PopcountVecAvx2(ones_both);
return HsumW(cnt);
}
int32_t DotprodWords(const uintptr_t* __restrict hom1, const uintptr_t* __restrict ref2het1, const uintptr_t* __restrict hom2, const uintptr_t* __restrict ref2het2, uintptr_t word_ct) {
int32_t tot_both = 0;
uint32_t widx = 0;
if (word_ct >= 16) { // this already pays off with a single block
const uintptr_t block_ct = word_ct / (kWordsPerVec * 4);
tot_both = DotprodAvx2(R_CAST(const VecW*, hom1), R_CAST(const VecW*, ref2het1), R_CAST(const VecW*, hom2), R_CAST(const VecW*, ref2het2), block_ct * 4);
widx = block_ct * (4 * kWordsPerVec);
}
uint32_t tot_neg = 0;
for (; widx != word_ct; ++widx) {
const uintptr_t hom_word = hom1[widx] & hom2[widx];
const uintptr_t xor_word = ref2het1[widx] ^ ref2het2[widx];
tot_both += PopcountWord(hom_word);
tot_neg += PopcountWord(hom_word & xor_word);
}
return tot_both - 2 * tot_neg;
}
static inline void SumSsqAvx2(const VecW* __restrict hom1_iter, const VecW* __restrict ref2het1_iter, const VecW* __restrict hom2_iter, const VecW* __restrict ref2het2_iter, uintptr_t vec_ct, uint32_t* __restrict ssq2_ptr, uint32_t* __restrict plus2_ptr) {
// popcounts (nm1 & hom2) and (nm1 & hom2 & ref2het2). ct is multiple of 8.
VecW cnt_ssq = vecw_setzero();
VecW cnt_plus = vecw_setzero();
VecW ones_ssq = vecw_setzero();
VecW ones_plus = vecw_setzero();
VecW twos_ssq = vecw_setzero();
VecW twos_plus = vecw_setzero();
VecW fours_ssq = vecw_setzero();
VecW fours_plus = vecw_setzero();
for (uintptr_t vec_idx = 0; vec_idx < vec_ct; vec_idx += 8) {
VecW count1_ssq = (hom1_iter[vec_idx] | ref2het1_iter[vec_idx]) & hom2_iter[vec_idx];
VecW count1_plus = count1_ssq & ref2het2_iter[vec_idx];
VecW count2_ssq = (hom1_iter[vec_idx + 1] | ref2het1_iter[vec_idx + 1]) & hom2_iter[vec_idx + 1];
VecW count2_plus = count2_ssq & ref2het2_iter[vec_idx + 1];
VecW twos_ssq_a = Csa256(count1_ssq, count2_ssq, &ones_ssq);
VecW twos_plus_a = Csa256(count1_plus, count2_plus, &ones_plus);
count1_ssq = (hom1_iter[vec_idx + 2] | ref2het1_iter[vec_idx + 2]) & hom2_iter[vec_idx + 2];
count1_plus = count1_ssq & ref2het2_iter[vec_idx + 2];
count2_ssq = (hom1_iter[vec_idx + 3] | ref2het1_iter[vec_idx + 3]) & hom2_iter[vec_idx + 3];
count2_plus = count2_ssq & ref2het2_iter[vec_idx + 3];
VecW twos_ssq_b = Csa256(count1_ssq, count2_ssq, &ones_ssq);
VecW twos_plus_b = Csa256(count1_plus, count2_plus, &ones_plus);
const VecW fours_ssq_a = Csa256(twos_ssq_a, twos_ssq_b, &twos_ssq);
const VecW fours_plus_a = Csa256(twos_plus_a, twos_plus_b, &twos_plus);
count1_ssq = (hom1_iter[vec_idx + 4] | ref2het1_iter[vec_idx + 4]) & hom2_iter[vec_idx + 4];
count1_plus = count1_ssq & ref2het2_iter[vec_idx + 4];
count2_ssq = (hom1_iter[vec_idx + 5] | ref2het1_iter[vec_idx + 5]) & hom2_iter[vec_idx + 5];
count2_plus = count2_ssq & ref2het2_iter[vec_idx + 5];
twos_ssq_a = Csa256(count1_ssq, count2_ssq, &ones_ssq);
twos_plus_a = Csa256(count1_plus, count2_plus, &ones_plus);
count1_ssq = (hom1_iter[vec_idx + 6] | ref2het1_iter[vec_idx + 6]) & hom2_iter[vec_idx + 6];
count1_plus = count1_ssq & ref2het2_iter[vec_idx + 6];
count2_ssq = (hom1_iter[vec_idx + 7] | ref2het1_iter[vec_idx + 7]) & hom2_iter[vec_idx + 7];
count2_plus = count2_ssq & ref2het2_iter[vec_idx + 7];
twos_ssq_b = Csa256(count1_ssq, count2_ssq, &ones_ssq);
twos_plus_b = Csa256(count1_plus, count2_plus, &ones_plus);
const VecW fours_ssq_b = Csa256(twos_ssq_a, twos_ssq_b, &twos_ssq);
const VecW fours_plus_b = Csa256(twos_plus_a, twos_plus_b, &twos_plus);
const VecW eights_ssq = Csa256(fours_ssq_a, fours_ssq_b, &fours_ssq);
const VecW eights_plus = Csa256(fours_plus_a, fours_plus_b, &fours_plus);
// negligible benefit from going to sixteens here
cnt_ssq = cnt_ssq + PopcountVecAvx2(eights_ssq);
cnt_plus = cnt_plus + PopcountVecAvx2(eights_plus);
}
cnt_ssq = vecw_slli(cnt_ssq, 3);
cnt_plus = vecw_slli(cnt_plus, 3);
cnt_ssq = cnt_ssq + vecw_slli(PopcountVecAvx2(fours_ssq), 2);
cnt_plus = cnt_plus + vecw_slli(PopcountVecAvx2(fours_plus), 2);
cnt_ssq = cnt_ssq + vecw_slli(PopcountVecAvx2(twos_ssq), 1);
cnt_plus = cnt_plus + vecw_slli(PopcountVecAvx2(twos_plus), 1);
cnt_ssq = cnt_ssq + PopcountVecAvx2(ones_ssq);
cnt_plus = cnt_plus + PopcountVecAvx2(ones_plus);
*ssq2_ptr = HsumW(cnt_ssq);
*plus2_ptr = HsumW(cnt_plus);
}
void SumSsqWords(const uintptr_t* hom1, const uintptr_t* ref2het1, const uintptr_t* hom2, const uintptr_t* ref2het2, uint32_t word_ct, int32_t* sum2_ptr, uint32_t* ssq2_ptr) {
uint32_t ssq2 = 0;
uint32_t plus2 = 0;
uint32_t widx = 0;
// this has high constant overhead at the end; may want to require more than
// one block?
if (word_ct >= 32) {
const uintptr_t block_ct = word_ct / (8 * kWordsPerVec);
SumSsqAvx2(R_CAST(const VecW*, hom1), R_CAST(const VecW*, ref2het1), R_CAST(const VecW*, hom2), R_CAST(const VecW*, ref2het2), block_ct * 8, &ssq2, &plus2);
widx = block_ct * (8 * kWordsPerVec);
}
for (; widx != word_ct; ++widx) {
const uintptr_t ssq2_word = (hom1[widx] | ref2het1[widx]) & hom2[widx];
ssq2 += PopcountWord(ssq2_word);
plus2 += PopcountWord(ssq2_word & ref2het2[widx]);
}
*sum2_ptr = S_CAST(int32_t, 2 * plus2 - ssq2); // deliberate overflow
*ssq2_ptr = ssq2;
}
#else // !USE_AVX2
static inline int32_t DotprodVecsNm(const VecW* __restrict hom1_iter, const VecW* __restrict ref2het1_iter, const VecW* __restrict hom2_iter, const VecW* __restrict ref2het2_iter, uintptr_t vec_ct) {
// popcount(hom1 & hom2) - 2 * popcount(hom1 & hom2 & (ref2het1 ^ ref2het2))
// ct must be a multiple of 3.
assert(!(vec_ct % 3));
const VecW m1 = VCONST_W(kMask5555);
const VecW m2 = VCONST_W(kMask3333);
const VecW m4 = VCONST_W(kMask0F0F);
VecW acc_both = vecw_setzero();
VecW acc_neg = vecw_setzero();
uintptr_t cur_incr = 30;
for (; ; vec_ct -= cur_incr) {
if (vec_ct < 30) {
if (!vec_ct) {
return HsumW(acc_both) - 2 * HsumW(acc_neg);
}
cur_incr = vec_ct;
}
VecW inner_acc_both = vecw_setzero();
VecW inner_acc_neg = vecw_setzero();
const VecW* hom1_stop = &(hom1_iter[cur_incr]);
do {
VecW count1_both = (*hom1_iter++) & (*hom2_iter++);
VecW cur_xor = (*ref2het1_iter++) ^ (*ref2het2_iter++);
VecW count1_neg = count1_both & cur_xor;
VecW count2_both = (*hom1_iter++) & (*hom2_iter++);
cur_xor = (*ref2het1_iter++) ^ (*ref2het2_iter++);
VecW count2_neg = count2_both & cur_xor;
VecW cur_hom = (*hom1_iter++) & (*hom2_iter++);
cur_xor = (*ref2het1_iter++) ^ (*ref2het2_iter++);
VecW half1_neg = cur_hom & cur_xor;
const VecW half2_both = vecw_srli(cur_hom, 1) & m1;
const VecW half2_neg = vecw_srli(half1_neg, 1) & m1;
const VecW half1_both = cur_hom & m1;
half1_neg = half1_neg & m1;
count1_both = count1_both - (vecw_srli(count1_both, 1) & m1);
count1_neg = count1_neg - (vecw_srli(count1_neg, 1) & m1);
count2_both = count2_both - (vecw_srli(count2_both, 1) & m1);
count2_neg = count2_neg - (vecw_srli(count2_neg, 1) & m1);
count1_both = count1_both + half1_both;
count1_neg = count1_neg + half1_neg;
count2_both = count2_both + half2_both;
count2_neg = count2_neg + half2_neg;
count1_both = (count1_both & m2) + (vecw_srli(count1_both, 2) & m2);
count1_neg = (count1_neg & m2) + (vecw_srli(count1_neg, 2) & m2);
count1_both = count1_both + (count2_both & m2) + (vecw_srli(count2_both, 2) & m2);
count1_neg = count1_neg + (count2_neg & m2) + (vecw_srli(count2_neg, 2) & m2);
inner_acc_both = inner_acc_both + (count1_both & m4) + (vecw_srli(count1_both, 4) & m4);
inner_acc_neg = inner_acc_neg + (count1_neg & m4) + (vecw_srli(count1_neg, 4) & m4);
} while (hom1_iter < hom1_stop);
const VecW m0 = vecw_setzero();
acc_both = acc_both + vecw_bytesum(inner_acc_both, m0);
acc_neg = acc_neg + vecw_bytesum(inner_acc_neg, m0);
}
}
int32_t DotprodWords(const uintptr_t* __restrict hom1, const uintptr_t* __restrict ref2het1, const uintptr_t* __restrict hom2, const uintptr_t* __restrict ref2het2, uintptr_t word_ct) {
int32_t tot_both = 0;
uint32_t widx = 0;
if (word_ct >= kWordsPerVec * 3) {
const uintptr_t block_ct = word_ct / (kWordsPerVec * 3);
tot_both = DotprodVecsNm(R_CAST(const VecW*, hom1), R_CAST(const VecW*, ref2het1), R_CAST(const VecW*, hom2), R_CAST(const VecW*, ref2het2), block_ct * 3);
widx = block_ct * (3 * kWordsPerVec);
}
uint32_t tot_neg = 0;
for (; widx != word_ct; ++widx) {
const uintptr_t hom_word = hom1[widx] & hom2[widx];
const uintptr_t xor_word = ref2het1[widx] ^ ref2het2[widx];
tot_both += PopcountWord(hom_word);
tot_neg += PopcountWord(hom_word & xor_word);
}
return tot_both - 2 * tot_neg;
}
#ifndef USE_SSE42
static inline void SumSsqVecs(const VecW* __restrict hom1_iter, const VecW* __restrict ref2het1_iter, const VecW* __restrict hom2_iter, const VecW* __restrict ref2het2_iter, uintptr_t vec_ct, uint32_t* __restrict ssq2_ptr, uint32_t* __restrict plus2_ptr) {
// popcounts (nm1 & hom2) and (nm1 & hom2 & ref2het2). ct is multiple of 3.
assert(!(vec_ct % 3));
const VecW m1 = VCONST_W(kMask5555);
const VecW m2 = VCONST_W(kMask3333);
const VecW m4 = VCONST_W(kMask0F0F);
VecW acc_ssq2 = vecw_setzero();
VecW acc_plus2 = vecw_setzero();
uint32_t cur_incr = 30;
for (; ; vec_ct -= cur_incr) {
if (vec_ct < 30) {
if (!vec_ct) {
*ssq2_ptr = HsumW(acc_ssq2);
*plus2_ptr = HsumW(acc_plus2);
return;
}
cur_incr = vec_ct;
}
VecW inner_acc_ssq = vecw_setzero();
VecW inner_acc_plus = vecw_setzero();
for (uint32_t vec_idx = 0; vec_idx < cur_incr; vec_idx += 3) {
VecW count1_ssq = (hom1_iter[vec_idx] | ref2het1_iter[vec_idx]) & hom2_iter[vec_idx];
VecW count1_plus = count1_ssq & ref2het2_iter[vec_idx];
VecW count2_ssq = (hom1_iter[vec_idx + 1] | ref2het1_iter[vec_idx + 1]) & hom2_iter[vec_idx + 1];
VecW count2_plus = count2_ssq & ref2het2_iter[vec_idx + 1];
VecW half1_ssq = (hom1_iter[vec_idx + 2] | ref2het1_iter[vec_idx + 2]) & hom2_iter[vec_idx + 2];
VecW half1_plus = half1_ssq & ref2het2_iter[vec_idx + 2];
VecW half2_ssq = vecw_srli(half1_ssq, 1) & m1;
VecW half2_plus = vecw_srli(half1_plus, 1) & m1;
half1_ssq = half1_ssq & m1;
half1_plus = half1_plus & m1;
count1_ssq = count1_ssq - (vecw_srli(count1_ssq, 1) & m1);
count1_plus = count1_plus - (vecw_srli(count1_plus, 1) & m1);
count2_ssq = count2_ssq - (vecw_srli(count2_ssq, 1) & m1);
count2_plus = count2_plus - (vecw_srli(count2_plus, 1) & m1);
count1_ssq = count1_ssq + half1_ssq;
count1_plus = count1_plus + half1_plus;
count2_ssq = count2_ssq + half2_ssq;
count2_plus = count2_plus + half2_plus;
count1_ssq = (count1_ssq & m2) + (vecw_srli(count1_ssq, 2) & m2);
count1_plus = (count1_plus & m2) + (vecw_srli(count1_plus, 2) & m2);
count1_ssq = count1_ssq + (count2_ssq & m2) + (vecw_srli(count2_ssq, 2) & m2);
count1_plus = count1_plus + (count2_plus & m2) + (vecw_srli(count2_plus, 2) & m2);
inner_acc_ssq = inner_acc_ssq + (count1_ssq & m4) + (vecw_srli(count1_ssq, 4) & m4);
inner_acc_plus = inner_acc_plus + (count1_plus & m4) + (vecw_srli(count1_plus, 4) & m4);
}
hom1_iter = &(hom1_iter[cur_incr]);
ref2het1_iter = &(ref2het1_iter[cur_incr]);
hom2_iter = &(hom2_iter[cur_incr]);
ref2het2_iter = &(ref2het2_iter[cur_incr]);
const VecW m0 = vecw_setzero();
acc_ssq2 = acc_ssq2 + vecw_bytesum(inner_acc_ssq, m0);
acc_plus2 = acc_plus2 + vecw_bytesum(inner_acc_plus, m0);
}
}
#endif
void SumSsqWords(const uintptr_t* hom1, const uintptr_t* ref2het1, const uintptr_t* hom2, const uintptr_t* ref2het2, uint32_t word_ct, int32_t* sum2_ptr, uint32_t* ssq2_ptr) {
uint32_t ssq2 = 0;
uint32_t plus2 = 0;
uint32_t widx = 0;
#ifndef USE_SSE42
if (word_ct >= kWordsPerVec * 3) {
const uintptr_t block_ct = word_ct / (kWordsPerVec * 3);
SumSsqVecs(R_CAST(const VecW*, hom1), R_CAST(const VecW*, ref2het1), R_CAST(const VecW*, hom2), R_CAST(const VecW*, ref2het2), block_ct * 3, &ssq2, &plus2);
widx = block_ct * (3 * kWordsPerVec);
}
#endif
for (; widx != word_ct; ++widx) {
const uintptr_t ssq2_word = (hom1[widx] | ref2het1[widx]) & hom2[widx];
ssq2 += PopcountWord(ssq2_word);
plus2 += PopcountWord(ssq2_word & ref2het2[widx]);
}
*sum2_ptr = S_CAST(int32_t, 2 * plus2 - ssq2); // deliberate overflow
*ssq2_ptr = ssq2;
}
#endif // !USE_AVX2
#if defined(USE_AVX2) || !defined(USE_SSE42)
static inline void SumSsqNmVecs(const VecW* __restrict hom1_iter, const VecW* __restrict ref2het1_iter, const VecW* __restrict hom2_iter, const VecW* __restrict ref2het2_iter, uintptr_t vec_ct, uint32_t* __restrict nm_ptr, uint32_t* __restrict ssq2_ptr, uint32_t* __restrict plus2_ptr) {
// vec_ct must be a multiple of 3.
assert(!(vec_ct % 3));
const VecW m1 = VCONST_W(kMask5555);
const VecW m2 = VCONST_W(kMask3333);
const VecW m4 = VCONST_W(kMask0F0F);
VecW acc_nm = vecw_setzero();
VecW acc_ssq2 = vecw_setzero();
VecW acc_plus2 = vecw_setzero();
uint32_t cur_incr = 30;
for (; ; vec_ct -= cur_incr) {
if (vec_ct < 30) {
if (!vec_ct) {
*nm_ptr = HsumW(acc_nm);
*ssq2_ptr = HsumW(acc_ssq2);
*plus2_ptr = HsumW(acc_plus2);
return;
}
cur_incr = vec_ct;
}
VecW inner_acc_nm = vecw_setzero();
VecW inner_acc_ssq = vecw_setzero();
VecW inner_acc_plus = vecw_setzero();
for (uint32_t vec_idx = 0; vec_idx < cur_incr; vec_idx += 3) {
VecW nm1 = hom1_iter[vec_idx] | ref2het1_iter[vec_idx];
VecW hom2 = hom2_iter[vec_idx];
VecW ref2het2 = ref2het2_iter[vec_idx];
VecW count1_ssq = nm1 & hom2;
VecW count1_nm = nm1 & (hom2 | ref2het2);
VecW count1_plus = count1_ssq & ref2het2;
nm1 = hom1_iter[vec_idx + 1] | ref2het1_iter[vec_idx + 1];
hom2 = hom2_iter[vec_idx + 1];
ref2het2 = ref2het2_iter[vec_idx + 1];
VecW count2_ssq = nm1 & hom2;
VecW count2_nm = nm1 & (hom2 | ref2het2);
VecW count2_plus = count2_ssq & ref2het2;
nm1 = hom1_iter[vec_idx + 2] | ref2het1_iter[vec_idx + 2];
hom2 = hom2_iter[vec_idx + 2];
ref2het2 = ref2het2_iter[vec_idx + 2];
VecW half_a_ssq = nm1 & hom2;
VecW half_a_nm = nm1 & (hom2 | ref2het2);
VecW half_a_plus = half_a_ssq & ref2het2;
const VecW half_b_ssq = vecw_srli(half_a_ssq, 1) & m1;
const VecW half_b_nm = vecw_srli(half_a_nm, 1) & m1;
const VecW half_b_plus = vecw_srli(half_a_plus, 1) & m1;
half_a_ssq = half_a_ssq & m1;
half_a_nm = half_a_nm & m1;
half_a_plus = half_a_plus & m1;
count1_ssq = count1_ssq - (vecw_srli(count1_ssq, 1) & m1);
count1_nm = count1_nm - (vecw_srli(count1_nm, 1) & m1);
count1_plus = count1_plus - (vecw_srli(count1_plus, 1) & m1);
count2_ssq = count2_ssq - (vecw_srli(count2_ssq, 1) & m1);
count2_nm = count2_nm - (vecw_srli(count2_nm, 1) & m1);
count2_plus = count2_plus - (vecw_srli(count2_plus, 1) & m1);
count1_ssq = count1_ssq + half_a_ssq;
count1_nm = count1_nm + half_a_nm;
count1_plus = count1_plus + half_a_plus;
count2_ssq = count2_ssq + half_b_ssq;
count2_nm = count2_nm + half_b_nm;
count2_plus = count2_plus + half_b_plus;
count1_ssq = (count1_ssq & m2) + (vecw_srli(count1_ssq, 2) & m2);
count1_nm = (count1_nm & m2) + (vecw_srli(count1_nm, 2) & m2);
count1_plus = (count1_plus & m2) + (vecw_srli(count1_plus, 2) & m2);
count1_ssq = count1_ssq + (count2_ssq & m2) + (vecw_srli(count2_ssq, 2) & m2);
count1_nm = count1_nm + (count2_nm & m2) + (vecw_srli(count2_nm, 2) & m2);
count1_plus = count1_plus + (count2_plus & m2) + (vecw_srli(count2_plus, 2) & m2);
inner_acc_nm = inner_acc_nm + (count1_nm & m4) + (vecw_srli(count1_nm, 4) & m4);
inner_acc_ssq = inner_acc_ssq + (count1_ssq & m4) + (vecw_srli(count1_ssq, 4) & m4);
inner_acc_plus = inner_acc_plus + (count1_plus & m4) + (vecw_srli(count1_plus, 4) & m4);
}
hom1_iter = &(hom1_iter[cur_incr]);
ref2het1_iter = &(ref2het1_iter[cur_incr]);
hom2_iter = &(hom2_iter[cur_incr]);
ref2het2_iter = &(ref2het2_iter[cur_incr]);
const VecW m0 = vecw_setzero();
acc_nm = acc_nm + vecw_bytesum(inner_acc_nm, m0);
acc_ssq2 = acc_ssq2 + vecw_bytesum(inner_acc_ssq, m0);
acc_plus2 = acc_plus2 + vecw_bytesum(inner_acc_plus, m0);
}
}
#endif // __LP64__
void SumSsqNmWords(const uintptr_t* hom1, const uintptr_t* ref2het1, const uintptr_t* hom2, const uintptr_t* ref2het2, uint32_t word_ct, uint32_t* __restrict nm_ptr, int32_t* sum2_ptr, uint32_t* __restrict ssq2_ptr) {
uint32_t nm = 0;
uint32_t ssq2 = 0;
uint32_t plus2 = 0;
uint32_t widx = 0;
#if defined(USE_AVX2) || !defined(USE_SSE42)
if (word_ct >= 3 * kWordsPerVec) {
const uintptr_t block_ct = word_ct / (3 * kWordsPerVec);
SumSsqNmVecs(R_CAST(const VecW*, hom1), R_CAST(const VecW*, ref2het1), R_CAST(const VecW*, hom2), R_CAST(const VecW*, ref2het2), block_ct * 3, &nm, &ssq2, &plus2);
widx = block_ct * (3 * kWordsPerVec);
}
#endif
for (; widx != word_ct; ++widx) {
const uintptr_t nm1_word = hom1[widx] | ref2het1[widx];
const uintptr_t hom2_word = hom2[widx];
const uintptr_t ref2het2_word = ref2het2[widx];
nm += PopcountWord(nm1_word & (hom2_word | ref2het2_word));
const uintptr_t ssq2_word = nm1_word & hom2_word;
ssq2 += PopcountWord(ssq2_word);
plus2 += PopcountWord(ssq2_word & ref2het2_word);
}
*nm_ptr = nm;
*sum2_ptr = S_CAST(int32_t, 2 * plus2 - ssq2); // deliberate overflow
*ssq2_ptr = ssq2;
}
// er, subcontig_info probably deserves its own type...
void LdPruneNextSubcontig(const uintptr_t* variant_include, const uint32_t* variant_bps, const uint32_t* subcontig_info, const uint32_t* subcontig_thread_assignments, uint32_t prune_window_size, uint32_t thread_idx, uint32_t* subcontig_idx_ptr, uint32_t* subcontig_end_tvidx_ptr, uint32_t* next_window_end_tvidx_ptr, uint32_t* variant_uidx_winstart_ptr, uint32_t* variant_uidx_winend_ptr) {
uint32_t subcontig_idx = *subcontig_idx_ptr;
do {
++subcontig_idx;
} while (subcontig_thread_assignments[subcontig_idx] != thread_idx);
*subcontig_idx_ptr = subcontig_idx;
const uint32_t subcontig_first_tvidx = *subcontig_end_tvidx_ptr;
const uint32_t subcontig_len = subcontig_info[3 * subcontig_idx];
const uint32_t variant_uidx_winstart = subcontig_info[3 * subcontig_idx + 2];
const uint32_t subcontig_end_tvidx = subcontig_first_tvidx + subcontig_len;
*subcontig_end_tvidx_ptr = subcontig_end_tvidx;
if (variant_bps) {
const uint32_t variant_bp_thresh = variant_bps[variant_uidx_winstart] + prune_window_size;
uintptr_t variant_uidx_winend_base;
uintptr_t cur_bits;
BitIter1Start(variant_include, variant_uidx_winstart + 1, &variant_uidx_winend_base, &cur_bits);
uint32_t first_window_len = 1;
uint32_t variant_uidx_winend;
do {
variant_uidx_winend = BitIter1(variant_include, &variant_uidx_winend_base, &cur_bits);
} while ((variant_bps[variant_uidx_winend] <= variant_bp_thresh) && (++first_window_len < subcontig_len));
*next_window_end_tvidx_ptr = subcontig_first_tvidx + first_window_len;
*variant_uidx_winend_ptr = variant_uidx_winend;
} else {
*next_window_end_tvidx_ptr = subcontig_first_tvidx + MINV(subcontig_len, prune_window_size);
}
*variant_uidx_winstart_ptr = variant_uidx_winstart;
}
void LdPruneNextWindow(const uintptr_t* __restrict variant_include, const uint32_t* __restrict variant_bps, const uint32_t* __restrict tvidxs, const uintptr_t* __restrict cur_window_removed, uint32_t prune_window_size, uint32_t window_incr, uint32_t window_maxl, uint32_t subcontig_end_tvidx, uint32_t* cur_window_size_ptr, uint32_t* __restrict window_start_tvidx_ptr, uint32_t* __restrict variant_uidx_winstart_ptr, uint32_t* __restrict next_window_end_tvidx_ptr, uint32_t* __restrict variant_uidx_winend_ptr, uintptr_t* __restrict occupied_window_slots, uint32_t* winpos_to_slot_idx) {
uint32_t next_window_end_tvidx = *next_window_end_tvidx_ptr;
if (next_window_end_tvidx == subcontig_end_tvidx) {
// just completed last window in subcontig
*cur_window_size_ptr = 0;
*window_start_tvidx_ptr = subcontig_end_tvidx;
ZeroWArr(window_maxl, occupied_window_slots);
return;
}
uint32_t next_window_start_tvidx = *window_start_tvidx_ptr;
if (variant_bps) {
// this is guaranteed to be nonnegative
uintptr_t variant_uidx_base;
uintptr_t cur_bits;
BitIter1Start(variant_include, *variant_uidx_winstart_ptr + 1, &variant_uidx_base, &cur_bits);
uint32_t variant_uidx_winend = *variant_uidx_winend_ptr;
const uint32_t window_start_min_bp = variant_bps[variant_uidx_winend] - prune_window_size;
uint32_t window_start_bp;
uint32_t variant_uidx_winstart;
do {
// advance window start by as much as necessary to make end advance by at
// least 1
++next_window_start_tvidx;
variant_uidx_winstart = BitIter1(variant_include, &variant_uidx_base, &cur_bits);
window_start_bp = variant_bps[variant_uidx_winstart];
} while (window_start_bp < window_start_min_bp);
// now advance window end as appropriate
const uint32_t window_end_thresh = window_start_bp + prune_window_size;
BitIter1Start(variant_include, variant_uidx_winend + 1, &variant_uidx_base, &cur_bits);
do {
if (++next_window_end_tvidx == subcontig_end_tvidx) {
break;
}
variant_uidx_winend = BitIter1(variant_include, &variant_uidx_base, &cur_bits);
} while (variant_bps[variant_uidx_winend] <= window_end_thresh);
*variant_uidx_winstart_ptr = variant_uidx_winstart;
*variant_uidx_winend_ptr = variant_uidx_winend;
} else {
next_window_start_tvidx += window_incr;
next_window_end_tvidx = MINV(next_window_start_tvidx + prune_window_size, subcontig_end_tvidx);
}
const uint32_t cur_window_size = *cur_window_size_ptr;
uint32_t winpos_write = 0;
for (uint32_t winpos_read = 0; winpos_read != cur_window_size; ++winpos_read) {
const uint32_t slot_idx = winpos_to_slot_idx[winpos_read];
if (IsSet(cur_window_removed, winpos_read) || (tvidxs[slot_idx] < next_window_start_tvidx)) {
ClearBit(slot_idx, occupied_window_slots);
} else {
winpos_to_slot_idx[winpos_write++] = slot_idx;
}
}
*cur_window_size_ptr = winpos_write;
*window_start_tvidx_ptr = next_window_start_tvidx;
*next_window_end_tvidx_ptr = next_window_end_tvidx;
}
typedef struct VariantAggsStruct {
uint32_t nm_ct;
int32_t sum;
uint32_t ssq;
} VariantAggs;
// On entry, {cur_nm_ct, cur_first_sum, cur_first_ssq} must be initialized to
// first_vaggs values.
void ComputeIndepPairwiseR2Components(const uintptr_t* __restrict first_genobufs, const uintptr_t* __restrict second_genobufs, const VariantAggs* second_vaggs, uint32_t founder_ct, uint32_t* cur_nm_ct_ptr, int32_t* cur_first_sum_ptr, uint32_t* cur_first_ssq_ptr, int32_t* second_sum_ptr, uint32_t* second_ssq_ptr, int32_t* cur_dotprod_ptr) {
const uint32_t founder_ctaw = BitCtToAlignedWordCt(founder_ct);
const uint32_t founder_ctl = BitCtToWordCt(founder_ct);
// Three cases:
// 1. Just need dot product.
// 2. Also need {first_sum, first_ssq} xor {second_sum, second_ssq}.
// 3. Need all six variables.
*cur_dotprod_ptr = DotprodWords(first_genobufs, &(first_genobufs[founder_ctaw]), second_genobufs, &(second_genobufs[founder_ctaw]), founder_ctl);
if (*cur_nm_ct_ptr != founder_ct) {
SumSsqWords(first_genobufs, &(first_genobufs[founder_ctaw]), second_genobufs, &(second_genobufs[founder_ctaw]), founder_ctl, second_sum_ptr, second_ssq_ptr);
} else {
*second_sum_ptr = second_vaggs->sum;
*second_ssq_ptr = second_vaggs->ssq;
}
const uint32_t second_nm_ct = second_vaggs->nm_ct;
if (second_nm_ct == founder_ct) {
return;
}
if (*cur_nm_ct_ptr != founder_ct) {
SumSsqNmWords(second_genobufs, &(second_genobufs[founder_ctaw]), first_genobufs, &(first_genobufs[founder_ctaw]), founder_ctl, cur_nm_ct_ptr, cur_first_sum_ptr, cur_first_ssq_ptr);
} else {
SumSsqWords(second_genobufs, &(second_genobufs[founder_ctaw]), first_genobufs, &(first_genobufs[founder_ctaw]), founder_ctl, cur_first_sum_ptr, cur_first_ssq_ptr);
*cur_nm_ct_ptr = second_nm_ct;
}
}
void FillVaggs(const uintptr_t* hom_vec, const uintptr_t* ref2het_vec, uintptr_t word_ct, VariantAggs* vaggs, uint32_t* nm_ct_ptr, uint32_t* plusone_ct_ptr, uint32_t* minusone_ct_ptr) {
uint32_t hom_ct;
uint32_t ref2het_ct;
uint32_t ref2_ct;
PopcountWordsIntersect3val(hom_vec, ref2het_vec, word_ct, &hom_ct, &ref2het_ct, &ref2_ct);
const uint32_t alt2_ct = hom_ct - ref2_ct;
const uint32_t nm_ct = alt2_ct + ref2het_ct;
vaggs->nm_ct = nm_ct;
vaggs->sum = S_CAST(int32_t, ref2_ct - alt2_ct); // deliberate overflow
vaggs->ssq = hom_ct;
*nm_ct_ptr = nm_ct;
*plusone_ct_ptr = ref2_ct;
*minusone_ct_ptr = alt2_ct;
}
void IndepPairwiseUpdateSubcontig(uint32_t variant_uidx_winstart, uint32_t x_start, uint32_t x_len, uint32_t y_start, uint32_t y_len, uint32_t founder_ct, uint32_t founder_male_ct, uint32_t founder_nonfemale_ct, uint32_t* is_x_ptr, uint32_t* is_y_ptr, uint32_t* cur_founder_ct_ptr, uint32_t* cur_founder_ctaw_ptr, uint32_t* cur_founder_ctl_ptr, uintptr_t* entire_variant_buf_word_ct_ptr) {
// _len is better than _end here since we can exploit unsignedness
const uint32_t is_x = ((variant_uidx_winstart - x_start) < x_len);
const uint32_t is_y = ((variant_uidx_winstart - y_start) < y_len);
if ((is_x != (*is_x_ptr)) || (is_y != (*is_y_ptr))) {
*is_x_ptr = is_x;
*is_y_ptr = is_y;
uint32_t cur_founder_ct = founder_ct;
if (is_x) {
cur_founder_ct = founder_male_ct;
} else if (is_y) {
cur_founder_ct = founder_nonfemale_ct;
}
const uint32_t cur_founder_ctaw = BitCtToAlignedWordCt(cur_founder_ct);
*cur_founder_ct_ptr = cur_founder_ct;
*cur_founder_ctaw_ptr = cur_founder_ctaw;
*cur_founder_ctl_ptr = BitCtToWordCt(cur_founder_ct);
*entire_variant_buf_word_ct_ptr = 2 * cur_founder_ctaw;
if (is_x) {
*entire_variant_buf_word_ct_ptr += 2 * BitCtToAlignedWordCt(founder_ct - founder_male_ct);
}
}
}
typedef struct IndepPairwiseCtxStruct {
const uint32_t* subcontig_info;
const uint32_t* subcontig_thread_assignments;
const uintptr_t* variant_include;
const uintptr_t* allele_idx_offsets;
const AlleleCode* maj_alleles;
const double* all_allele_freqs;
const uint32_t* variant_bps;
const uintptr_t* preferred_variants;
uint32_t* tvidx_end;
uint32_t x_start;
uint32_t x_len;
uint32_t y_start;
uint32_t y_len;
uint32_t founder_ct;
uint32_t founder_male_ct;
uint32_t founder_nonfemale_ct;
uint32_t prune_window_size;
uint32_t window_maxl;
double prune_ld_thresh;
uint32_t window_incr;
uint32_t cur_batch_size;
uintptr_t** genobufs;
uintptr_t** occupied_window_slots;
uintptr_t** cur_window_removed;
double** cur_maj_freqs;
uintptr_t** removed_variants_write;
VariantAggs** vaggs;
VariantAggs** nonmale_vaggs;
uint32_t** winpos_to_slot_idx;
uint32_t** tvidxs;
uint32_t** first_unchecked_tvidx;
// 't' stands for thread here
uintptr_t** raw_tgenovecs[2];
} IndepPairwiseCtx;
THREAD_FUNC_DECL IndepPairwiseThread(void* raw_arg) {
ThreadGroupFuncArg* arg = S_CAST(ThreadGroupFuncArg*, raw_arg);
const uintptr_t tidx = arg->tidx;
IndepPairwiseCtx* ctx = S_CAST(IndepPairwiseCtx*, arg->sharedp->context);
const uint32_t* subcontig_info = ctx->subcontig_info;
const uint32_t* subcontig_thread_assignments = ctx->subcontig_thread_assignments;
const uintptr_t* variant_include = ctx->variant_include;
const uintptr_t* preferred_variants = ctx->preferred_variants;
const uint32_t x_start = ctx->x_start;
const uint32_t x_len = ctx->x_len;
const uint32_t y_start = ctx->y_start;
const uint32_t y_len = ctx->y_len;
const uintptr_t* allele_idx_offsets = ctx->allele_idx_offsets;
const AlleleCode* maj_alleles = ctx->maj_alleles;
const double* all_allele_freqs = ctx->all_allele_freqs;
const uint32_t* variant_bps = ctx->variant_bps;
const uint32_t founder_ct = ctx->founder_ct;
const uint32_t founder_male_ct = ctx->founder_male_ct;
const uint32_t founder_male_ctl2 = NypCtToWordCt(founder_male_ct);
const uint32_t founder_nonfemale_ct = ctx->founder_nonfemale_ct;
const uint32_t nonmale_ct = founder_ct - founder_male_ct;
const uint32_t nonmale_ctaw = BitCtToAlignedWordCt(nonmale_ct);
const uint32_t nonmale_ctl = BitCtToWordCt(nonmale_ct);
const uintptr_t raw_tgenovec_single_variant_word_ct = RoundUpPow2(NypCtToWordCt(nonmale_ct) + founder_male_ctl2, kWordsPerVec);
const uint32_t prune_window_size = ctx->prune_window_size;
const uint32_t window_maxl = ctx->window_maxl;
const double prune_ld_thresh = ctx->prune_ld_thresh;
const uint32_t window_incr = ctx->window_incr;
const uint32_t tvidx_end = ctx->tvidx_end[tidx];
uintptr_t* genobufs = ctx->genobufs[tidx];
uintptr_t* occupied_window_slots = ctx->occupied_window_slots[tidx];
uintptr_t* cur_window_removed = ctx->cur_window_removed[tidx];
uintptr_t* removed_variants_write = ctx->removed_variants_write[tidx];
double* cur_maj_freqs = ctx->cur_maj_freqs[tidx];
VariantAggs* vaggs = ctx->vaggs[tidx];
VariantAggs* nonmale_vaggs = ctx->nonmale_vaggs[tidx];
uint32_t* winpos_to_slot_idx = ctx->winpos_to_slot_idx[tidx];
uint32_t* tvidxs = ctx->tvidxs[tidx];
uint32_t* first_unchecked_tvidx = ctx->first_unchecked_tvidx? ctx->first_unchecked_tvidx[tidx] : nullptr;
uint32_t subcontig_end_tvidx = 0;
uint32_t subcontig_idx = UINT32_MAX; // deliberate overflow
uint32_t window_start_tvidx = 0;
uint32_t next_window_end_tvidx = 0;
uint32_t write_slot_idx = 0;
uint32_t is_x = 0;
uint32_t is_y = 0;
uint32_t cur_window_size = 0;
uint32_t winpos_split = 0;
uint32_t tvidx_start = 0;
uint32_t cur_founder_ct = founder_ct;
uint32_t cur_founder_ctaw = BitCtToAlignedWordCt(founder_ct);
uint32_t cur_founder_ctl = BitCtToWordCt(founder_ct);
uintptr_t variant_uidx_base = 0;
uintptr_t variant_include_bits = variant_include[0];
uint32_t variant_uidx_winstart = 0;
uint32_t variant_uidx_winend = 0;
uintptr_t entire_variant_buf_word_ct = 2 * cur_founder_ctaw;
uint32_t cur_allele_ct = 2;
uint32_t parity = 0;
do {
const uint32_t cur_batch_size = ctx->cur_batch_size;
const uint32_t tvidx_stop = MINV(tvidx_start + cur_batch_size, tvidx_end);
// main loop has to be variant-, not window-, based due to how datasets too
// large to fit in memory are handled: we may have to halt in the middle of
// unpacking data for a window, waiting until the current I/O pass is
// complete before proceeding
const uintptr_t* raw_tgenovecs = ctx->raw_tgenovecs[parity][tidx];
for (uint32_t cur_tvidx = tvidx_start; cur_tvidx < tvidx_stop; ) {
if (cur_tvidx == subcontig_end_tvidx) {
LdPruneNextSubcontig(variant_include, variant_bps, subcontig_info, subcontig_thread_assignments, prune_window_size, tidx, &subcontig_idx, &subcontig_end_tvidx, &next_window_end_tvidx, &variant_uidx_winstart, &variant_uidx_winend);
IndepPairwiseUpdateSubcontig(variant_uidx_winstart, x_start, x_len, y_start, y_len, founder_ct, founder_male_ct, founder_nonfemale_ct, &is_x, &is_y, &cur_founder_ct, &cur_founder_ctaw, &cur_founder_ctl, &entire_variant_buf_word_ct);
BitIter1Start(variant_include, variant_uidx_winstart, &variant_uidx_base, &variant_include_bits);
winpos_split = 0;
}
const uintptr_t variant_uidx = BitIter1(variant_include, &variant_uidx_base, &variant_include_bits);
write_slot_idx = AdvTo0Bit(occupied_window_slots, write_slot_idx);
uintptr_t tvidx_offset = cur_tvidx - tvidx_start;
const uintptr_t* cur_raw_tgenovecs = &(raw_tgenovecs[tvidx_offset * raw_tgenovec_single_variant_word_ct]);
uintptr_t* cur_genobuf = &(genobufs[write_slot_idx * entire_variant_buf_word_ct]);
uintptr_t* cur_genobuf_ref2het = &(cur_genobuf[cur_founder_ctaw]);
// need local genobuf anyway due to halts, so may as well perform split
// here.
SplitHomRef2het(cur_raw_tgenovecs, cur_founder_ct, cur_genobuf, cur_genobuf_ref2het);
uint32_t nm_ct;
uint32_t plusone_ct;
uint32_t minusone_ct;
FillVaggs(cur_genobuf, cur_genobuf_ref2het, cur_founder_ctl, &(vaggs[write_slot_idx]), &nm_ct, &plusone_ct, &minusone_ct);
if (is_x) {
cur_genobuf = &(cur_genobuf[2 * cur_founder_ctaw]);
cur_genobuf_ref2het = &(cur_genobuf[nonmale_ctaw]);
SplitHomRef2het(&(cur_raw_tgenovecs[founder_male_ctl2]), nonmale_ct, cur_genobuf, cur_genobuf_ref2het);
uint32_t x_nonmale_nm_ct;
uint32_t x_nonmale_plusone_ct;
uint32_t x_nonmale_minusone_ct;
FillVaggs(cur_genobuf, cur_genobuf_ref2het, nonmale_ctl, &(nonmale_vaggs[write_slot_idx]), &x_nonmale_nm_ct, &x_nonmale_plusone_ct, &x_nonmale_minusone_ct);
nm_ct += 2 * x_nonmale_nm_ct;
plusone_ct += 2 * x_nonmale_plusone_ct;
minusone_ct += 2 * x_nonmale_minusone_ct;
}
if (((!plusone_ct) && (!minusone_ct)) || (plusone_ct == nm_ct) || (minusone_ct == nm_ct)) {
SetBit(cur_window_size, cur_window_removed);
SetBit(cur_tvidx, removed_variants_write);
} else {
tvidxs[write_slot_idx] = cur_tvidx;
uintptr_t allele_idx_base;
if (!allele_idx_offsets) {
allele_idx_base = variant_uidx;
} else {
allele_idx_base = allele_idx_offsets[variant_uidx];
cur_allele_ct = allele_idx_offsets[variant_uidx + 1] - allele_idx_base;
allele_idx_base -= variant_uidx;
}
cur_maj_freqs[write_slot_idx] = GetAlleleFreq(&(all_allele_freqs[allele_idx_base]), maj_alleles[variant_uidx], cur_allele_ct);
if (preferred_variants && IsSet(preferred_variants, variant_uidx)) {
cur_maj_freqs[write_slot_idx] -= 1.0;
}
if (first_unchecked_tvidx) {
first_unchecked_tvidx[write_slot_idx] = cur_tvidx + 1;
}
}
SetBit(write_slot_idx, occupied_window_slots);
winpos_to_slot_idx[cur_window_size++] = write_slot_idx;
++cur_tvidx;
// are we at the end of a window? if not, load more variant(s) before
// proceeding.
if (cur_tvidx != next_window_end_tvidx) {
continue;
}
if (first_unchecked_tvidx) {
// PLINK 1.x pruning order
// possible for cur_window_size == 1, if all variants at the end of the
// previous window were pruned
uint32_t cur_removed_ct = PopcountWords(cur_window_removed, BitCtToWordCt(cur_window_size));
uint32_t prev_removed_ct;
do {
prev_removed_ct = cur_removed_ct;
// const uint32_t debug_print = (!IsSet(cur_window_removed, 0)) && (tvidxs[winpos_to_slot_idx[0]] == 0);
for (uint32_t first_winpos = 0; ; ++first_winpos) {
// can't use BitIter0 since we care about changes in this loop to
// cur_window_removed
first_winpos = AdvTo0Bit(cur_window_removed, first_winpos);
// can assume empty trailing bit for cur_window_removed
if (first_winpos == cur_window_size) {
break;
}
const uint32_t first_slot_idx = winpos_to_slot_idx[first_winpos];
const uint32_t cur_first_unchecked_tvidx = first_unchecked_tvidx[first_slot_idx];
if (cur_first_unchecked_tvidx == cur_tvidx) {
continue;
}
// safe to use BitIter0 for second_winpos, though
uintptr_t second_winpos_base;
uintptr_t cur_window_removed_inv_bits;
BitIter0Start(cur_window_removed, first_winpos + 1, &second_winpos_base, &cur_window_removed_inv_bits);
{
uint32_t second_winpos;
uint32_t second_slot_idx;
do {
second_winpos = BitIter0(cur_window_removed, &second_winpos_base, &cur_window_removed_inv_bits);
if (second_winpos == cur_window_size) {
first_unchecked_tvidx[first_slot_idx] = cur_tvidx;
goto IndepPairwiseThread_next_first;
}
second_slot_idx = winpos_to_slot_idx[second_winpos];
} while (tvidxs[second_slot_idx] < cur_first_unchecked_tvidx);
const uintptr_t* first_genobufs = &(genobufs[first_slot_idx * entire_variant_buf_word_ct]);
const uint32_t first_nm_ct = vaggs[first_slot_idx].nm_ct;
const int32_t first_sum = vaggs[first_slot_idx].sum;
const uint32_t first_ssq = vaggs[first_slot_idx].ssq;
while (1) {
const uintptr_t* second_genobufs = &(genobufs[second_slot_idx * entire_variant_buf_word_ct]);
uint32_t cur_nm_ct = first_nm_ct;
int32_t cur_first_sum = first_sum;
uint32_t cur_first_ssq = first_ssq;
int32_t second_sum;
uint32_t second_ssq;
int32_t cur_dotprod;
ComputeIndepPairwiseR2Components(first_genobufs, second_genobufs, &(vaggs[second_slot_idx]), cur_founder_ct, &cur_nm_ct, &cur_first_sum, &cur_first_ssq, &second_sum, &second_ssq, &cur_dotprod);
if (is_x) {
uint32_t nonmale_nm_ct = nonmale_vaggs[first_slot_idx].nm_ct;
int32_t nonmale_first_sum = nonmale_vaggs[first_slot_idx].sum;
uint32_t nonmale_first_ssq = nonmale_vaggs[first_slot_idx].ssq;
int32_t nonmale_dotprod;
int32_t nonmale_second_sum;
uint32_t nonmale_second_ssq;
ComputeIndepPairwiseR2Components(&(first_genobufs[2 * cur_founder_ctaw]), &(second_genobufs[2 * cur_founder_ctaw]), &(nonmale_vaggs[second_slot_idx]), nonmale_ct, &nonmale_nm_ct, &nonmale_first_sum, &nonmale_first_ssq, &nonmale_second_sum, &nonmale_second_ssq, &nonmale_dotprod);
// only --ld-xchr 3 for now
// assumes founder_ct < 2^30
cur_nm_ct += 2 * nonmale_nm_ct;
cur_first_sum += 2 * nonmale_first_sum;
cur_first_ssq += 2 * nonmale_first_ssq;
second_sum += 2 * nonmale_second_sum;
second_ssq += 2 * nonmale_second_ssq;
cur_dotprod += 2 * nonmale_dotprod;
}
// these three values are actually cur_nm_ct times their
// true values, but that cancels out
const double cov12 = S_CAST(double, cur_dotprod * S_CAST(int64_t, cur_nm_ct) - S_CAST(int64_t, cur_first_sum) * second_sum);
const double variance1 = S_CAST(double, cur_first_ssq * S_CAST(int64_t, cur_nm_ct) - S_CAST(int64_t, cur_first_sum) * cur_first_sum);
const double variance2 = S_CAST(double, second_ssq * S_CAST(int64_t, cur_nm_ct) - S_CAST(int64_t, second_sum) * second_sum);
// > instead of >=, so we don't prune from a pair of
// variants with zero common observations
if (cov12 * cov12 > prune_ld_thresh * variance1 * variance2) {
// this has a surprisingly large ~3% speed penalty on my
// main test scenario, but that's an acceptable price to
// pay for reproducibility.
if (cur_maj_freqs[first_slot_idx] > cur_maj_freqs[second_slot_idx] * (1 + kSmallEpsilon)) {
SetBit(first_winpos, cur_window_removed);
SetBit(tvidxs[first_slot_idx], removed_variants_write);
} else {
SetBit(second_winpos, cur_window_removed);
SetBit(tvidxs[second_slot_idx], removed_variants_write);
const uint32_t next_start_winpos = BitIter0NoAdv(cur_window_removed, &second_winpos_base, &cur_window_removed_inv_bits);
if (next_start_winpos < cur_window_size) {
first_unchecked_tvidx[first_slot_idx] = tvidxs[winpos_to_slot_idx[next_start_winpos]];
} else {
first_unchecked_tvidx[first_slot_idx] = cur_tvidx;
}
}
break;
}
second_winpos = BitIter0(cur_window_removed, &second_winpos_base, &cur_window_removed_inv_bits);
if (second_winpos == cur_window_size) {
first_unchecked_tvidx[first_slot_idx] = cur_tvidx;
break;
}
second_slot_idx = winpos_to_slot_idx[second_winpos];
} // while (1)
}
IndepPairwiseThread_next_first:
;
}
cur_removed_ct = PopcountWords(cur_window_removed, BitCtToWordCt(cur_window_size));
} while (cur_removed_ct > prev_removed_ct);
} else {
// Within each window, scan in reverse order. This way, we tend to
// check the nearest new pairs first, and this should allow us to exit
// early more often.
const uint32_t second_winpos_stop = winpos_split? winpos_split : 1;
for (uint32_t second_winpos = cur_window_size; second_winpos != second_winpos_stop; ) {
--second_winpos;
const uint32_t second_slot_idx = winpos_to_slot_idx[second_winpos];
const uintptr_t* second_genobufs = &(genobufs[second_slot_idx * entire_variant_buf_word_ct]);
const uint32_t second_nm_ct = vaggs[second_slot_idx].nm_ct;
const int32_t second_sum = vaggs[second_slot_idx].sum;
const uint32_t second_ssq = vaggs[second_slot_idx].ssq;
for (uint32_t first_winpos = second_winpos; first_winpos; ) {
--first_winpos;
// possible todo: faster unset-bit reverse-iterator. but probably
// doesn't pay off here.
if (IsSet(cur_window_removed, first_winpos)) {
continue;
}
const uint32_t first_slot_idx = winpos_to_slot_idx[first_winpos];
const uintptr_t* first_genobufs = &(genobufs[first_slot_idx * entire_variant_buf_word_ct]);
uint32_t cur_nm_ct = second_nm_ct;
int32_t cur_second_sum = second_sum;
uint32_t cur_second_ssq = second_ssq;
int32_t first_sum;
uint32_t first_ssq;
int32_t cur_dotprod;
ComputeIndepPairwiseR2Components(second_genobufs, first_genobufs, &(vaggs[first_slot_idx]), cur_founder_ct, &cur_nm_ct, &cur_second_sum, &cur_second_ssq, &first_sum, &first_ssq, &cur_dotprod);
if (is_x) {
uint32_t nonmale_nm_ct = nonmale_vaggs[second_slot_idx].nm_ct;
int32_t nonmale_second_sum = nonmale_vaggs[second_slot_idx].sum;
uint32_t nonmale_second_ssq = nonmale_vaggs[second_slot_idx].ssq;
int32_t nonmale_dotprod;
int32_t nonmale_first_sum;
uint32_t nonmale_first_ssq;
ComputeIndepPairwiseR2Components(&(second_genobufs[2 * cur_founder_ctaw]), &(first_genobufs[2 * cur_founder_ctaw]), &(nonmale_vaggs[first_slot_idx]), nonmale_ct, &nonmale_nm_ct, &nonmale_second_sum, &nonmale_second_ssq, &nonmale_first_sum, &nonmale_first_ssq, &nonmale_dotprod);
// only --ld-xchr 3 for now
// assumes founder_ct < 2^30
cur_nm_ct += 2 * nonmale_nm_ct;
first_sum += 2 * nonmale_first_sum;
first_ssq += 2 * nonmale_first_ssq;
cur_second_sum += 2 * nonmale_second_sum;
cur_second_ssq += 2 * nonmale_second_ssq;
cur_dotprod += 2 * nonmale_dotprod;
}
// these three values are actually cur_nm_ct times their
// true values, but that cancels out
const double cov12 = S_CAST(double, cur_dotprod * S_CAST(int64_t, cur_nm_ct) - S_CAST(int64_t, first_sum) * cur_second_sum);
const double variance1 = S_CAST(double, first_ssq * S_CAST(int64_t, cur_nm_ct) - S_CAST(int64_t, first_sum) * first_sum);
const double variance2 = S_CAST(double, cur_second_ssq * S_CAST(int64_t, cur_nm_ct) - S_CAST(int64_t, cur_second_sum) * cur_second_sum);
// > instead of >=, so we don't prune from a pair of
// variants with zero common observations
if (cov12 * cov12 > prune_ld_thresh * variance1 * variance2) {
if (cur_maj_freqs[first_slot_idx] <= cur_maj_freqs[second_slot_idx] * (1 + kSmallEpsilon)) {
SetBit(second_winpos, cur_window_removed);
SetBit(tvidxs[second_slot_idx], removed_variants_write);
break;
}
SetBit(first_winpos, cur_window_removed);
SetBit(tvidxs[first_slot_idx], removed_variants_write);
}
} // while (1)
}
}
const uint32_t prev_window_size = cur_window_size;
LdPruneNextWindow(variant_include, variant_bps, tvidxs, cur_window_removed, prune_window_size, window_incr, window_maxl, subcontig_end_tvidx, &cur_window_size, &window_start_tvidx, &variant_uidx_winstart, &next_window_end_tvidx, &variant_uidx_winend, occupied_window_slots, winpos_to_slot_idx);
winpos_split = cur_window_size;
// clear bits here since we set cur_window_removed bits during loading
// process in monomorphic case
ZeroWArr(BitCtToWordCt(prev_window_size), cur_window_removed);
write_slot_idx = 0;
}
parity = 1 - parity;
tvidx_start = tvidx_stop;
} while (!THREAD_BLOCK_FINISH(arg));
THREAD_RETURN;
}
PglErr IndepPairwise(const uintptr_t* variant_include, const ChrInfo* cip, const uint32_t* variant_bps, const uintptr_t* allele_idx_offsets, const AlleleCode* maj_alleles, const double* allele_freqs, const uintptr_t* founder_info, const uint32_t* founder_info_cumulative_popcounts, const uintptr_t* founder_nonmale, const uintptr_t* founder_male, const uintptr_t* founder_nonfemale, const LdInfo* ldip, const uintptr_t* preferred_variants, const uint32_t* subcontig_info, const uint32_t* subcontig_thread_assignments, uint32_t raw_sample_ct, uint32_t founder_ct, uint32_t founder_male_ct, uint32_t founder_nonfemale_ct, uint32_t subcontig_ct, uintptr_t window_max, uint32_t calc_thread_ct, uint32_t max_load, PgenReader* simple_pgrp, uintptr_t* removed_variants_collapsed) {
ThreadGroup tg;
PreinitThreads(&tg);
PglErr reterr = kPglRetSuccess;
{
const uint32_t founder_nonmale_ct = founder_ct - founder_male_ct;
if (unlikely(founder_nonmale_ct * 2 + founder_male_ct > 0x7fffffffU)) {
// may as well document this
logerrputs("Error: --indep-pairwise does not support >= 2^30 founders.\n");
goto IndepPairwise_ret_NOT_YET_SUPPORTED;
}
const uint32_t founder_nonmale_ctaw = BitCtToAlignedWordCt(founder_nonmale_ct);
const uint32_t founder_male_ctaw = BitCtToAlignedWordCt(founder_male_ct);
// Per-thread allocations:
// - tvidx_batch_size * raw_tgenovec_single_variant_word_ct *
// sizeof(intptr_t) for raw genotype data (raw_tgenovecs)
// - tvidx_batch_size * sizeof(double) for cur_maj_freqs
// - if pos-based window, tvidx_batch_size * sizeof(int32_t)
// - All of the above again, to allow loader thread to operate
// independently
// - window_max * 2 * (founder_nonmale_ctaw + founder_male_ctaw) *
// kBytesPerVec for split genotype data
// - max_loadl * sizeof(intptr_t) for removed-variant bitarray
// - window_max * 3 * sizeof(int32_t) for main missing_ct, sum(x_i),
// sum(x_i^2) array
// - window_max * 3 * sizeof(int32_t) for chrX founder_male missing_ct,
// sum(x_i), sum(x_i^2) array
// - window_max * sizeof(int32_t) for indexes into genotype data bitarrays
// (for now, anyway)
// - window_max * sizeof(int32_t) for live_indices (variant_idxs?)
// - window_max * sizeof(int32_t) for start_arr (first uncompared
// variant_idx)
IndepPairwiseCtx ctx;
uintptr_t* tmp_genovec;
uint32_t* thread_last_subcontig;
uint32_t* thread_subcontig_start_tvidx;
uint32_t* thread_last_tvidx;
uint32_t* thread_last_uidx;
if (unlikely(bigstack_alloc_w(NypCtToWordCt(raw_sample_ct), &tmp_genovec) ||
bigstack_calloc_u32(calc_thread_ct, &ctx.tvidx_end) ||
bigstack_calloc_u32(calc_thread_ct, &thread_last_subcontig) ||
bigstack_calloc_u32(calc_thread_ct, &thread_subcontig_start_tvidx) ||
bigstack_calloc_u32(calc_thread_ct, &thread_last_tvidx) ||
bigstack_calloc_u32(calc_thread_ct, &thread_last_uidx) ||
bigstack_alloc_wp(calc_thread_ct, &ctx.genobufs) ||
bigstack_alloc_wp(calc_thread_ct, &ctx.occupied_window_slots) ||
bigstack_alloc_wp(calc_thread_ct, &ctx.cur_window_removed) ||
bigstack_alloc_dp(calc_thread_ct, &ctx.cur_maj_freqs) ||
bigstack_alloc_wp(calc_thread_ct, &ctx.removed_variants_write) ||
BIGSTACK_ALLOC_X(VariantAggs*, calc_thread_ct, &ctx.vaggs) ||
BIGSTACK_ALLOC_X(VariantAggs*, calc_thread_ct, &ctx.nonmale_vaggs) ||
bigstack_alloc_u32p(calc_thread_ct, &ctx.winpos_to_slot_idx) ||
bigstack_alloc_u32p(calc_thread_ct, &ctx.tvidxs) ||
bigstack_alloc_wp(calc_thread_ct, &(ctx.raw_tgenovecs[0])) ||
bigstack_alloc_wp(calc_thread_ct, &(ctx.raw_tgenovecs[1])))) {
goto IndepPairwise_ret_NOMEM;
}
const uint32_t plink1_order = (ldip->prune_flags / kfLdPrunePlink1Order) & 1;
if (plink1_order) {
if (unlikely(bigstack_alloc_u32p(calc_thread_ct, &ctx.first_unchecked_tvidx))) {
goto IndepPairwise_ret_NOMEM;
}
} else {
ctx.first_unchecked_tvidx = nullptr;
}
for (uint32_t subcontig_idx = 0; subcontig_idx != subcontig_ct; ++subcontig_idx) {
const uint32_t cur_thread_idx = subcontig_thread_assignments[subcontig_idx];
ctx.tvidx_end[cur_thread_idx] += subcontig_info[3 * subcontig_idx];
}
const uintptr_t entire_variant_buf_word_ct = 2 * (founder_nonmale_ctaw + founder_male_ctaw);
const uint32_t window_maxl = BitCtToWordCt(window_max);
const uint32_t max_loadl = BitCtToWordCt(max_load);
const uintptr_t genobuf_alloc = RoundUpPow2(window_max * entire_variant_buf_word_ct * sizeof(intptr_t), kCacheline);
const uintptr_t occupied_window_slots_alloc = RoundUpPow2(window_maxl * sizeof(intptr_t), kCacheline);
const uintptr_t cur_window_removed_alloc = RoundUpPow2((1 + window_max / kBitsPerWord) * sizeof(intptr_t), kCacheline);
const uintptr_t cur_maj_freqs_alloc = RoundUpPow2(window_max * sizeof(double), kCacheline);
const uintptr_t removed_variants_write_alloc = RoundUpPow2(max_loadl * sizeof(intptr_t), kCacheline);
// two of these
const uintptr_t vaggs_alloc = RoundUpPow2(window_max * sizeof(VariantAggs), kCacheline);
// (2 + plink1_order) of these
const uintptr_t window_int32_alloc = RoundUpPow2(window_max * sizeof(int32_t), kCacheline);
const uintptr_t thread_alloc_base = genobuf_alloc + occupied_window_slots_alloc + cur_window_removed_alloc + cur_maj_freqs_alloc + removed_variants_write_alloc + 2 * vaggs_alloc + (2 + plink1_order) * window_int32_alloc;
const uint32_t founder_ctl2 = NypCtToWordCt(founder_ct);
const uint32_t founder_male_ctl2 = NypCtToWordCt(founder_male_ct);
const uint32_t founder_nonmale_ctl2 = NypCtToWordCt(founder_nonmale_ct);
const uint32_t founder_nonfemale_ctl2 = NypCtToWordCt(founder_nonfemale_ct);
const uintptr_t raw_tgenovec_single_variant_word_ct = RoundUpPow2(founder_nonmale_ctl2 + founder_male_ctl2, kWordsPerVec);
// round down
uintptr_t bigstack_avail_per_thread = RoundDownPow2(bigstack_left() / calc_thread_ct, kCacheline);
// may as well require capacity for >= 256 variants per thread per pass
if (unlikely(bigstack_avail_per_thread <= thread_alloc_base + 2 * 256 * raw_tgenovec_single_variant_word_ct * sizeof(intptr_t))) {
goto IndepPairwise_ret_NOMEM;
}
bigstack_avail_per_thread -= thread_alloc_base;
uint32_t tvidx_batch_size = DivUp(max_load, 2);
// tried a bunch of powers of two, this seems to be a good value
if (tvidx_batch_size > 65536) {
tvidx_batch_size = 65536;
}
// tvidx_batch_size = max_load; // temporary debugging
if (2 * tvidx_batch_size * raw_tgenovec_single_variant_word_ct * sizeof(intptr_t) > bigstack_avail_per_thread) {
tvidx_batch_size = bigstack_avail_per_thread / RoundUpPow2(raw_tgenovec_single_variant_word_ct * 2 * sizeof(intptr_t), kCacheline);
}
for (uint32_t tidx = 0; tidx != calc_thread_ct; ++tidx) {
ctx.genobufs[tidx] = S_CAST(uintptr_t*, bigstack_alloc_raw(genobuf_alloc));
ctx.occupied_window_slots[tidx] = S_CAST(uintptr_t*, bigstack_alloc_raw(occupied_window_slots_alloc));
ZeroWArr(window_maxl, ctx.occupied_window_slots[tidx]);
ctx.cur_window_removed[tidx] = S_CAST(uintptr_t*, bigstack_alloc_raw(cur_window_removed_alloc));
ZeroWArr(1 + window_max / kBitsPerWord, ctx.cur_window_removed[tidx]);
ctx.cur_maj_freqs[tidx] = S_CAST(double*, bigstack_alloc_raw(cur_maj_freqs_alloc));
ctx.removed_variants_write[tidx] = S_CAST(uintptr_t*, bigstack_alloc_raw(removed_variants_write_alloc));
ZeroWArr(max_loadl, ctx.removed_variants_write[tidx]);
ctx.vaggs[tidx] = S_CAST(VariantAggs*, bigstack_alloc_raw(vaggs_alloc));
ctx.nonmale_vaggs[tidx] = S_CAST(VariantAggs*, bigstack_alloc_raw(vaggs_alloc));
ctx.winpos_to_slot_idx[tidx] = S_CAST(uint32_t*, bigstack_alloc_raw(window_int32_alloc));
ctx.tvidxs[tidx] = S_CAST(uint32_t*, bigstack_alloc_raw(window_int32_alloc));
if (ctx.first_unchecked_tvidx) {
ctx.first_unchecked_tvidx[tidx] = S_CAST(uint32_t*, bigstack_alloc_raw(window_int32_alloc));
}
ctx.raw_tgenovecs[0][tidx] = S_CAST(uintptr_t*, bigstack_alloc_raw_rd(tvidx_batch_size * raw_tgenovec_single_variant_word_ct * sizeof(intptr_t)));
ctx.raw_tgenovecs[1][tidx] = S_CAST(uintptr_t*, bigstack_alloc_raw_rd(tvidx_batch_size * raw_tgenovec_single_variant_word_ct * sizeof(intptr_t)));
}
ctx.subcontig_info = subcontig_info;
ctx.subcontig_thread_assignments = subcontig_thread_assignments;
ctx.variant_include = variant_include;
ctx.allele_idx_offsets = allele_idx_offsets;
ctx.maj_alleles = maj_alleles;
ctx.all_allele_freqs = allele_freqs;
ctx.variant_bps = variant_bps;
ctx.preferred_variants = preferred_variants;
ctx.founder_ct = founder_ct;
ctx.founder_male_ct = founder_male_ct;
ctx.founder_nonfemale_ct = founder_nonfemale_ct;
ctx.prune_window_size = ldip->prune_window_size;
ctx.window_maxl = window_maxl;
ctx.prune_ld_thresh = ldip->prune_last_param * (1 + kSmallEpsilon);
ctx.window_incr = ldip->prune_window_incr;
ctx.cur_batch_size = tvidx_batch_size;
const uint32_t all_haploid = IsSet(cip->haploid_mask, 0);
uint32_t x_start = 0;
uint32_t x_end = 0;
uint32_t y_start = 0;
uint32_t y_end = 0;
GetXymtStartAndEnd(cip, kChrOffsetX, &x_start, &x_end);
GetXymtStartAndEnd(cip, kChrOffsetY, &y_start, &y_end);
const uint32_t x_len = x_end - x_start;
const uint32_t y_len = y_end - y_start;
ctx.x_start = x_start;
ctx.x_len = x_len;
ctx.y_start = y_start;
ctx.y_len = y_len;
if (unlikely(SetThreadCt(calc_thread_ct, &tg))) {
goto IndepPairwise_ret_NOMEM;
}
SetThreadFuncAndData(IndepPairwiseThread, &ctx, &tg);
// Main workflow:
// 1. Set n=0, load batch 0
// 2. Spawn threads processing batch n
// 3. Increment n by 1
// 4. Load batch n unless eof
// 5. Join threads
// 6. Goto step 2 unless eof
//
// 7. Assemble final results with CopyBitarrRange()
uint32_t parity = 0;
uint32_t pct = 0;
uint32_t next_print_tvidx_start = max_load / 100;
logprintf("--indep-pairwise (%u compute thread%s): ", calc_thread_ct, (calc_thread_ct == 1)? "" : "s");
fputs("0%", stdout);
fflush(stdout);
for (uint32_t cur_tvidx_start = 0; ; cur_tvidx_start += tvidx_batch_size) {
if (!IsLastBlock(&tg)) {
PgrSampleSubsetIndex pssi;
PgrSetSampleSubsetIndex(founder_info_cumulative_popcounts, simple_pgrp, &pssi);
uintptr_t** cur_raw_tgenovecs = ctx.raw_tgenovecs[parity];
const uint32_t cur_tvidx_end = cur_tvidx_start + tvidx_batch_size;
uint32_t is_x_or_y = 0;
for (uint32_t subcontig_idx = 0; subcontig_idx != subcontig_ct; ++subcontig_idx) {
const uint32_t cur_thread_idx = subcontig_thread_assignments[subcontig_idx];
if (thread_last_subcontig[cur_thread_idx] > subcontig_idx) {
continue;
}
uint32_t cur_tvidx = thread_last_tvidx[cur_thread_idx];
if (cur_tvidx == cur_tvidx_end) {
continue;
}
uint32_t subcontig_start_tvidx = thread_subcontig_start_tvidx[cur_thread_idx];
uint32_t tvidx_end = subcontig_start_tvidx + subcontig_info[3 * subcontig_idx];
if (tvidx_end > cur_tvidx_end) {
tvidx_end = cur_tvidx_end;
thread_last_subcontig[cur_thread_idx] = subcontig_idx;
} else {
thread_subcontig_start_tvidx[cur_thread_idx] = tvidx_end;
thread_last_subcontig[cur_thread_idx] = subcontig_idx + 1;
}
uintptr_t tvidx_offset_end = tvidx_end - cur_tvidx_start;
uint32_t variant_uidx;
if (subcontig_start_tvidx == cur_tvidx) {
variant_uidx = subcontig_info[3 * subcontig_idx + 2];
} else {
variant_uidx = thread_last_uidx[cur_thread_idx];
}
const uint32_t is_haploid = IsSet(cip->haploid_mask, GetVariantChr(cip, variant_uidx));
uint32_t is_x = ((variant_uidx - x_start) < x_len);
const uint32_t new_is_x_or_y = is_x || ((variant_uidx - y_start) < y_len);
// due to nonempty subset requirement (removed?)
is_x = is_x && founder_nonmale_ct;
if (is_x_or_y != new_is_x_or_y) {
is_x_or_y = new_is_x_or_y;
if (is_x_or_y) {
PgrClearSampleSubsetIndex(simple_pgrp, &pssi);
} else {
PgrSetSampleSubsetIndex(founder_info_cumulative_popcounts, simple_pgrp, &pssi);
}
}
uintptr_t* cur_thread_raw_tgenovec = cur_raw_tgenovecs[cur_thread_idx];
uintptr_t variant_uidx_base;
uintptr_t cur_bits;
BitIter1Start(variant_include, variant_uidx, &variant_uidx_base, &cur_bits);
--variant_uidx;
// todo: document whether tvidx_offset is guaranteed to be <=
// tvidx_offset_end if this code is revisited.
for (uintptr_t tvidx_offset = cur_tvidx - cur_tvidx_start; tvidx_offset < tvidx_offset_end; ++tvidx_offset) {
variant_uidx = BitIter1(variant_include, &variant_uidx_base, &cur_bits);
uintptr_t* cur_raw_tgenovec = &(cur_thread_raw_tgenovec[tvidx_offset * raw_tgenovec_single_variant_word_ct]);
// There is no generalization of Pearson r^2 to multiallelic
// variants with real traction, and after looking at the existing
// options I don't see a reason for this to change anytime soon.
// So we always load major allele counts.
// probable todo: switch to PgrGetDifflistOrGenovec() and have a
// fast path for low-MAF variants. Though this isn't *that*
// important because knowledgeable users will have already filtered
// out the lowest-MAF variants before starting the LD-prune job.
if (!is_x_or_y) {
reterr = PgrGetInv1(founder_info, pssi, founder_ct, variant_uidx, maj_alleles[variant_uidx], simple_pgrp, cur_raw_tgenovec);
if (unlikely(reterr)) {
PgenErrPrintNV(reterr, variant_uidx);
goto IndepPairwise_ret_1;
}
if (is_haploid) {
SetHetMissing(founder_ctl2, cur_raw_tgenovec);
}
} else {
reterr = PgrGetInv1(nullptr, pssi, raw_sample_ct, variant_uidx, maj_alleles[variant_uidx], simple_pgrp, tmp_genovec);
if (unlikely(reterr)) {
PgenErrPrintNV(reterr, variant_uidx);
goto IndepPairwise_ret_1;
}
if (is_x) {
if (founder_male_ct) {
CopyNyparrNonemptySubset(tmp_genovec, founder_male, raw_sample_ct, founder_male_ct, cur_raw_tgenovec);
SetHetMissing(founder_male_ctl2, cur_raw_tgenovec);
}
CopyNyparrNonemptySubset(tmp_genovec, founder_nonmale, raw_sample_ct, founder_nonmale_ct, &(cur_raw_tgenovec[founder_male_ctl2]));
if (all_haploid) {
// don't just treat chrX identically to autosomes, since for
// doubled haploids we still want to give females 2x the
// weight of males. I think.
SetHetMissing(founder_nonmale_ctl2, &(cur_raw_tgenovec[founder_male_ctl2]));
}
} else {
if (founder_nonfemale_ct) {
CopyNyparrNonemptySubset(tmp_genovec, founder_nonfemale, raw_sample_ct, founder_nonfemale_ct, cur_raw_tgenovec);
SetHetMissing(founder_nonfemale_ctl2, cur_raw_tgenovec);
}
}
}
}
thread_last_tvidx[cur_thread_idx] = tvidx_end;
thread_last_uidx[cur_thread_idx] = variant_uidx + 1;
}
}
if (cur_tvidx_start) {
JoinThreads(&tg);
if (IsLastBlock(&tg)) {
break;
}
if (cur_tvidx_start >= next_print_tvidx_start) {
if (pct > 10) {
putc_unlocked('\b', stdout);
}
pct = (cur_tvidx_start * 100LLU) / max_load;
printf("\b\b%u%%", pct++);
fflush(stdout);
next_print_tvidx_start = (pct * S_CAST(uint64_t, max_load)) / 100;
}
}
if (cur_tvidx_start + tvidx_batch_size >= max_load) {
DeclareLastThreadBlock(&tg);
}
if (unlikely(SpawnThreads(&tg))) {
goto IndepPairwise_ret_THREAD_CREATE_FAIL;
}
parity = 1 - parity;
}
ZeroU32Arr(calc_thread_ct, thread_subcontig_start_tvidx);
for (uint32_t subcontig_idx = 0; subcontig_idx != subcontig_ct; ++subcontig_idx) {
const uint32_t cur_thread_idx = subcontig_thread_assignments[subcontig_idx];
const uintptr_t* cur_removed_variants = ctx.removed_variants_write[cur_thread_idx];
const uint32_t subcontig_len = subcontig_info[3 * subcontig_idx];
const uint32_t subcontig_idx_start = subcontig_info[3 * subcontig_idx + 1];
CopyBitarrRange(cur_removed_variants, thread_subcontig_start_tvidx[cur_thread_idx], subcontig_idx_start, subcontig_len, removed_variants_collapsed);
thread_subcontig_start_tvidx[cur_thread_idx] += subcontig_len;
}
if (pct > 10) {
putc_unlocked('\b', stdout);
}
fputs("\b\b", stdout);
}
while (0) {
IndepPairwise_ret_NOMEM:
reterr = kPglRetNomem;
break;
IndepPairwise_ret_THREAD_CREATE_FAIL:
reterr = kPglRetThreadCreateFail;
break;
IndepPairwise_ret_NOT_YET_SUPPORTED:
reterr = kPglRetNotYetSupported;
break;
}
IndepPairwise_ret_1:
CleanupThreads(&tg);
// caller will free memory
return reterr;
}
typedef struct VariantHapAggsStruct {
uint32_t nm_ct;
uint32_t sum;
} VariantHapAggs;
// On entry, {cur_nm_ct, cur_first_sum} must be initialized to first_vhaggs
// values.
void ComputeIndepPairphaseR2Components(const uintptr_t* __restrict first_hap_vec, const uintptr_t* __restrict second_hap_vec, const VariantHapAggs* second_vhaggs, uint32_t nm_vec_woffset, uint32_t cur_hap_ct, uint32_t* cur_nm_ct_ptr, uint32_t* cur_first_sum_ptr, uint32_t* second_sum_ptr, uint32_t* cur_dotprod_ptr) {
const uint32_t cur_hap_ctl = BitCtToWordCt(cur_hap_ct);
// Three cases:
// 1. Just need dot product.
// 2. Also need first_sum xor second_sum.
// 3. Need all four variables.
*cur_dotprod_ptr = PopcountWordsIntersect(first_hap_vec, second_hap_vec, cur_hap_ctl);
const uintptr_t* first_nm_vec = &(first_hap_vec[nm_vec_woffset]);
if (*cur_nm_ct_ptr != cur_hap_ct) {
*second_sum_ptr = PopcountWordsIntersect(first_nm_vec, second_hap_vec, cur_hap_ctl);
} else {
*second_sum_ptr = second_vhaggs->sum;
}
const uint32_t second_nm_ct = second_vhaggs->nm_ct;
if (second_nm_ct == cur_hap_ct) {
return;
}
const uintptr_t* second_nm_vec = &(second_hap_vec[nm_vec_woffset]);
*cur_first_sum_ptr = PopcountWordsIntersect(first_hap_vec, second_nm_vec, cur_hap_ctl);
if (*cur_nm_ct_ptr != cur_hap_ct) {
*cur_nm_ct_ptr = PopcountWordsIntersect(first_nm_vec, second_nm_vec, cur_hap_ctl);
} else {
*cur_nm_ct_ptr = second_nm_ct;
}
}
// Returns 1 if monomorphic, 0 otherwise.
uint32_t FillVhaggs(const uintptr_t* hap_vec, const uintptr_t* nm_vec, uintptr_t word_ct, VariantHapAggs* vhaggs) {
const uint32_t nm_ct = PopcountWords(nm_vec, word_ct);
const uint32_t sum = PopcountWords(hap_vec, word_ct);
vhaggs->nm_ct = nm_ct;
vhaggs->sum = sum;
return (!sum) || (sum == nm_ct);
}
void IndepPairphaseUpdateSubcontig(const ChrInfo* cip, uint32_t variant_uidx_winstart, uint32_t x_start, uint32_t x_len, uint32_t y_start, uint32_t y_len, uint32_t founder_ct, uint32_t founder_male_ct, uint32_t founder_nonfemale_ct, uint32_t* is_x_ptr, uint32_t* is_y_ptr, uint32_t* is_haploid_ptr, uint32_t* cur_hap_ct_ptr, uint32_t* cur_hap_ctl_ptr) {
// _len is better than _end here since we can exploit unsignedness
const uint32_t is_x = ((variant_uidx_winstart - x_start) < x_len);
const uint32_t is_y = ((variant_uidx_winstart - y_start) < y_len);
const uint32_t is_haploid = IsSet(cip->haploid_mask, GetVariantChr(cip, variant_uidx_winstart));
if ((is_x != (*is_x_ptr)) || (is_y != (*is_y_ptr)) || (is_haploid != (*is_haploid_ptr))) {
*is_x_ptr = is_x;
*is_y_ptr = is_y;
*is_haploid_ptr = is_haploid;
uint32_t cur_hap_ct;
if (is_x) {
cur_hap_ct = 2 * founder_ct - founder_male_ct;
} else if (is_y) {
cur_hap_ct = founder_nonfemale_ct;
} else {
cur_hap_ct = founder_ct * (2 - is_haploid);
}
*cur_hap_ct_ptr = cur_hap_ct;
*cur_hap_ctl_ptr = BitCtToWordCt(cur_hap_ct);
}
}
typedef struct IndepPairphaseCtxStruct {
const ChrInfo* cip;
const uint32_t* subcontig_info;
const uint32_t* subcontig_thread_assignments;
const uintptr_t* variant_include;
const uintptr_t* allele_idx_offsets;
const AlleleCode* maj_alleles;
const double* all_allele_freqs;
const uint32_t* variant_bps;
const uintptr_t* preferred_variants;
uint32_t* tvidx_end;
uint32_t x_start;
uint32_t x_len;
uint32_t y_start;
uint32_t y_len;
uint32_t founder_ct;
uint32_t founder_male_ct;
uint32_t founder_nonfemale_ct;
uint32_t prune_window_size;
uint32_t window_maxl;
double prune_ld_thresh;
uint32_t window_incr;
uint32_t cur_batch_size;
uintptr_t** hap_then_nm_vecs;
uintptr_t** occupied_window_slots;
uintptr_t** cur_window_removed;
double** cur_maj_freqs;
uintptr_t** removed_variants_write;
VariantHapAggs** vhaggs;
uint32_t** winpos_to_slot_idx;
uint32_t** tvidxs;
uint32_t** first_unchecked_tvidx;
uintptr_t** loader_hap_then_nm_vecs[2];
} IndepPairphaseCtx;
THREAD_FUNC_DECL IndepPairphaseThread(void* raw_arg) {
ThreadGroupFuncArg* arg = S_CAST(ThreadGroupFuncArg*, raw_arg);
const uintptr_t tidx = arg->tidx;
IndepPairphaseCtx* ctx = S_CAST(IndepPairphaseCtx*, arg->sharedp->context);
const ChrInfo* cip = ctx->cip;
const uint32_t* subcontig_info = ctx->subcontig_info;
const uint32_t* subcontig_thread_assignments = ctx->subcontig_thread_assignments;
const uintptr_t* variant_include = ctx->variant_include;
const uintptr_t* preferred_variants = ctx->preferred_variants;
const uint32_t x_start = ctx->x_start;
const uint32_t x_len = ctx->x_len;
const uint32_t y_start = ctx->y_start;
const uint32_t y_len = ctx->y_len;
const uintptr_t* allele_idx_offsets = ctx->allele_idx_offsets;
const AlleleCode* maj_alleles = ctx->maj_alleles;
const double* all_allele_freqs = ctx->all_allele_freqs;
const uint32_t* variant_bps = ctx->variant_bps;
const uint32_t founder_ct = ctx->founder_ct;
const uint32_t founder_male_ct = ctx->founder_male_ct;
const uint32_t founder_nonfemale_ct = ctx->founder_nonfemale_ct;
const uint32_t max_hap_ctaw = BitCtToAlignedWordCt(founder_ct * 2);
const uintptr_t max_hap_ctaw_x2 = max_hap_ctaw * 2;
const uint32_t prune_window_size = ctx->prune_window_size;
const uint32_t window_maxl = ctx->window_maxl;
const double prune_ld_thresh = ctx->prune_ld_thresh;
const uint32_t window_incr = ctx->window_incr;
const uint32_t tvidx_end = ctx->tvidx_end[tidx];
uintptr_t* hap_then_nm_vecs = ctx->hap_then_nm_vecs[tidx];
uintptr_t* occupied_window_slots = ctx->occupied_window_slots[tidx];
uintptr_t* cur_window_removed = ctx->cur_window_removed[tidx];
uintptr_t* removed_variants_write = ctx->removed_variants_write[tidx];
double* cur_maj_freqs = ctx->cur_maj_freqs[tidx];
VariantHapAggs* vhaggs = ctx->vhaggs[tidx];
uint32_t* winpos_to_slot_idx = ctx->winpos_to_slot_idx[tidx];
uint32_t* tvidxs = ctx->tvidxs[tidx];
uint32_t* first_unchecked_tvidx = ctx->first_unchecked_tvidx? ctx->first_unchecked_tvidx[tidx] : nullptr;
uint32_t subcontig_end_tvidx = 0;
uint32_t subcontig_idx = UINT32_MAX; // deliberate overflow
uint32_t window_start_tvidx = 0;
uint32_t next_window_end_tvidx = 0;
uint32_t write_slot_idx = 0;
uint32_t is_x = 0;
uint32_t is_y = 0;
uint32_t is_haploid = IsSet(cip->haploid_mask, 0);
uint32_t cur_window_size = 0;
uint32_t winpos_split = 0;
uint32_t tvidx_start = 0;
uint32_t cur_hap_ct = founder_ct * (2 - is_haploid);
uint32_t cur_hap_ctl = BitCtToWordCt(cur_hap_ct);
uintptr_t variant_uidx_base = 0;
uintptr_t variant_include_bits = variant_include[0];
uint32_t variant_uidx_winstart = 0;
uint32_t variant_uidx_winend = 0;
uint32_t cur_allele_ct = 2;
uint32_t parity = 0;
do {
const uint32_t cur_batch_size = ctx->cur_batch_size;
const uint32_t tvidx_stop = MINV(tvidx_start + cur_batch_size, tvidx_end);
// main loop has to be variant-, not window-, based due to how datasets too
// large to fit in memory are handled: we may have to halt in the middle of
// unpacking data for a window, waiting until the current I/O pass is
// complete before proceeding
const uintptr_t* loader_hap_then_nm_vecs = ctx->loader_hap_then_nm_vecs[parity][tidx];
for (uint32_t cur_tvidx = tvidx_start; cur_tvidx < tvidx_stop; ) {
if (cur_tvidx == subcontig_end_tvidx) {
LdPruneNextSubcontig(variant_include, variant_bps, subcontig_info, subcontig_thread_assignments, prune_window_size, tidx, &subcontig_idx, &subcontig_end_tvidx, &next_window_end_tvidx, &variant_uidx_winstart, &variant_uidx_winend);
IndepPairphaseUpdateSubcontig(cip, variant_uidx_winstart, x_start, x_len, y_start, y_len, founder_ct, founder_male_ct, founder_nonfemale_ct, &is_x, &is_y, &is_haploid, &cur_hap_ct, &cur_hap_ctl);
BitIter1Start(variant_include, variant_uidx_winstart, &variant_uidx_base, &variant_include_bits);
winpos_split = 0;
}
const uintptr_t variant_uidx = BitIter1(variant_include, &variant_uidx_base, &variant_include_bits);
write_slot_idx = AdvTo0Bit(occupied_window_slots, write_slot_idx);
uintptr_t tvidx_offset = cur_tvidx - tvidx_start;
{
const uintptr_t* cur_loader_hap_then_nm_vecs = &(loader_hap_then_nm_vecs[tvidx_offset * max_hap_ctaw_x2]);
uintptr_t* cur_hap_vec = &(hap_then_nm_vecs[write_slot_idx * max_hap_ctaw_x2]);
memcpy(cur_hap_vec, cur_loader_hap_then_nm_vecs, max_hap_ctaw_x2 * sizeof(intptr_t));
uintptr_t* cur_nm_vec = &(cur_hap_vec[max_hap_ctaw]);
if (FillVhaggs(cur_hap_vec, cur_nm_vec, cur_hap_ctl, &(vhaggs[write_slot_idx]))) {
SetBit(cur_window_size, cur_window_removed);
SetBit(cur_tvidx, removed_variants_write);
} else {
tvidxs[write_slot_idx] = cur_tvidx;
uintptr_t allele_idx_base;
if (!allele_idx_offsets) {
allele_idx_base = variant_uidx;
} else {
allele_idx_base = allele_idx_offsets[variant_uidx];
cur_allele_ct = allele_idx_offsets[variant_uidx + 1] - allele_idx_base;
allele_idx_base -= variant_uidx;
}
cur_maj_freqs[write_slot_idx] = GetAlleleFreq(&(all_allele_freqs[allele_idx_base]), maj_alleles[variant_uidx], cur_allele_ct);
if (preferred_variants && IsSet(preferred_variants, variant_uidx)) {
cur_maj_freqs[write_slot_idx] -= 1.0;
}
if (first_unchecked_tvidx) {
first_unchecked_tvidx[write_slot_idx] = cur_tvidx + 1;
}
}
}
SetBit(write_slot_idx, occupied_window_slots);
winpos_to_slot_idx[cur_window_size++] = write_slot_idx;
++cur_tvidx;
// are we at the end of a window? if not, load more variant(s) before
// proceeding.
if (cur_tvidx != next_window_end_tvidx) {
continue;
}
if (first_unchecked_tvidx) {
// PLINK 1.x pruning order
// possible for cur_window_size == 1, if all variants at the end of the
// previous window were pruned
uint32_t cur_removed_ct = PopcountWords(cur_window_removed, BitCtToWordCt(cur_window_size));
uint32_t prev_removed_ct;
do {
prev_removed_ct = cur_removed_ct;
for (uint32_t first_winpos = 0; ; ++first_winpos) {
// can't use BitIter0 since we care about changes in this loop to
// cur_window_removed
first_winpos = AdvTo0Bit(cur_window_removed, first_winpos);
// can assume empty trailing bit for cur_window_removed
if (first_winpos == cur_window_size) {
break;
}
const uint32_t first_slot_idx = winpos_to_slot_idx[first_winpos];
const uint32_t cur_first_unchecked_tvidx = first_unchecked_tvidx[first_slot_idx];
if (cur_first_unchecked_tvidx == cur_tvidx) {
continue;
}
// safe to use BitIter0 for second_winpos, though
uintptr_t second_winpos_base;
uintptr_t cur_window_removed_inv_bits;
BitIter0Start(cur_window_removed, first_winpos + 1, &second_winpos_base, &cur_window_removed_inv_bits);
{
uint32_t second_winpos;
uint32_t second_slot_idx;
do {
second_winpos = BitIter0(cur_window_removed, &second_winpos_base, &cur_window_removed_inv_bits);
if (second_winpos == cur_window_size) {
first_unchecked_tvidx[first_slot_idx] = cur_tvidx;
goto IndepPairphaseThread_next_first;
}
second_slot_idx = winpos_to_slot_idx[second_winpos];
} while (tvidxs[second_slot_idx] < cur_first_unchecked_tvidx);
const uintptr_t* first_hap_vec = &(hap_then_nm_vecs[first_slot_idx * max_hap_ctaw_x2]);
const uint32_t first_nm_ct = vhaggs[first_slot_idx].nm_ct;
const uint32_t first_sum = vhaggs[first_slot_idx].sum;
while (1) {
const uintptr_t* second_hap_vec = &(hap_then_nm_vecs[second_slot_idx * max_hap_ctaw_x2]);
uint32_t cur_nm_ct = first_nm_ct;
uint32_t cur_first_sum = first_sum;
uint32_t second_sum;
uint32_t cur_dotprod;
ComputeIndepPairphaseR2Components(first_hap_vec, second_hap_vec, &(vhaggs[second_slot_idx]), max_hap_ctaw, cur_hap_ct, &cur_nm_ct, &cur_first_sum, &second_sum, &cur_dotprod);
// these three values are actually cur_nm_ct times their
// true values, but that cancels out
const double cov12 = S_CAST(double, S_CAST(int64_t, cur_dotprod * S_CAST(uint64_t, cur_nm_ct) - S_CAST(uint64_t, cur_first_sum) * second_sum));
const double variance1 = S_CAST(double, cur_first_sum * S_CAST(int64_t, cur_nm_ct - cur_first_sum));
const double variance2 = S_CAST(double, second_sum * S_CAST(int64_t, cur_nm_ct - second_sum));
// > instead of >=, so we don't prune from a pair of
// variants with zero common observations
if (cov12 * cov12 > prune_ld_thresh * variance1 * variance2) {
if (cur_maj_freqs[first_slot_idx] > cur_maj_freqs[second_slot_idx] * (1 + kSmallEpsilon)) {
SetBit(first_winpos, cur_window_removed);
SetBit(tvidxs[first_slot_idx], removed_variants_write);
} else {
SetBit(second_winpos, cur_window_removed);
SetBit(tvidxs[second_slot_idx], removed_variants_write);
const uint32_t next_start_winpos = BitIter0NoAdv(cur_window_removed, &second_winpos_base, &cur_window_removed_inv_bits);
if (next_start_winpos < cur_window_size) {
first_unchecked_tvidx[first_slot_idx] = tvidxs[winpos_to_slot_idx[next_start_winpos]];
} else {
first_unchecked_tvidx[first_slot_idx] = cur_tvidx;
}
}
break;
}
second_winpos = BitIter0(cur_window_removed, &second_winpos_base, &cur_window_removed_inv_bits);
if (second_winpos == cur_window_size) {
first_unchecked_tvidx[first_slot_idx] = cur_tvidx;
break;
}
second_slot_idx = winpos_to_slot_idx[second_winpos];
} // while (1)
}
IndepPairphaseThread_next_first:
;
}
cur_removed_ct = PopcountWords(cur_window_removed, BitCtToWordCt(cur_window_size));
} while (cur_removed_ct > prev_removed_ct);
} else {
// Within each window, scan in reverse order. This way, we tend to
// check the nearest new pairs first, and this should allow us to exit
// early more often.
const uint32_t second_winpos_stop = winpos_split? winpos_split : 1;
for (uint32_t second_winpos = cur_window_size; second_winpos != second_winpos_stop; ) {
--second_winpos;
const uint32_t second_slot_idx = winpos_to_slot_idx[second_winpos];
const uintptr_t* second_hap_vec = &(hap_then_nm_vecs[second_slot_idx * max_hap_ctaw_x2]);
const uint32_t second_nm_ct = vhaggs[second_slot_idx].nm_ct;
const int32_t second_sum = vhaggs[second_slot_idx].sum;
for (uint32_t first_winpos = second_winpos; first_winpos; ) {
--first_winpos;
// possible todo: faster unset-bit reverse-iterator. but probably
// doesn't pay off here.
if (IsSet(cur_window_removed, first_winpos)) {
continue;
}
const uint32_t first_slot_idx = winpos_to_slot_idx[first_winpos];
const uintptr_t* first_hap_vec = &(hap_then_nm_vecs[first_slot_idx * max_hap_ctaw_x2]);
uint32_t cur_nm_ct = second_nm_ct;
uint32_t cur_second_sum = second_sum;
uint32_t first_sum;
uint32_t cur_dotprod;
ComputeIndepPairphaseR2Components(second_hap_vec, first_hap_vec, &(vhaggs[first_slot_idx]), max_hap_ctaw, cur_hap_ct, &cur_nm_ct, &cur_second_sum, &first_sum, &cur_dotprod);
// these three values are actually cur_nm_ct times their
// true values, but that cancels out
const double cov12 = S_CAST(double, S_CAST(int64_t, cur_dotprod * S_CAST(uint64_t, cur_nm_ct) - S_CAST(uint64_t, first_sum) * cur_second_sum));
const double variance1 = S_CAST(double, first_sum * S_CAST(int64_t, cur_nm_ct - first_sum));
const double variance2 = S_CAST(double, cur_second_sum * S_CAST(int64_t, cur_nm_ct - cur_second_sum));
// > instead of >=, so we don't prune from a pair of
// variants with zero common observations
// printf("cur_dotprod: %u cur_nm_ct: %u first_sum: %u cur_second_sum: %u\n", cur_dotprod, cur_nm_ct, first_sum, cur_second_sum);
// printf("vidx1: %u vidx2: %u r^2: %g\n", tvidxs[first_slot_idx], tvidxs[second_slot_idx], cov12 * cov12 / (variance1 * variance2));
if (cov12 * cov12 > prune_ld_thresh * variance1 * variance2) {
if (cur_maj_freqs[first_slot_idx] <= cur_maj_freqs[second_slot_idx] * (1 + kSmallEpsilon)) {
SetBit(second_winpos, cur_window_removed);
SetBit(tvidxs[second_slot_idx], removed_variants_write);
break;
}
SetBit(first_winpos, cur_window_removed);
SetBit(tvidxs[first_slot_idx], removed_variants_write);
}
} // while (1)
}
}
const uint32_t prev_window_size = cur_window_size;
LdPruneNextWindow(variant_include, variant_bps, tvidxs, cur_window_removed, prune_window_size, window_incr, window_maxl, subcontig_end_tvidx, &cur_window_size, &window_start_tvidx, &variant_uidx_winstart, &next_window_end_tvidx, &variant_uidx_winend, occupied_window_slots, winpos_to_slot_idx);
winpos_split = cur_window_size;
// clear bits here since we set cur_window_removed bits during loading
// process in monomorphic case
ZeroWArr(BitCtToWordCt(prev_window_size), cur_window_removed);
write_slot_idx = 0;
}
parity = 1 - parity;
tvidx_start = tvidx_stop;
} while (!THREAD_BLOCK_FINISH(arg));
THREAD_RETURN;
}
PglErr IndepPairphase(const uintptr_t* variant_include, const ChrInfo* cip, const uint32_t* variant_bps, const uintptr_t* allele_idx_offsets, const AlleleCode* maj_alleles, const double* allele_freqs, const uintptr_t* founder_info, const uint32_t* founder_info_cumulative_popcounts, const uintptr_t* founder_nonmale, const uintptr_t* founder_male, const uintptr_t* founder_nonfemale, const LdInfo* ldip, const uintptr_t* preferred_variants, const uint32_t* subcontig_info, const uint32_t* subcontig_thread_assignments, uint32_t raw_sample_ct, uint32_t founder_ct, uint32_t founder_male_ct, uint32_t founder_nonfemale_ct, uint32_t subcontig_ct, uintptr_t window_max, uint32_t calc_thread_ct, uint32_t max_load, PgenReader* simple_pgrp, uintptr_t* removed_variants_collapsed) {
ThreadGroup tg;
PreinitThreads(&tg);
PglErr reterr = kPglRetSuccess;
{
const uint32_t max_hap_ct = founder_ct * 2;
const uint32_t hap_ctaw = BitCtToAlignedWordCt(max_hap_ct);
const uintptr_t hap_ctaw_x2 = hap_ctaw * 2;
// Per-thread allocations:
// - tvidx_batch_size * hap_ctaw_x2 * sizeof(intptr_t) for loaded haplotype
// data (hap_then_nm_vecs)
// - tvidx_batch_size * sizeof(double) for cur_maj_freqs
// - if pos-based window, tvidx_batch_size * sizeof(int32_t)
// - All of the above again, to allow loader thread to operate
// independently
// - window_max * hap_ctaw_x2 * kBytesPerVec for current-window haplotype
// data
// - max_loadl * sizeof(intptr_t) for removed-variant bitarray
// - window_max * 2 * sizeof(int32_t) for main missing_ct, sum(x_i) array
// - window_max * sizeof(int32_t) for indexes into genotype data bitarrays
// (for now, anyway)
// - window_max * sizeof(int32_t) for live_indices (variant_idxs?)
// - window_max * sizeof(int32_t) for start_arr (first uncompared
// variant_idx)
const uint32_t founder_ctl2 = NypCtToWordCt(founder_ct);
const uint32_t founder_ctl = BitCtToWordCt(founder_ct);
const uint32_t raw_sample_ctl2 = NypCtToWordCt(raw_sample_ct);
const uint32_t raw_sample_ctl = BitCtToWordCt(raw_sample_ct);
IndepPairphaseCtx ctx;
uintptr_t* genovec;
uintptr_t* phasepresent = nullptr; // spurious g++ 4.8 warning
uintptr_t* phaseinfo = nullptr;
uintptr_t* raw_genovec = nullptr;
uintptr_t* raw_phasepresent = nullptr;
uintptr_t* raw_phaseinfo = nullptr;
uint32_t* thread_last_subcontig;
uint32_t* thread_subcontig_start_tvidx;
uint32_t* thread_last_tvidx;
uint32_t* thread_last_uidx;
if (unlikely(bigstack_alloc_w(founder_ctl2, &genovec) ||
bigstack_alloc_w(founder_ctl, &phasepresent) ||
bigstack_alloc_w(founder_ctl, &phaseinfo) ||
bigstack_alloc_w(raw_sample_ctl2, &raw_genovec) ||
bigstack_alloc_w(raw_sample_ctl, &raw_phasepresent) ||
bigstack_alloc_w(raw_sample_ctl, &raw_phaseinfo) ||
bigstack_calloc_u32(calc_thread_ct, &ctx.tvidx_end) ||
bigstack_calloc_u32(calc_thread_ct, &thread_last_subcontig) ||
bigstack_calloc_u32(calc_thread_ct, &thread_subcontig_start_tvidx) ||
bigstack_calloc_u32(calc_thread_ct, &thread_last_tvidx) ||
bigstack_calloc_u32(calc_thread_ct, &thread_last_uidx) ||
bigstack_alloc_wp(calc_thread_ct, &ctx.hap_then_nm_vecs) ||
bigstack_alloc_wp(calc_thread_ct, &ctx.occupied_window_slots) ||
bigstack_alloc_wp(calc_thread_ct, &ctx.cur_window_removed) ||
bigstack_alloc_dp(calc_thread_ct, &ctx.cur_maj_freqs) ||
bigstack_alloc_wp(calc_thread_ct, &ctx.removed_variants_write) ||
BIGSTACK_ALLOC_X(VariantHapAggs*, calc_thread_ct, &ctx.vhaggs) ||
bigstack_alloc_u32p(calc_thread_ct, &ctx.winpos_to_slot_idx) ||
bigstack_alloc_u32p(calc_thread_ct, &ctx.tvidxs) ||
bigstack_alloc_wp(calc_thread_ct, &(ctx.loader_hap_then_nm_vecs[0])) ||
bigstack_alloc_wp(calc_thread_ct, &(ctx.loader_hap_then_nm_vecs[1])))) {
goto IndepPairphase_ret_NOMEM;
}
const uint32_t plink1_order = (ldip->prune_flags / kfLdPrunePlink1Order) & 1;
if (plink1_order) {
if (unlikely(bigstack_alloc_u32p(calc_thread_ct, &ctx.first_unchecked_tvidx))) {
goto IndepPairphase_ret_NOMEM;
}
} else {
ctx.first_unchecked_tvidx = nullptr;
}
for (uint32_t subcontig_idx = 0; subcontig_idx != subcontig_ct; ++subcontig_idx) {
const uint32_t cur_thread_idx = subcontig_thread_assignments[subcontig_idx];
ctx.tvidx_end[cur_thread_idx] += subcontig_info[3 * subcontig_idx];
}
const uint32_t window_maxl = BitCtToWordCt(window_max);
const uint32_t max_loadl = BitCtToWordCt(max_load);
const uintptr_t variant_vec_alloc = RoundUpPow2(window_max * hap_ctaw_x2 * sizeof(intptr_t), kCacheline);
const uintptr_t occupied_window_slots_alloc = RoundUpPow2(window_maxl * sizeof(intptr_t), kCacheline);
const uintptr_t cur_window_removed_alloc = RoundUpPow2((1 + window_max / kBitsPerWord) * sizeof(intptr_t), kCacheline);
const uintptr_t cur_maj_freqs_alloc = RoundUpPow2(window_max * sizeof(double), kCacheline);
const uintptr_t removed_variants_write_alloc = RoundUpPow2(max_loadl * sizeof(intptr_t), kCacheline);
const uintptr_t vhaggs_alloc = RoundUpPow2(window_max * sizeof(VariantHapAggs), kCacheline);
// (2 + plink1_order) of these
const uintptr_t window_int32_alloc = RoundUpPow2(window_max * sizeof(int32_t), kCacheline);
const uintptr_t thread_alloc_base = variant_vec_alloc + occupied_window_slots_alloc + cur_window_removed_alloc + cur_maj_freqs_alloc + removed_variants_write_alloc + vhaggs_alloc + (2 + plink1_order) * window_int32_alloc;
// round down
uintptr_t bigstack_avail_per_thread = RoundDownPow2(bigstack_left() / calc_thread_ct, kCacheline);
const uintptr_t loader_single_variant_byte_ct = 2 * (hap_ctaw_x2 * sizeof(intptr_t));
// may as well require capacity for >= 256 variants per thread per pass
if (unlikely(bigstack_avail_per_thread <= thread_alloc_base + 256 * loader_single_variant_byte_ct)) {
goto IndepPairphase_ret_NOMEM;
}
bigstack_avail_per_thread -= thread_alloc_base;
uint32_t tvidx_batch_size = DivUp(max_load, 2);
// tried a bunch of powers of two, this seems to be a good value
if (tvidx_batch_size > 65536) {
tvidx_batch_size = 65536;
}
// tvidx_batch_size = max_load; // temporary debugging
if (tvidx_batch_size * loader_single_variant_byte_ct > bigstack_avail_per_thread) {
tvidx_batch_size = bigstack_avail_per_thread / loader_single_variant_byte_ct;
}
for (uint32_t tidx = 0; tidx != calc_thread_ct; ++tidx) {
ctx.hap_then_nm_vecs[tidx] = S_CAST(uintptr_t*, bigstack_alloc_raw(variant_vec_alloc));
ctx.occupied_window_slots[tidx] = S_CAST(uintptr_t*, bigstack_alloc_raw(occupied_window_slots_alloc));
ZeroWArr(window_maxl, ctx.occupied_window_slots[tidx]);
ctx.cur_window_removed[tidx] = S_CAST(uintptr_t*, bigstack_alloc_raw(cur_window_removed_alloc));
ZeroWArr(1 + window_max / kBitsPerWord, ctx.cur_window_removed[tidx]);
ctx.cur_maj_freqs[tidx] = S_CAST(double*, bigstack_alloc_raw(cur_maj_freqs_alloc));
ctx.removed_variants_write[tidx] = S_CAST(uintptr_t*, bigstack_alloc_raw(removed_variants_write_alloc));
ZeroWArr(max_loadl, ctx.removed_variants_write[tidx]);
ctx.vhaggs[tidx] = S_CAST(VariantHapAggs*, bigstack_alloc_raw(vhaggs_alloc));
ctx.winpos_to_slot_idx[tidx] = S_CAST(uint32_t*, bigstack_alloc_raw(window_int32_alloc));
ctx.tvidxs[tidx] = S_CAST(uint32_t*, bigstack_alloc_raw(window_int32_alloc));
if (ctx.first_unchecked_tvidx) {
ctx.first_unchecked_tvidx[tidx] = S_CAST(uint32_t*, bigstack_alloc_raw(window_int32_alloc));
}
ctx.loader_hap_then_nm_vecs[0][tidx] = S_CAST(uintptr_t*, bigstack_alloc_raw(tvidx_batch_size * hap_ctaw_x2 * sizeof(intptr_t)));
ctx.loader_hap_then_nm_vecs[1][tidx] = S_CAST(uintptr_t*, bigstack_alloc_raw(tvidx_batch_size * hap_ctaw_x2 * sizeof(intptr_t)));
}
ctx.cip = cip;
ctx.subcontig_info = subcontig_info;
ctx.subcontig_thread_assignments = subcontig_thread_assignments;
ctx.variant_include = variant_include;
ctx.allele_idx_offsets = allele_idx_offsets;
ctx.maj_alleles = maj_alleles;
ctx.all_allele_freqs = allele_freqs;
ctx.variant_bps = variant_bps;
ctx.preferred_variants = preferred_variants;
ctx.founder_ct = founder_ct;
ctx.founder_male_ct = founder_male_ct;
ctx.founder_nonfemale_ct = founder_nonfemale_ct;
ctx.prune_window_size = ldip->prune_window_size;
ctx.window_maxl = window_maxl;
ctx.prune_ld_thresh = ldip->prune_last_param * (1 + kSmallEpsilon);
ctx.window_incr = ldip->prune_window_incr;
ctx.cur_batch_size = tvidx_batch_size;
const uint32_t all_haploid = IsSet(cip->haploid_mask, 0);
uint32_t x_start = 0;
uint32_t x_end = 0;
uint32_t y_start = 0;
uint32_t y_end = 0;
GetXymtStartAndEnd(cip, kChrOffsetX, &x_start, &x_end);
GetXymtStartAndEnd(cip, kChrOffsetY, &y_start, &y_end);
const uint32_t x_len = x_end - x_start;
const uint32_t y_len = y_end - y_start;
ctx.x_start = x_start;
ctx.x_len = x_len;
ctx.y_start = y_start;
ctx.y_len = y_len;
if (unlikely(SetThreadCt(calc_thread_ct, &tg))) {
goto IndepPairphase_ret_NOMEM;
}
SetThreadFuncAndData(IndepPairphaseThread, &ctx, &tg);
const uint32_t founder_nonmale_ct = founder_ct - founder_male_ct;
const uint32_t founder_nonmale_ctl = BitCtToWordCt(founder_nonmale_ct);
uintptr_t hap_vec_overflow = 0;
uintptr_t nm_vec_overflow = 0;
// Main workflow:
// 1. Set n=0, load batch 0
// 2. Spawn threads processing batch n
// 3. Increment n by 1
// 4. Load batch n unless eof
// 5. Join threads
// 6. Goto step 2 unless eof
//
// 7. Assemble final results with CopyBitarrRange()
uint32_t parity = 0;
uint32_t pct = 0;
uint32_t next_print_tvidx_start = max_load / 100;
logprintf("--indep-pairphase (%u compute thread%s): ", calc_thread_ct, (calc_thread_ct == 1)? "" : "s");
fputs("0%", stdout);
fflush(stdout);
for (uint32_t cur_tvidx_start = 0; ; cur_tvidx_start += tvidx_batch_size) {
if (!IsLastBlock(&tg)) {
PgrSampleSubsetIndex pssi;
PgrSetSampleSubsetIndex(founder_info_cumulative_popcounts, simple_pgrp, &pssi);
uintptr_t** cur_loader_hap_then_nm_vecs = ctx.loader_hap_then_nm_vecs[parity];
const uint32_t cur_tvidx_end = cur_tvidx_start + tvidx_batch_size;
uint32_t is_x_or_y = 0;
for (uint32_t subcontig_idx = 0; subcontig_idx != subcontig_ct; ++subcontig_idx) {
const uint32_t cur_thread_idx = subcontig_thread_assignments[subcontig_idx];
if (thread_last_subcontig[cur_thread_idx] > subcontig_idx) {
continue;
}
uint32_t cur_tvidx = thread_last_tvidx[cur_thread_idx];
if (cur_tvidx == cur_tvidx_end) {
continue;
}
uint32_t subcontig_start_tvidx = thread_subcontig_start_tvidx[cur_thread_idx];
uint32_t tvidx_end = subcontig_start_tvidx + subcontig_info[3 * subcontig_idx];
if (tvidx_end > cur_tvidx_end) {
tvidx_end = cur_tvidx_end;
thread_last_subcontig[cur_thread_idx] = subcontig_idx;
} else {
thread_subcontig_start_tvidx[cur_thread_idx] = tvidx_end;
thread_last_subcontig[cur_thread_idx] = subcontig_idx + 1;
}
uintptr_t tvidx_offset_end = tvidx_end - cur_tvidx_start;
uint32_t variant_uidx;
if (subcontig_start_tvidx == cur_tvidx) {
variant_uidx = subcontig_info[3 * subcontig_idx + 2];
} else {
variant_uidx = thread_last_uidx[cur_thread_idx];
}
const uint32_t is_haploid = IsSet(cip->haploid_mask, GetVariantChr(cip, variant_uidx));
uint32_t is_x = ((variant_uidx - x_start) < x_len);
const uint32_t new_is_x_or_y = is_x || ((variant_uidx - y_start) < y_len);
// due to nonempty subset requirement (removed?)
is_x = is_x && founder_nonmale_ct;
if (is_x_or_y != new_is_x_or_y) {
is_x_or_y = new_is_x_or_y;
if (is_x_or_y) {
PgrClearSampleSubsetIndex(simple_pgrp, &pssi);
} else {
PgrSetSampleSubsetIndex(founder_info_cumulative_popcounts, simple_pgrp, &pssi);
}
}
uintptr_t* cur_thread_loader_hap_then_nm_vecs = cur_loader_hap_then_nm_vecs[cur_thread_idx];
uintptr_t variant_uidx_base;
uintptr_t cur_bits;
BitIter1Start(variant_include, variant_uidx, &variant_uidx_base, &cur_bits);
--variant_uidx;
for (uintptr_t tvidx_offset = cur_tvidx - cur_tvidx_start; tvidx_offset < tvidx_offset_end; ++tvidx_offset) {
variant_uidx = BitIter1(variant_include, &variant_uidx_base, &cur_bits);
uintptr_t* cur_loader_hap_vec = &(cur_thread_loader_hap_then_nm_vecs[tvidx_offset * hap_ctaw_x2]);
uintptr_t* cur_loader_nm_vec = &(cur_loader_hap_vec[hap_ctaw]);
if (!is_x_or_y) {
uint32_t phasepresent_ct;
reterr = PgrGetInv1P(founder_info, pssi, founder_ct, variant_uidx, maj_alleles[variant_uidx], simple_pgrp, genovec, phasepresent, phaseinfo, &phasepresent_ct);
if (unlikely(reterr)) {
PgenErrPrintNV(reterr, variant_uidx);
goto IndepPairphase_ret_1;
}
if (!is_haploid) {
if (unlikely(HapsplitMustPhased(genovec, phasepresent, phaseinfo, founder_ct, phasepresent_ct, cur_loader_hap_vec, cur_loader_nm_vec))) {
logputs("\n");
logerrprintf("Error: --indep-pairphase: 0-based variant #%u is not fully phased.\n", variant_uidx);
goto IndepPairphase_ret_INCONSISTENT_INPUT;
}
} else {
HapsplitHaploid(genovec, founder_ct, cur_loader_hap_vec, cur_loader_nm_vec);
}
} else {
uint32_t phase_exists;
reterr = PgrGetInv1P(nullptr, pssi, raw_sample_ct, variant_uidx, maj_alleles[variant_uidx], simple_pgrp, raw_genovec, raw_phasepresent, raw_phaseinfo, &phase_exists);
if (unlikely(reterr)) {
PgenErrPrintNV(reterr, variant_uidx);
goto IndepPairphase_ret_1;
}
if (is_x) {
if (founder_male_ct) {
CopyNyparrNonemptySubset(raw_genovec, founder_male, raw_sample_ct, founder_male_ct, genovec);
// quasi-bugfix (17 Oct 2023): forgot to remove benchmarking
// loop
HapsplitHaploid(genovec, founder_male_ct, cur_loader_hap_vec, cur_loader_nm_vec);
}
CopyNyparrNonemptySubset(raw_genovec, founder_nonmale, raw_sample_ct, founder_nonmale_ct, genovec);
if (all_haploid) {
SetHetMissing(NypCtToWordCt(founder_nonmale_ct), genovec);
}
if (phase_exists) {
CopyBitarrSubset(raw_phasepresent, founder_nonmale, founder_nonmale_ct, phasepresent);
CopyBitarrSubset(raw_phaseinfo, founder_nonmale, founder_nonmale_ct, phaseinfo);
phase_exists = !AllWordsAreZero(phasepresent, founder_nonmale_ctl);
}
const uint32_t founder_male_fullword_ct = founder_male_ct / kBitsPerWord;
const uint32_t founder_male_ct_rem = founder_male_ct % kBitsPerWord;
if (founder_male_ct_rem) {
hap_vec_overflow = cur_loader_hap_vec[founder_male_fullword_ct];
nm_vec_overflow = cur_loader_nm_vec[founder_male_fullword_ct];
}
if (unlikely(HapsplitMustPhased(genovec, phasepresent, phaseinfo, founder_nonmale_ct, phase_exists, &(cur_loader_hap_vec[founder_male_fullword_ct]), &(cur_loader_nm_vec[founder_male_fullword_ct])))) {
logputs("\n");
logerrprintf("Error: --indep-pairphase: 0-based variant #%u is not fully phased.\n", variant_uidx);
goto IndepPairphase_ret_INCONSISTENT_INPUT;
}
if (founder_male_ct_rem) {
const uint32_t word_idx = founder_male_fullword_ct + ((founder_nonmale_ct * 2) / kBitsPerWord);
const uint32_t lshift_ct = (founder_nonmale_ct * 2) % kBitsPerWord;
cur_loader_hap_vec[word_idx] |= hap_vec_overflow << lshift_ct;
cur_loader_nm_vec[word_idx] |= nm_vec_overflow << lshift_ct;
if (lshift_ct + founder_male_ct_rem > kBitsPerWord) {
const uint32_t rshift_ct = kBitsPerWord - lshift_ct;
cur_loader_hap_vec[word_idx + 1] = hap_vec_overflow >> rshift_ct;
cur_loader_nm_vec[word_idx + 1] = nm_vec_overflow >> rshift_ct;
}
}
} else {
// chrY
if (founder_nonfemale_ct) {
CopyNyparrNonemptySubset(raw_genovec, founder_nonfemale, raw_sample_ct, founder_nonfemale_ct, genovec);
HapsplitHaploid(genovec, founder_nonfemale_ct, cur_loader_hap_vec, cur_loader_nm_vec);
}
}
}
}
thread_last_tvidx[cur_thread_idx] = tvidx_end;
thread_last_uidx[cur_thread_idx] = variant_uidx + 1;
}
}
if (cur_tvidx_start) {
JoinThreads(&tg);
if (IsLastBlock(&tg)) {
break;
}
if (cur_tvidx_start >= next_print_tvidx_start) {
if (pct > 10) {
putc_unlocked('\b', stdout);
}
pct = (cur_tvidx_start * 100LLU) / max_load;
printf("\b\b%u%%", pct++);
fflush(stdout);
next_print_tvidx_start = (pct * S_CAST(uint64_t, max_load)) / 100;
}
}
if (cur_tvidx_start + tvidx_batch_size >= max_load) {
DeclareLastThreadBlock(&tg);
}
if (unlikely(SpawnThreads(&tg))) {
goto IndepPairphase_ret_THREAD_CREATE_FAIL;
}
parity = 1 - parity;
}
ZeroU32Arr(calc_thread_ct, thread_subcontig_start_tvidx);
for (uint32_t subcontig_idx = 0; subcontig_idx != subcontig_ct; ++subcontig_idx) {
const uint32_t cur_thread_idx = subcontig_thread_assignments[subcontig_idx];
const uintptr_t* cur_removed_variants = ctx.removed_variants_write[cur_thread_idx];
const uint32_t subcontig_len = subcontig_info[3 * subcontig_idx];
const uint32_t subcontig_idx_start = subcontig_info[3 * subcontig_idx + 1];
CopyBitarrRange(cur_removed_variants, thread_subcontig_start_tvidx[cur_thread_idx], subcontig_idx_start, subcontig_len, removed_variants_collapsed);
thread_subcontig_start_tvidx[cur_thread_idx] += subcontig_len;
}
if (pct > 10) {
putc_unlocked('\b', stdout);
}
fputs("\b\b", stdout);
}
while (0) {
IndepPairphase_ret_NOMEM:
reterr = kPglRetNomem;
break;
IndepPairphase_ret_INCONSISTENT_INPUT:
reterr = kPglRetInconsistentInput;
break;
IndepPairphase_ret_THREAD_CREATE_FAIL:
reterr = kPglRetThreadCreateFail;
break;
}
IndepPairphase_ret_1:
CleanupThreads(&tg);
// caller will free memory
return reterr;
}
PglErr LdPruneSubcontigSplitAll(const uintptr_t* variant_include, const ChrInfo* cip, const uint32_t* variant_bps, uint32_t prune_window_size, uint32_t* window_max_ptr, uint32_t** subcontig_info_ptr, uint32_t* subcontig_ct_ptr) {
// variant_bps must be nullptr if window size is not bp-based
// chr0 assumed to already be removed from variant_include.
// this will skip over chromosomes/contigs with only 1 variant.
const uint32_t chr_ct = cip->chr_ct;
uint32_t* subcontig_info = R_CAST(uint32_t*, g_bigstack_base);
uint32_t* subcontig_info_iter = subcontig_info;
uint32_t* subcontig_info_limit = &(R_CAST(uint32_t*, g_bigstack_end)[-3]);
uint32_t window_max = 0;
uint32_t variant_idx = 0;
if (variant_bps) {
window_max = 1;
for (uint32_t chr_fo_idx = 0; chr_fo_idx != chr_ct; ++chr_fo_idx) {
const uint32_t chr_end = cip->chr_fo_vidx_start[chr_fo_idx + 1];
const uint32_t initial_variant_uidx = AdvBoundedTo1Bit(variant_include, cip->chr_fo_vidx_start[chr_fo_idx], chr_end);
const uint32_t chr_variant_ct = PopcountBitRange(variant_include, initial_variant_uidx, chr_end);
const uint32_t variant_idx_end = variant_idx + chr_variant_ct;
if (chr_variant_ct > 1) {
uintptr_t variant_uidx_base;
uintptr_t variant_include_bits;
BitIter1Start(variant_include, initial_variant_uidx + 1, &variant_uidx_base, &variant_include_bits);
uint32_t subcontig_uidx_first = initial_variant_uidx;
uint32_t subcontig_idx_first = variant_idx;
uint32_t window_idx_first = variant_idx;
uint32_t window_uidx_first = initial_variant_uidx;
uint32_t window_pos_first = variant_bps[initial_variant_uidx];
uint32_t prev_pos = window_pos_first;
++variant_idx;
do {
const uint32_t variant_uidx = BitIter1(variant_include, &variant_uidx_base, &variant_include_bits);
uint32_t variant_bp_thresh = variant_bps[variant_uidx];
if (variant_bp_thresh < prune_window_size) {
prev_pos = variant_bp_thresh;
variant_bp_thresh = 0;
} else {
if (variant_bp_thresh - prune_window_size > prev_pos) {
if (variant_idx > subcontig_idx_first + 1) {
if (subcontig_info_iter > subcontig_info_limit) {
return kPglRetNomem;
}
*subcontig_info_iter++ = variant_idx - subcontig_idx_first;
*subcontig_info_iter++ = subcontig_idx_first;
*subcontig_info_iter++ = subcontig_uidx_first;
}
subcontig_uidx_first = variant_uidx;
subcontig_idx_first = variant_idx;
}
prev_pos = variant_bp_thresh;
variant_bp_thresh -= prune_window_size;
}
if (variant_bp_thresh > window_pos_first) {
uintptr_t window_uidx_first_base;
uintptr_t cur_bits;
BitIter1Start(variant_include, window_uidx_first + 1, &window_uidx_first_base, &cur_bits);
do {
window_uidx_first = BitIter1(variant_include, &window_uidx_first_base, &cur_bits);
window_pos_first = variant_bps[window_uidx_first];
++window_idx_first;
} while (variant_bp_thresh > window_pos_first);
} else if (variant_idx - window_idx_first == window_max) {
++window_max;
}
} while (++variant_idx < variant_idx_end);
if (variant_idx > subcontig_idx_first + 1) {
if (subcontig_info_iter > subcontig_info_limit) {
return kPglRetNomem;
}
*subcontig_info_iter++ = variant_idx - subcontig_idx_first;
*subcontig_info_iter++ = subcontig_idx_first;
*subcontig_info_iter++ = subcontig_uidx_first;
}
}
variant_idx = variant_idx_end;
}
} else {
for (uint32_t chr_fo_idx = 0; chr_fo_idx != chr_ct; ++chr_fo_idx) {
const uint32_t chr_end = cip->chr_fo_vidx_start[chr_fo_idx + 1];
const uint32_t first_variant_uidx = AdvBoundedTo1Bit(variant_include, cip->chr_fo_vidx_start[chr_fo_idx], chr_end);
const uint32_t chr_variant_ct = PopcountBitRange(variant_include, first_variant_uidx, chr_end);
if (chr_variant_ct > 1) {
if (subcontig_info_iter > subcontig_info_limit) {
return kPglRetNomem;
}
*subcontig_info_iter++ = chr_variant_ct;
*subcontig_info_iter++ = variant_idx;
*subcontig_info_iter++ = first_variant_uidx;
if (window_max < prune_window_size) {
if (chr_variant_ct > window_max) {
window_max = chr_variant_ct;
}
}
}
variant_idx += chr_variant_ct;
}
if (window_max > prune_window_size) {
window_max = prune_window_size;
}
}
*subcontig_ct_ptr = S_CAST(uintptr_t, subcontig_info_iter - subcontig_info) / 3;
*subcontig_info_ptr = subcontig_info;
BigstackFinalizeU32(subcontig_info, (*subcontig_ct_ptr) * 3);
*window_max_ptr = window_max;
return kPglRetSuccess;
}
// next several functions (including load_balance()) will probably move to
// plink2_common
void Minheap64ReplaceRoot(uint32_t heap_size, uint64_t new_root, uint64_t* minheap64_preroot) {
uint32_t cur_pos = 1;
while (1) {
uint32_t child_pos = cur_pos * 2;
if (child_pos >= heap_size) {
if (child_pos == heap_size) {
// special case: one child at end of heap
const uint64_t child_val = minheap64_preroot[child_pos];
if (new_root > child_val) {
minheap64_preroot[cur_pos] = child_val;
cur_pos = child_pos;
}
}
break;
}
uint64_t min_child_val = minheap64_preroot[child_pos];
const uint64_t child_val2 = minheap64_preroot[child_pos + 1];
if (child_val2 < min_child_val) {
min_child_val = child_val2;
++child_pos;
}
if (new_root <= min_child_val) {
break;
}
minheap64_preroot[cur_pos] = min_child_val;
cur_pos = child_pos;
}
minheap64_preroot[cur_pos] = new_root;
}
/*
void Minheap64DeleteRoot(uint64_t* minheap64_preroot, uint32_t* heap_size_ptr) {
uint32_t heap_size = *heap_size_ptr;
const uint64_t new_root = minheap64_preroot[heap_size];
Minheap64ReplaceRoot(--heap_size, new_root, minheap64_preroot);
*heap_size_ptr = heap_size;
}
*/
void Minheap64Insert(uint64_t new_entry, uint64_t* minheap64_preroot, uint32_t* heap_size_ptr) {
// assumes minheap64_preroot[0] == 0
const uint32_t heap_size = 1 + (*heap_size_ptr);
*heap_size_ptr = heap_size;
uint32_t cur_pos = heap_size;
while (1) {
const uint32_t parent_pos = cur_pos / 2;
const uint64_t parent_val = minheap64_preroot[parent_pos];
if (new_entry >= parent_val) {
minheap64_preroot[cur_pos] = new_entry;
return;
}
minheap64_preroot[cur_pos] = parent_val;
cur_pos = parent_pos;
}
}
// This is intended to split a relatively small number of contig-like regions
// between threads, but it shouldn't totally fall apart if there are millions
// of regions and hundreds of threads.
// Based on the Longest Processing Time algorithm, but with a few adjustments:
// * max(largest_weight, round_up(total_weight / thread_ct)) is noted, and the
// first 8 * thread_ct thread assignments are based on best-fit to that
// capacity. The constant 8 is chosen to be enough to beat basic LPT's
// 4/3 - 1/{3m} approximation factor by a relevant margin, while keeping
// runtime under control. (In the event that there is no fit, the capacity
// is increased.)
// * If any task assignments remain, we use LPT, but attempt to use a lower
// number of threads; we only add another thread if we would otherwise have
// to increase max_load.
PglErr LoadBalance(const uint32_t* task_weights, uint32_t task_ct, uint32_t* thread_ct_ptr, uint32_t* thread_assignments, uint32_t* max_load_ptr) {
// max_load assumed to be initialized to zero
assert(task_ct);
const uint32_t orig_thread_ct = *thread_ct_ptr;
if (orig_thread_ct == 1) {
ZeroU32Arr(task_ct, thread_assignments);
// replace this with an acc_uint32 call?
uint32_t max_load = task_weights[0];
for (uint32_t task_idx = 1; task_idx != task_ct; ++task_idx) {
max_load += task_weights[task_idx];
}
*max_load_ptr = max_load;
return kPglRetSuccess;
}
assert(task_ct >= orig_thread_ct);
uint64_t* sorted_tagged_weights;
uint64_t* minheap64_preroot;
if (bigstack_alloc_u64(task_ct, &sorted_tagged_weights) ||
bigstack_alloc_u64(orig_thread_ct + 2, &minheap64_preroot)) {
return kPglRetNomem;
}
minheap64_preroot[0] = 0;
uint64_t* minheap64 = &(minheap64_preroot[1]);
uint32_t total_weight = 0;
for (uintptr_t task_idx = 0; task_idx != task_ct; ++task_idx) {
const uintptr_t cur_weight = task_weights[task_idx];
total_weight += cur_weight;
sorted_tagged_weights[task_idx] = (S_CAST(uint64_t, cur_weight) << 32) + task_idx;
}
uint64_t* sorted_tagged_weights_end = &(sorted_tagged_weights[task_ct]);
// could try std::nth_element if this is ever a bottleneck
#ifdef __cplusplus
std::sort(sorted_tagged_weights, sorted_tagged_weights_end, std::greater<uint64_t>());
#else
qsort(sorted_tagged_weights, task_ct, sizeof(int64_t), u64cmp_decr);
#endif
const uint64_t largest_tagged_weight = sorted_tagged_weights[0];
uint32_t initial_max_load = largest_tagged_weight >> 32;
uint32_t thread_ct = 1 + (total_weight - 1) / initial_max_load;
if (thread_ct > orig_thread_ct) {
thread_ct = orig_thread_ct;
initial_max_load = 1 + (total_weight - 1) / orig_thread_ct;
}
for (uintptr_t thread_idx = 1; thread_idx != thread_ct; ++thread_idx) {
minheap64[thread_idx - 1] = thread_ct - thread_idx;
}
minheap64[thread_ct - 1] = largest_tagged_weight & 0xffffffff00000000LLU;
for (uint32_t thread_idx = thread_ct; thread_idx <= orig_thread_ct; ++thread_idx) {
minheap64[thread_idx] = 0xffffffffffffffffLLU;
}
thread_assignments[S_CAST(uint32_t, largest_tagged_weight)] = 0;
uint64_t max_load_shifted = (S_CAST(uint64_t, initial_max_load) << 32) | 0xffffffffLLU;
uint64_t* best_fit_end = sorted_tagged_weights_end;
if (task_ct > 8 * orig_thread_ct) {
// stop best-fit here
best_fit_end = &(sorted_tagged_weights[8 * orig_thread_ct]);
}
uint64_t* sorted_tagged_weights_iter = &(sorted_tagged_weights[1]);
while (sorted_tagged_weights_iter != best_fit_end) {
// maintain minheap64 as fully sorted list
uint64_t cur_tagged_weight = *sorted_tagged_weights_iter++;
const uint32_t task_idx = S_CAST(uint32_t, cur_tagged_weight);
cur_tagged_weight &= 0xffffffff00000000LLU;
const uintptr_t idxp1 = LowerBoundNonemptyU64(minheap64, thread_ct, max_load_shifted - cur_tagged_weight);
if (idxp1) {
uintptr_t idx = idxp1 - 1;
const uint64_t new_entry = minheap64[idx] + cur_tagged_weight;
for (; ; ++idx) {
const uint64_t next_entry = minheap64[idx + 1];
if (new_entry < next_entry) {
break;
}
minheap64[idx] = next_entry;
}
thread_assignments[task_idx] = S_CAST(uint32_t, new_entry);
minheap64[idx] = new_entry;
} else if (thread_ct < orig_thread_ct) {
const uint64_t new_entry = cur_tagged_weight + thread_ct;
const uintptr_t insert_pt = LowerBoundNonemptyU64(minheap64, thread_ct, new_entry);
for (uintptr_t thread_idx = thread_ct; thread_idx != insert_pt; --thread_idx) {
minheap64[thread_idx] = minheap64[thread_idx - 1];
}
minheap64[insert_pt] = new_entry;
thread_assignments[task_idx] = thread_ct++;
} else {
// move lowest entry to end of list, shift everything else down
const uint64_t new_entry = minheap64[0] + cur_tagged_weight;
for (uint32_t thread_idx = 1; thread_idx != thread_ct; ++thread_idx) {
minheap64[thread_idx - 1] = minheap64[thread_idx];
}
minheap64[thread_ct - 1] = new_entry;
max_load_shifted = new_entry | 0xffffffffLLU;
thread_assignments[task_idx] = S_CAST(uint32_t, new_entry);
}
}
if (best_fit_end != sorted_tagged_weights_end) {
do {
const uint64_t cur_heaproot = minheap64[0];
uint64_t cur_tagged_weight = *sorted_tagged_weights_iter++;
const uint32_t task_idx = S_CAST(uint32_t, cur_tagged_weight);
uint32_t cur_thread = S_CAST(uint32_t, cur_heaproot);
cur_tagged_weight &= 0xffffffff00000000LLU;
uint64_t new_entry = cur_heaproot + cur_tagged_weight;
if (new_entry > max_load_shifted) {
if (thread_ct < orig_thread_ct) {
thread_assignments[task_idx] = thread_ct;
Minheap64Insert(cur_tagged_weight + thread_ct, minheap64_preroot, &thread_ct);
continue;
} else {
max_load_shifted = new_entry | 0xffffffffLLU;
}
}
thread_assignments[task_idx] = cur_thread;
Minheap64ReplaceRoot(thread_ct, new_entry, minheap64_preroot);
} while (sorted_tagged_weights_iter != sorted_tagged_weights_end);
}
BigstackReset(sorted_tagged_weights);
*thread_ct_ptr = thread_ct;
*max_load_ptr = max_load_shifted >> 32;
return kPglRetSuccess;
}
PglErr LdPruneWrite(const uintptr_t* variant_include, const uintptr_t* removed_variants_collapsed, const char* const* variant_ids, uint32_t variant_ct, char* outname, char* outname_end) {
FILE* outfile = nullptr;
PglErr reterr = kPglRetSuccess;
{
fputs("Writing...", stdout);
fflush(stdout);
snprintf(outname_end, kMaxOutfnameExtBlen, ".prune.in");
if (unlikely(fopen_checked(outname, FOPEN_WB, &outfile))) {
goto LdPruneWrite_ret_OPEN_FAIL;
}
char* write_iter = g_textbuf;
char* textbuf_flush = &(write_iter[kMaxMediumLine]);
uintptr_t variant_uidx_base = 0;
uintptr_t cur_bits = variant_include[0];
for (uint32_t variant_idx = 0; variant_idx != variant_ct; ++variant_idx) {
const uintptr_t variant_uidx = BitIter1(variant_include, &variant_uidx_base, &cur_bits);
if (IsSet(removed_variants_collapsed, variant_idx)) {
continue;
}
write_iter = strcpya(write_iter, variant_ids[variant_uidx]);
AppendBinaryEoln(&write_iter);
if (unlikely(fwrite_ck(textbuf_flush, outfile, &write_iter))) {
goto LdPruneWrite_ret_WRITE_FAIL;
}
}
if (unlikely(fclose_flush_null(textbuf_flush, write_iter, &outfile))) {
goto LdPruneWrite_ret_WRITE_FAIL;
}
snprintf(&(outname_end[7]), kMaxOutfnameExtBlen - 7, "out");
if (unlikely(fopen_checked(outname, FOPEN_WB, &outfile))) {
goto LdPruneWrite_ret_OPEN_FAIL;
}
write_iter = g_textbuf;
variant_uidx_base = 0;
cur_bits = variant_include[0];
for (uint32_t variant_idx = 0; variant_idx != variant_ct; ++variant_idx) {
const uintptr_t variant_uidx = BitIter1(variant_include, &variant_uidx_base, &cur_bits);
if (!IsSet(removed_variants_collapsed, variant_idx)) {
continue;
}
write_iter = strcpya(write_iter, variant_ids[variant_uidx]);
AppendBinaryEoln(&write_iter);
if (unlikely(fwrite_ck(textbuf_flush, outfile, &write_iter))) {
goto LdPruneWrite_ret_WRITE_FAIL;
}
}
if (unlikely(fclose_flush_null(textbuf_flush, write_iter, &outfile))) {
goto LdPruneWrite_ret_WRITE_FAIL;
}
*outname_end = '\0';
putc_unlocked('\r', stdout);
logprintfww("Variant lists written to %s.prune.in and %s.prune.out .\n", outname, outname);
}
while (0) {
LdPruneWrite_ret_OPEN_FAIL:
reterr = kPglRetOpenFail;
break;
LdPruneWrite_ret_WRITE_FAIL:
reterr = kPglRetWriteFail;
break;
}
fclose_cond(outfile);
return reterr;
}
PglErr LdPrune(const uintptr_t* orig_variant_include, const ChrInfo* cip, const uint32_t* variant_bps, const char* const* variant_ids, const uintptr_t* allele_idx_offsets, const AlleleCode* maj_alleles, const double* allele_freqs, const uintptr_t* founder_info, const uintptr_t* sex_nm, const uintptr_t* sex_male, const LdInfo* ldip, const char* indep_preferred_fname, uint32_t raw_variant_ct, uint32_t variant_ct, uint32_t raw_sample_ct, uint32_t founder_ct, uint32_t nosex_ct, uint32_t max_thread_ct, PgenReader* simple_pgrp, char* outname, char* outname_end) {
// common initialization between --indep-pairwise and --indep-pairphase
unsigned char* bigstack_mark = g_bigstack_base;
unsigned char* bigstack_end_mark = g_bigstack_end;
PglErr reterr = kPglRetSuccess;
{
const uint32_t is_pairphase = (ldip->prune_flags / kfLdPrunePairphase) & 1;
if (founder_ct < 2) {
logerrprintfww("Error: --indep-pair%s requires at least two founders. (--make-founders may come in handy here.)\n", is_pairphase? "phase" : "wise");
goto LdPrune_ret_INCONSISTENT_INPUT;
}
uint32_t skipped_variant_ct;
const uintptr_t* variant_include = StripUnplacedK(orig_variant_include, cip, raw_variant_ct, &skipped_variant_ct);
if (unlikely(variant_include == nullptr)) {
goto LdPrune_ret_NOMEM;
}
if (skipped_variant_ct) {
logprintf("--indep-pair%s: Ignoring %u chromosome 0 variant%s.\n", is_pairphase? "phase" : "wise", skipped_variant_ct, (skipped_variant_ct == 1)? "" : "s");
variant_ct -= skipped_variant_ct;
}
if (!(ldip->prune_flags & kfLdPruneWindowBp)) {
variant_bps = nullptr;
}
const uint32_t prune_window_size = ldip->prune_window_size;
uint32_t* subcontig_info;
uint32_t window_max;
uint32_t subcontig_ct;
if (LdPruneSubcontigSplitAll(variant_include, cip, variant_bps, prune_window_size, &window_max, &subcontig_info, &subcontig_ct)) {
goto LdPrune_ret_NOMEM;
}
if (!subcontig_ct) {
logerrprintf("Warning: Skipping --indep-pair%s since there are no pairs of variants to\nprocess.\n", is_pairphase? "phase" : "wise");
goto LdPrune_ret_1;
}
const uint32_t raw_variant_ctl = BitCtToWordCt(raw_variant_ct);
uintptr_t* preferred_variants = nullptr;
uint32_t dup_found;
if (!indep_preferred_fname) {
reterr = CheckIdUniqueness(g_bigstack_base, g_bigstack_end, variant_include, variant_ids, variant_ct, max_thread_ct, &dup_found);
if (unlikely(reterr)) {
goto LdPrune_ret_1;
}
} else {
if (unlikely(bigstack_alloc_w(raw_variant_ctl, &preferred_variants))) {
goto LdPrune_ret_NOMEM;
}
memcpy(preferred_variants, variant_include, raw_variant_ctl * sizeof(intptr_t));
reterr = NondupIdLoad(g_bigstack_base, g_bigstack_end, variant_ids, indep_preferred_fname, raw_variant_ct, variant_ct, max_thread_ct, preferred_variants, &dup_found, g_logbuf);
if (unlikely(reterr)) {
if (g_logbuf[0]) {
logerrputsb();
}
goto LdPrune_ret_1;
}
}
if (unlikely(dup_found)) {
logerrprintfww("Error: --indep-pair%s requires unique variant IDs. (--set-all-var-ids and/or --rm-dup may help.)\n", is_pairphase? "phase" : "wise");
goto LdPrune_ret_INCONSISTENT_INPUT;
}
if (preferred_variants) {
const uint32_t preferred_variant_ct = PopcountWords(preferred_variants, raw_variant_ctl);
logprintf("--indep-preferred: %u variant%s loaded.\n", preferred_variant_ct, (preferred_variant_ct == 1)? "" : "s");
}
if (max_thread_ct > 2) {
--max_thread_ct;
}
if (max_thread_ct > subcontig_ct) {
max_thread_ct = subcontig_ct;
}
const uint32_t raw_sample_ctl = BitCtToWordCt(raw_sample_ct);
const uint32_t variant_ctl = BitCtToWordCt(variant_ct);
uint32_t* founder_info_cumulative_popcounts;
// bugfix (25 Mar 2023, 25 Aug 2023): founder_nonmale/founder_male are NOT
// supposed to be "collapsed".
uintptr_t* founder_nonmale;
uintptr_t* founder_male;
uintptr_t* removed_variants_collapsed;
uint32_t* subcontig_thread_assignments;
if (unlikely(bigstack_alloc_u32(raw_sample_ctl, &founder_info_cumulative_popcounts) ||
bigstack_alloc_w(raw_sample_ctl, &founder_nonmale) ||
bigstack_alloc_w(raw_sample_ctl, &founder_male) ||
bigstack_calloc_w(variant_ctl, &removed_variants_collapsed) ||
bigstack_alloc_u32(subcontig_ct, &subcontig_thread_assignments))) {
goto LdPrune_ret_NOMEM;
}
FillCumulativePopcounts(founder_info, raw_sample_ctl, founder_info_cumulative_popcounts);
BitvecAndCopy(founder_info, sex_male, raw_sample_ctl, founder_male);
BitvecInvmaskCopy(founder_info, sex_male, raw_sample_ctl, founder_nonmale);
const uint32_t founder_male_ct = PopcountWords(founder_male, raw_sample_ctl);
uintptr_t* founder_nonfemale = founder_male;
uint32_t founder_nonfemale_ct = founder_male_ct;
if (nosex_ct) {
if (unlikely(bigstack_alloc_w(raw_sample_ctl, &founder_nonfemale))) {
goto LdPrune_ret_NOMEM;
}
AlignedBitarrOrnotCopy(sex_male, sex_nm, raw_sample_ct, founder_nonfemale);
BitvecAnd(founder_info, raw_sample_ctl, founder_nonfemale);
founder_nonfemale_ct = PopcountWords(founder_nonfemale, raw_sample_ctl);
}
uint32_t* subcontig_weights;
if (unlikely(bigstack_end_alloc_u32(subcontig_ct, &subcontig_weights))) {
goto LdPrune_ret_NOMEM;
}
// initial window_max-based memory requirement estimate
const uint32_t plink1_order = (ldip->prune_flags / kfLdPrunePlink1Order) & 1;
if (is_pairphase) {
const uint32_t max_hap_ct = founder_ct * 2;
const uintptr_t hap_ctaw_x2 = 2 * BitCtToAlignedWordCt(max_hap_ct);
// reserve ~1/2 of space for main variant data buffer,
// removed_variant_write
// everything else:
// hap_vecs + nm_vecs: thread_ct * window_max * hap_ctaw_x2 * word
// occupied_window_slots: thread_ct * window_maxl * word
// cur_window_removed: thread_ct * (1 + window_max / kBitsPerWord) *
// word
// (ignore removed_variant_write)
// maj_freqs: thread_ct * window_max * 8
// vhaggs: thread_ct * window_max * VariantHapAggs
// winpos_to_slot_idx, tvidxs: window_max * 2 * int32
// first_unchecked_tvidx: window_max * int32 if plink1_order
uintptr_t per_thread_alloc = RoundUpPow2(window_max * hap_ctaw_x2 * sizeof(intptr_t), kCacheline) + 2 * RoundUpPow2((1 + window_max / kBitsPerWord) * sizeof(intptr_t), kCacheline) + RoundUpPow2(window_max * sizeof(double), kCacheline) + RoundUpPow2(window_max * sizeof(VariantHapAggs), kCacheline) + (2 + plink1_order) * RoundUpPow2(window_max * sizeof(int32_t), kCacheline);
uintptr_t bigstack_left2 = bigstack_left();
if (per_thread_alloc * max_thread_ct > bigstack_left2) {
if (unlikely(per_thread_alloc > bigstack_left2)) {
goto LdPrune_ret_NOMEM;
}
max_thread_ct = bigstack_left2 / per_thread_alloc;
}
} else {
const uintptr_t entire_variant_buf_word_ct = 2 * (BitCtToAlignedWordCt(founder_ct - founder_male_ct) + BitCtToAlignedWordCt(founder_male_ct));
// reserve ~1/2 of space for main variant data buffer,
// removed_variant_write
// everything else:
// genobufs: thread_ct * window_max * entire_variant_buf_word_ct * word
// occupied_window_slots: thread_ct * window_maxl * word
// cur_window_removed: thread_ct * (1 + window_max / kBitsPerWord) *
// word
// (ignore removed_variant_write)
// maj_freqs: thread_ct * window_max * 8
// vaggs, nonmale_vaggs: thread_ct * window_max * VariantAggs
// winpos_to_slot_idx, tvidxs: window_max * 2 * int32
// first_unchecked_tvidx: window_max * int32 if plink1_order
uintptr_t per_thread_alloc = RoundUpPow2(window_max * entire_variant_buf_word_ct * sizeof(intptr_t), kCacheline) + 2 * RoundUpPow2((1 + window_max / kBitsPerWord) * sizeof(intptr_t), kCacheline) + RoundUpPow2(window_max * sizeof(double), kCacheline) + 2 * RoundUpPow2(window_max * sizeof(VariantAggs), kCacheline) + (2 + plink1_order) * RoundUpPow2(window_max * sizeof(int32_t), kCacheline);
uintptr_t bigstack_left2 = bigstack_left();
if (per_thread_alloc * max_thread_ct > bigstack_left2) {
if (unlikely(per_thread_alloc > bigstack_left2)) {
goto LdPrune_ret_NOMEM;
}
max_thread_ct = bigstack_left2 / per_thread_alloc;
}
}
for (uint32_t subcontig_idx = 0; subcontig_idx != subcontig_ct; ++subcontig_idx) {
// todo: adjust chrX weights upward, and chrY downward
subcontig_weights[subcontig_idx] = subcontig_info[3 * subcontig_idx];
// printf("%u %u %u\n", subcontig_info[3 * subcontig_idx], subcontig_info[3 * subcontig_idx + 1], subcontig_info[3 * subcontig_idx + 2]);
}
uint32_t max_load = 0;
if (unlikely(LoadBalance(subcontig_weights, subcontig_ct, &max_thread_ct, subcontig_thread_assignments, &max_load))) {
goto LdPrune_ret_NOMEM;
}
BigstackEndReset(bigstack_end_mark);
if (is_pairphase) {
reterr = IndepPairphase(variant_include, cip, variant_bps, allele_idx_offsets, maj_alleles, allele_freqs, founder_info, founder_info_cumulative_popcounts, founder_nonmale, founder_male, founder_nonfemale, ldip, preferred_variants, subcontig_info, subcontig_thread_assignments, raw_sample_ct, founder_ct, founder_male_ct, founder_nonfemale_ct, subcontig_ct, window_max, max_thread_ct, max_load, simple_pgrp, removed_variants_collapsed);
} else {
reterr = IndepPairwise(variant_include, cip, variant_bps, allele_idx_offsets, maj_alleles, allele_freqs, founder_info, founder_info_cumulative_popcounts, founder_nonmale, founder_male, founder_nonfemale, ldip, preferred_variants, subcontig_info, subcontig_thread_assignments, raw_sample_ct, founder_ct, founder_male_ct, founder_nonfemale_ct, subcontig_ct, window_max, max_thread_ct, max_load, simple_pgrp, removed_variants_collapsed);
}
if (unlikely(reterr)) {
goto LdPrune_ret_1;
}
const uint32_t removed_ct = PopcountWords(removed_variants_collapsed, variant_ctl);
logprintf("%u/%u variants removed.\n", removed_ct, variant_ct);
reterr = LdPruneWrite(variant_include, removed_variants_collapsed, variant_ids, variant_ct, outname, outname_end);
// if (unlikely(reterr)) {
// goto LdPrune_ret_1;
// }
}
while (0) {
LdPrune_ret_NOMEM:
reterr = kPglRetNomem;
break;
LdPrune_ret_INCONSISTENT_INPUT:
reterr = kPglRetInconsistentInput;
break;
}
LdPrune_ret_1:
BigstackDoubleReset(bigstack_mark, bigstack_end_mark);
return reterr;
}
// todo: see if this can also be usefully condensed into two bitarrays
#if defined(USE_SSE2) && !defined(USE_AVX2)
void GenoarrSplit12Nm(const uintptr_t* __restrict genoarr, uint32_t sample_ct, uintptr_t* __restrict one_bitarr, uintptr_t* __restrict two_bitarr, uintptr_t* __restrict nm_bitarr) {
// ok if trailing bits of genoarr are not zeroed out
// trailing bits of {one,two,nm}_bitarr are zeroed out
const uint32_t sample_ctl2 = NypCtToWordCt(sample_ct);
const uint32_t out_fullvec_ct = sample_ctl2 / (kWordsPerVec * 2);
const VecW m1 = VCONST_W(kMask5555);
# ifdef USE_SHUFFLE8
const VecW swap12 = vecw_setr8(
0, 1, 4, 5, 2, 3, 6, 7,
8, 9, 12, 13, 10, 11, 14, 15);
# else
const VecW m2 = VCONST_W(kMask3333);
# endif
const VecW m4 = VCONST_W(kMask0F0F);
const VecW m8 = VCONST_W(kMask00FF);
for (uintptr_t vidx = 0; vidx != out_fullvec_ct; ++vidx) {
const VecW vec_lo = vecw_loadu(&(genoarr[2 * kWordsPerVec * vidx]));
const VecW vec_hi = vecw_loadu(&(genoarr[2 * kWordsPerVec * vidx + kWordsPerVec]));
VecW inv0_lo = vecw_and_notfirst(vec_lo, m1);
VecW inv0_hi = vecw_and_notfirst(vec_hi, m1);
VecW inv1_lo = vecw_and_notfirst(vecw_srli(vec_lo, 1), m1);
VecW inv1_hi = vecw_and_notfirst(vecw_srli(vec_hi, 1), m1);
# ifdef USE_SHUFFLE8
inv0_lo = (inv0_lo | vecw_srli(inv0_lo, 3)) & m4;
inv0_hi = (inv0_hi | vecw_srli(inv0_hi, 3)) & m4;
inv1_lo = (inv1_lo | vecw_srli(inv1_lo, 3)) & m4;
inv1_hi = (inv1_hi | vecw_srli(inv1_hi, 3)) & m4;
inv0_lo = vecw_shuffle8(swap12, inv0_lo);
inv0_hi = vecw_shuffle8(swap12, inv0_hi);
inv1_lo = vecw_shuffle8(swap12, inv1_lo);
inv1_hi = vecw_shuffle8(swap12, inv1_hi);
# else
inv0_lo = (inv0_lo | vecw_srli(inv0_lo, 1)) & m2;
inv0_hi = (inv0_hi | vecw_srli(inv0_hi, 1)) & m2;
inv1_lo = (inv1_lo | vecw_srli(inv1_lo, 1)) & m2;
inv1_hi = (inv1_hi | vecw_srli(inv1_hi, 1)) & m2;
inv0_lo = (inv0_lo | vecw_srli(inv0_lo, 2)) & m4;
inv0_hi = (inv0_hi | vecw_srli(inv0_hi, 2)) & m4;
inv1_lo = (inv1_lo | vecw_srli(inv1_lo, 2)) & m4;
inv1_hi = (inv1_hi | vecw_srli(inv1_hi, 2)) & m4;
# endif
inv0_lo = inv0_lo | vecw_srli(inv0_lo, 4);
inv0_hi = inv0_hi | vecw_srli(inv0_hi, 4);
inv1_lo = inv1_lo | vecw_srli(inv1_lo, 4);
inv1_hi = inv1_hi | vecw_srli(inv1_hi, 4);
const VecW inv0_packed = vecw_gather_even(inv0_lo, inv0_hi, m8);
const VecW inv1_packed = vecw_gather_even(inv1_lo, inv1_hi, m8);
const VecW one_packed = vecw_and_notfirst(inv0_packed, inv1_packed);
const VecW two_packed = vecw_and_notfirst(inv1_packed, inv0_packed);
const VecW nm_packed = inv0_packed | inv1_packed;
vecw_storeu(&(one_bitarr[kWordsPerVec * vidx]), one_packed);
vecw_storeu(&(two_bitarr[kWordsPerVec * vidx]), two_packed);
vecw_storeu(&(nm_bitarr[kWordsPerVec * vidx]), nm_packed);
}
Halfword* one_bitarr_alias = R_CAST(Halfword*, one_bitarr);
Halfword* two_bitarr_alias = R_CAST(Halfword*, two_bitarr);
Halfword* nm_bitarr_alias = R_CAST(Halfword*, nm_bitarr);
for (uint32_t widx = RoundDownPow2(sample_ctl2, kWordsPerVec * 2); widx != sample_ctl2; ++widx) {
const uintptr_t cur_geno_word = genoarr[widx];
const uint32_t low_halfword = PackWordToHalfwordMask5555(cur_geno_word);
const uint32_t high_halfword = PackWordToHalfwordMaskAAAA(cur_geno_word);
one_bitarr_alias[widx] = low_halfword & (~high_halfword);
two_bitarr_alias[widx] = high_halfword & (~low_halfword);
nm_bitarr_alias[widx] = ~(low_halfword & high_halfword);
}
const uint32_t sample_ct_rem = sample_ct % kBitsPerWord;
if (sample_ct_rem) {
const uint32_t last_widx = sample_ct / kBitsPerWord;
const uintptr_t trailing_mask = (k1LU << sample_ct_rem) - 1;
uintptr_t* __attribute__((may_alias)) one_bitarr_last = &(one_bitarr[last_widx]);
uintptr_t* __attribute__((may_alias)) two_bitarr_last = &(two_bitarr[last_widx]);
uintptr_t* __attribute__((may_alias)) nm_bitarr_last = &(nm_bitarr[last_widx]);
*one_bitarr_last &= trailing_mask;
*two_bitarr_last &= trailing_mask;
*nm_bitarr_last &= trailing_mask;
}
}
#else
void GenoarrSplit12Nm(const uintptr_t* __restrict genoarr, uint32_t sample_ct, uintptr_t* __restrict one_bitarr, uintptr_t* __restrict two_bitarr, uintptr_t* __restrict nm_bitarr) {
// ok if trailing bits of genoarr are not zeroed out
// trailing bits of {one,two,nm}_bitarr are zeroed out
const uint32_t sample_ctl2 = NypCtToWordCt(sample_ct);
Halfword* one_bitarr_alias = R_CAST(Halfword*, one_bitarr);
Halfword* two_bitarr_alias = R_CAST(Halfword*, two_bitarr);
Halfword* nm_bitarr_alias = R_CAST(Halfword*, nm_bitarr);
for (uint32_t widx = 0; widx != sample_ctl2; ++widx) {
const uintptr_t cur_geno_word = genoarr[widx];
const uint32_t low_halfword = PackWordToHalfwordMask5555(cur_geno_word);
const uint32_t high_halfword = PackWordToHalfwordMaskAAAA(cur_geno_word);
one_bitarr_alias[widx] = low_halfword & (~high_halfword);
two_bitarr_alias[widx] = high_halfword & (~low_halfword);
nm_bitarr_alias[widx] = ~(low_halfword & high_halfword);
}
const uint32_t sample_ct_rem = sample_ct % kBitsPerWord;
if (sample_ct_rem) {
const uint32_t last_widx = sample_ct / kBitsPerWord;
const uintptr_t trailing_mask = (k1LU << sample_ct_rem) - 1;
uintptr_t* __attribute__((may_alias)) one_bitarr_last = &(one_bitarr[last_widx]);
uintptr_t* __attribute__((may_alias)) two_bitarr_last = &(two_bitarr[last_widx]);
uintptr_t* __attribute__((may_alias)) nm_bitarr_last = &(nm_bitarr[last_widx]);
*one_bitarr_last &= trailing_mask;
*two_bitarr_last &= trailing_mask;
*nm_bitarr_last &= trailing_mask;
}
}
#endif
uint32_t GenoBitvecSumMain(const VecW* one_vvec, const VecW* two_vvec, uint32_t vec_ct) {
// Analog of popcount_vecs.
const VecW m0 = vecw_setzero(); // bugfix (15 Aug 2018)
const VecW m1 = VCONST_W(kMask5555);
const VecW m2 = VCONST_W(kMask3333);
const VecW m4 = VCONST_W(kMask0F0F);
const VecW* one_vvec_iter = one_vvec;
const VecW* two_vvec_iter = two_vvec;
VecW prev_sad_result = vecw_setzero();
VecW acc = vecw_setzero();
uint32_t cur_incr = 15;
for (; ; vec_ct -= cur_incr) {
if (vec_ct < 15) {
if (!vec_ct) {
acc = acc + prev_sad_result;
return HsumW(acc);
}
cur_incr = vec_ct;
}
VecW inner_acc = vecw_setzero();
const VecW* one_vvec_stop = &(one_vvec_iter[cur_incr]);
do {
VecW one_count = *one_vvec_iter++;
VecW two_count = *two_vvec_iter++;
one_count = one_count - (vecw_srli(one_count, 1) & m1);
two_count = two_count - (vecw_srli(two_count, 1) & m1);
one_count = (one_count & m2) + (vecw_srli(one_count, 2) & m2);
two_count = (two_count & m2) + (vecw_srli(two_count, 2) & m2);
// one_count and two_count now contain 4-bit partial bitcounts, each in
// the range 0..4. finally enough room to compute
// 2 * two_count + one_count
// in parallel and add it to the accumulator.
one_count = vecw_slli(two_count, 1) + one_count;
inner_acc = inner_acc + (one_count & m4) + (vecw_srli(one_count, 4) & m4);
} while (one_vvec_iter < one_vvec_stop);
acc = acc + prev_sad_result;
prev_sad_result = vecw_bytesum(inner_acc, m0);
}
}
uint32_t GenoBitvecSum(const uintptr_t* one_bitvec, const uintptr_t* two_bitvec, uint32_t word_ct) {
// popcount(one_bitvec) + 2 * popcount(two_bitvec)
uint32_t tot = 0;
#ifdef __LP64__
if (word_ct >= kWordsPerVec) {
#endif
const uint32_t remainder = word_ct % kWordsPerVec;
const uint32_t main_block_word_ct = word_ct - remainder;
word_ct = remainder;
tot = GenoBitvecSumMain(R_CAST(const VecW*, one_bitvec), R_CAST(const VecW*, two_bitvec), main_block_word_ct / kWordsPerVec);
#ifdef __LP64__
one_bitvec = &(one_bitvec[main_block_word_ct]);
two_bitvec = &(two_bitvec[main_block_word_ct]);
}
for (uint32_t trailing_word_idx = 0; trailing_word_idx != word_ct; ++trailing_word_idx) {
tot += PopcountWord(one_bitvec[trailing_word_idx]) + 2 * PopcountWord(two_bitvec[trailing_word_idx]);
}
#endif
return tot;
}
uint32_t GenoBitvecSumSubsetMain(const VecW* subset_vvec, const VecW* one_vvec, const VecW* two_vvec, uint32_t vec_ct) {
// Same as GenoBitvecSumMain(), just with an additional mask.
const VecW m0 = vecw_setzero();
const VecW m1 = VCONST_W(kMask5555);
const VecW m2 = VCONST_W(kMask3333);
const VecW m4 = VCONST_W(kMask0F0F);
const VecW* subset_vvec_iter = subset_vvec;
const VecW* one_vvec_iter = one_vvec;
const VecW* two_vvec_iter = two_vvec;
VecW prev_sad_result = vecw_setzero();
VecW acc = vecw_setzero();
uint32_t cur_incr = 15;
for (; ; vec_ct -= cur_incr) {
if (vec_ct < 15) {
if (!vec_ct) {
acc = acc + prev_sad_result;
return HsumW(acc);
}
cur_incr = vec_ct;
}
VecW inner_acc = vecw_setzero();
const VecW* subset_vvec_stop = &(subset_vvec_iter[cur_incr]);
do {
VecW maskv = *subset_vvec_iter++;
VecW one_count = (*one_vvec_iter++) & maskv;
VecW two_count = (*two_vvec_iter++) & maskv;
one_count = one_count - (vecw_srli(one_count, 1) & m1);
two_count = two_count - (vecw_srli(two_count, 1) & m1);
one_count = (one_count & m2) + (vecw_srli(one_count, 2) & m2);
two_count = (two_count & m2) + (vecw_srli(two_count, 2) & m2);
one_count = vecw_slli(two_count, 1) + one_count;
inner_acc = inner_acc + (one_count & m4) + (vecw_srli(one_count, 4) & m4);
} while (subset_vvec_iter < subset_vvec_stop);
acc = acc + prev_sad_result;
prev_sad_result = vecw_bytesum(inner_acc, m0);
}
}
uint32_t GenoBitvecSumSubset(const uintptr_t* subset_mask, const uintptr_t* one_bitvec, const uintptr_t* two_bitvec, uint32_t word_ct) {
// popcount(subset_mask & one_bitvec)
// + 2 * popcount(subset_mask & two_bitvec)
uint32_t tot = 0;
#ifdef __LP64__
if (word_ct >= kWordsPerVec) {
#endif
const uint32_t remainder = word_ct % kWordsPerVec;
const uint32_t main_block_word_ct = word_ct - remainder;
word_ct = remainder;
tot = GenoBitvecSumSubsetMain(R_CAST(const VecW*, subset_mask), R_CAST(const VecW*, one_bitvec), R_CAST(const VecW*, two_bitvec), main_block_word_ct / kWordsPerVec);
#ifdef __LP64__
subset_mask = &(subset_mask[main_block_word_ct]);
one_bitvec = &(one_bitvec[main_block_word_ct]);
two_bitvec = &(two_bitvec[main_block_word_ct]);
}
for (uint32_t trailing_word_idx = 0; trailing_word_idx != word_ct; ++trailing_word_idx) {
const uintptr_t subset_word = subset_mask[trailing_word_idx];
tot += PopcountWord(subset_word & one_bitvec[trailing_word_idx]) + 2 * PopcountWord(subset_word & two_bitvec[trailing_word_idx]);
}
#endif
return tot;
}
// phased-hardcall r^2 computation:
// definitely-known part of dot product is
// popcount((one_bitvec0 & two_bitvec1) | (two_bitvec0 & one_bitvec1))
// + popcount(two_bitvec0 & two_bitvec1) * 2
// + possible phased-het-het term
// possibly-unknown part is
// popcount(one_bitvec0 & one_bitvec1) - phased-het-het count
// when nm_bitvec0 isn't all-ones, also necessary to compute
// popcount(nm_bitvec0 & one_bitvec1)
// + popcount(nm_bitvec0 & two_bitvec1) * 2
// analogous statement is true for nm_bitvec1
// if both are incomplete, also need popcount of intersection (compute this
// first and skip rest of computation when zero).
//
// for possibly-unknown part, --ld reports all solutions when multiple
// solutions exist, everything else uses EM solution
void GenoBitvecPhasedDotprodMain(const VecW* one_vvec0, const VecW* two_vvec0, const VecW* one_vvec1, const VecW* two_vvec1, uint32_t vec_ct, uint32_t* __restrict known_dotprod_ptr, uint32_t* __restrict hethet_ct_ptr) {
const VecW m1 = VCONST_W(kMask5555);
const VecW m2 = VCONST_W(kMask3333);
const VecW m4 = VCONST_W(kMask0F0F);
const VecW* one_vvec0_iter = one_vvec0;
const VecW* two_vvec0_iter = two_vvec0;
const VecW* one_vvec1_iter = one_vvec1;
const VecW* two_vvec1_iter = two_vvec1;
VecW acc_dotprod = vecw_setzero();
VecW acc_hethet = vecw_setzero();
uint32_t cur_incr = 15;
for (; ; vec_ct -= cur_incr) {
if (vec_ct < 15) {
if (!vec_ct) {
*known_dotprod_ptr = HsumW(acc_dotprod);
*hethet_ct_ptr = HsumW(acc_hethet);
return;
}
cur_incr = vec_ct;
}
VecW inner_acc_dotprod = vecw_setzero();
VecW inner_acc_hethet = vecw_setzero();
const VecW* one_vvec0_stop = &(one_vvec0_iter[cur_incr]);
do {
VecW one_vword0 = *one_vvec0_iter++;
VecW two_vword0 = *two_vvec0_iter++;
VecW one_vword1 = *one_vvec1_iter++;
VecW two_vword1 = *two_vvec1_iter++;
VecW dotprod_1x_bits = (one_vword0 & two_vword1) | (one_vword1 & two_vword0);
VecW dotprod_2x_bits = two_vword0 & two_vword1;
VecW hethet_bits = one_vword0 & one_vword1;
dotprod_1x_bits = dotprod_1x_bits - (vecw_srli(dotprod_1x_bits, 1) & m1);
dotprod_2x_bits = dotprod_2x_bits - (vecw_srli(dotprod_2x_bits, 1) & m1);
hethet_bits = hethet_bits - (vecw_srli(hethet_bits, 1) & m1);
dotprod_1x_bits = (dotprod_1x_bits & m2) + (vecw_srli(dotprod_1x_bits, 2) & m2);
dotprod_2x_bits = (dotprod_2x_bits & m2) + (vecw_srli(dotprod_2x_bits, 2) & m2);
hethet_bits = (hethet_bits & m2) + (vecw_srli(hethet_bits, 2) & m2);
// we now have 4-bit partial bitcounts in the range 0..4. finally have
// enough room to compute 2 * dotprod_2x_bits + dotprod_1x_bits.
dotprod_1x_bits = vecw_slli(dotprod_2x_bits, 1) + dotprod_1x_bits;
inner_acc_hethet = inner_acc_hethet + ((hethet_bits + vecw_srli(hethet_bits, 4)) & m4);
inner_acc_dotprod = inner_acc_dotprod + (dotprod_1x_bits & m4) + (vecw_srli(dotprod_1x_bits, 4) & m4);
} while (one_vvec0_iter < one_vvec0_stop);
const VecW m0 = vecw_setzero();
acc_hethet = acc_hethet + vecw_bytesum(inner_acc_hethet, m0);
acc_dotprod = acc_dotprod + vecw_bytesum(inner_acc_dotprod, m0);
}
}
void GenoBitvecPhasedDotprod(const uintptr_t* one_bitvec0, const uintptr_t* two_bitvec0, const uintptr_t* one_bitvec1, const uintptr_t* two_bitvec1, uint32_t word_ct, uint32_t* __restrict known_dotprod_ptr, uint32_t* __restrict hethet_ct_ptr) {
// known_dotprod := popcount((one_bitvec0 & two_bitvec1) |
// (two_bitvec0 & one_bitvec1)) +
// 2 * popcount(two_bitvec0 & two_bitvec1)
// hethet_ct := popcount(one_bitvec0 & one_bitvec1)
uint32_t known_dotprod = 0;
uint32_t hethet_ct = 0;
#ifdef __LP64__
if (word_ct >= kWordsPerVec) {
#endif
const uint32_t remainder = word_ct % kWordsPerVec;
const uint32_t main_block_word_ct = word_ct - remainder;
word_ct = remainder;
GenoBitvecPhasedDotprodMain(R_CAST(const VecW*, one_bitvec0), R_CAST(const VecW*, two_bitvec0), R_CAST(const VecW*, one_bitvec1), R_CAST(const VecW*, two_bitvec1), main_block_word_ct / kWordsPerVec, &known_dotprod, &hethet_ct);
#ifdef __LP64__
one_bitvec0 = &(one_bitvec0[main_block_word_ct]);
two_bitvec0 = &(two_bitvec0[main_block_word_ct]);
one_bitvec1 = &(one_bitvec1[main_block_word_ct]);
two_bitvec1 = &(two_bitvec1[main_block_word_ct]);
}
for (uint32_t trailing_word_idx = 0; trailing_word_idx != word_ct; ++trailing_word_idx) {
const uintptr_t one_word0 = one_bitvec0[trailing_word_idx];
const uintptr_t two_word0 = two_bitvec0[trailing_word_idx];
const uintptr_t one_word1 = one_bitvec1[trailing_word_idx];
const uintptr_t two_word1 = two_bitvec1[trailing_word_idx];
known_dotprod += PopcountWord((one_word0 & two_word1) | (one_word1 & two_word0)) + 2 * PopcountWord(two_word0 & two_word1);
hethet_ct += PopcountWord(one_word0 & one_word1);
}
#endif
*known_dotprod_ptr = known_dotprod;
*hethet_ct_ptr = hethet_ct;
}
void GenoBitvecPhasedDotprodSubsetMain(const VecW* subset_vvec, const VecW* one_vvec0, const VecW* two_vvec0, const VecW* one_vvec1, const VecW* two_vvec1, uint32_t vec_ct, uint32_t* __restrict known_dotprod_ptr, uint32_t* __restrict hethet_ct_ptr) {
const VecW m1 = VCONST_W(kMask5555);
const VecW m2 = VCONST_W(kMask3333);
const VecW m4 = VCONST_W(kMask0F0F);
const VecW* subset_vvec_iter = subset_vvec;
const VecW* one_vvec0_iter = one_vvec0;
const VecW* two_vvec0_iter = two_vvec0;
const VecW* one_vvec1_iter = one_vvec1;
const VecW* two_vvec1_iter = two_vvec1;
VecW acc_dotprod = vecw_setzero();
VecW acc_hethet = vecw_setzero();
uint32_t cur_incr = 15;
for (; ; vec_ct -= cur_incr) {
if (vec_ct < 15) {
if (!vec_ct) {
*known_dotprod_ptr = HsumW(acc_dotprod);
*hethet_ct_ptr = HsumW(acc_hethet);
return;
}
cur_incr = vec_ct;
}
VecW inner_acc_dotprod = vecw_setzero();
VecW inner_acc_hethet = vecw_setzero();
const VecW* one_vvec0_stop = &(one_vvec0_iter[cur_incr]);
do {
VecW subset_vword = *subset_vvec_iter++;
VecW one_vword0 = (*one_vvec0_iter++) & subset_vword;
VecW two_vword0 = (*two_vvec0_iter++) & subset_vword;
VecW one_vword1 = *one_vvec1_iter++;
VecW two_vword1 = *two_vvec1_iter++;
VecW dotprod_1x_bits = (one_vword0 & two_vword1) | (one_vword1 & two_vword0);
VecW dotprod_2x_bits = two_vword0 & two_vword1;
VecW hethet_bits = one_vword0 & one_vword1;
dotprod_1x_bits = dotprod_1x_bits - (vecw_srli(dotprod_1x_bits, 1) & m1);
dotprod_2x_bits = dotprod_2x_bits - (vecw_srli(dotprod_2x_bits, 1) & m1);
hethet_bits = hethet_bits - (vecw_srli(hethet_bits, 1) & m1);
dotprod_1x_bits = (dotprod_1x_bits & m2) + (vecw_srli(dotprod_1x_bits, 2) & m2);
dotprod_2x_bits = (dotprod_2x_bits & m2) + (vecw_srli(dotprod_2x_bits, 2) & m2);
hethet_bits = (hethet_bits & m2) + (vecw_srli(hethet_bits, 2) & m2);
// we now have 4-bit partial bitcounts in the range 0..4. finally have
// enough room to compute 2 * dotprod_2x_bits + dotprod_1x_bits.
dotprod_1x_bits = vecw_slli(dotprod_2x_bits, 1) + dotprod_1x_bits;
inner_acc_hethet = inner_acc_hethet + ((hethet_bits + vecw_srli(hethet_bits, 4)) & m4);
inner_acc_dotprod = inner_acc_dotprod + (dotprod_1x_bits & m4) + (vecw_srli(dotprod_1x_bits, 4) & m4);
} while (one_vvec0_iter < one_vvec0_stop);
const VecW m0 = vecw_setzero();
acc_hethet = acc_hethet + vecw_bytesum(inner_acc_hethet, m0);
acc_dotprod = acc_dotprod + vecw_bytesum(inner_acc_dotprod, m0);
}
}
void GenoBitvecPhasedDotprodSubset(const uintptr_t* subset_mask, const uintptr_t* one_bitvec0, const uintptr_t* two_bitvec0, const uintptr_t* one_bitvec1, const uintptr_t* two_bitvec1, uint32_t word_ct, uint32_t* __restrict known_dotprod_ptr, uint32_t* __restrict hethet_ct_ptr) {
uint32_t known_dotprod = 0;
uint32_t hethet_ct = 0;
#ifdef __LP64__
if (word_ct >= kWordsPerVec) {
#endif
const uint32_t remainder = word_ct % kWordsPerVec;
const uint32_t main_block_word_ct = word_ct - remainder;
word_ct = remainder;
GenoBitvecPhasedDotprodSubsetMain(R_CAST(const VecW*, subset_mask), R_CAST(const VecW*, one_bitvec0), R_CAST(const VecW*, two_bitvec0), R_CAST(const VecW*, one_bitvec1), R_CAST(const VecW*, two_bitvec1), main_block_word_ct / kWordsPerVec, &known_dotprod, &hethet_ct);
#ifdef __LP64__
subset_mask = &(subset_mask[main_block_word_ct]);
one_bitvec0 = &(one_bitvec0[main_block_word_ct]);
two_bitvec0 = &(two_bitvec0[main_block_word_ct]);
one_bitvec1 = &(one_bitvec1[main_block_word_ct]);
two_bitvec1 = &(two_bitvec1[main_block_word_ct]);
}
for (uint32_t trailing_word_idx = 0; trailing_word_idx != word_ct; ++trailing_word_idx) {
const uintptr_t subset_word = subset_mask[trailing_word_idx];
const uintptr_t one_word0 = one_bitvec0[trailing_word_idx] & subset_word;
const uintptr_t two_word0 = two_bitvec0[trailing_word_idx] & subset_word;
const uintptr_t one_word1 = one_bitvec1[trailing_word_idx];
const uintptr_t two_word1 = two_bitvec1[trailing_word_idx];
known_dotprod += PopcountWord((one_word0 & two_word1) | (one_word1 & two_word0)) + 2 * PopcountWord(two_word0 & two_word1);
hethet_ct += PopcountWord(one_word0 & one_word1);
}
#endif
*known_dotprod_ptr = known_dotprod;
*hethet_ct_ptr = hethet_ct;
}
// nmaj_cts[] must be initialized to correct values for
// no-missing-values-in-other-variant case.
uint32_t HardcallPhasedR2Stats(const uintptr_t* one_bitvec0, const uintptr_t* two_bitvec0, const uintptr_t* nm_bitvec0, const uintptr_t* one_bitvec1, const uintptr_t* two_bitvec1, const uintptr_t* nm_bitvec1, uint32_t sample_ct, uint32_t nm_ct0, uint32_t nm_ct1, uint32_t* __restrict nmaj_cts, uint32_t* __restrict known_dotprod_ptr, uint32_t* __restrict hethet_ct_ptr) {
const uint32_t sample_ctl = BitCtToWordCt(sample_ct);
uint32_t nm_intersection_ct;
if ((nm_ct0 != sample_ct) && (nm_ct1 != sample_ct)) {
nm_intersection_ct = PopcountWordsIntersect(nm_bitvec0, nm_bitvec1, sample_ctl);
if (!nm_intersection_ct) {
nmaj_cts[0] = 0;
nmaj_cts[1] = 0;
*known_dotprod_ptr = 0;
*hethet_ct_ptr = 0;
return 0;
}
} else {
nm_intersection_ct = MINV(nm_ct0, nm_ct1);
}
if (nm_ct0 != nm_intersection_ct) {
nmaj_cts[0] = GenoBitvecSumSubset(nm_bitvec1, one_bitvec0, two_bitvec0, sample_ctl);
}
if (nm_ct1 != nm_intersection_ct) {
nmaj_cts[1] = GenoBitvecSumSubset(nm_bitvec0, one_bitvec1, two_bitvec1, sample_ctl);
}
GenoBitvecPhasedDotprod(one_bitvec0, two_bitvec0, one_bitvec1, two_bitvec1, sample_ctl, known_dotprod_ptr, hethet_ct_ptr);
return nm_intersection_ct;
}
void HardcallPhasedR2RefineMain(const VecW* phasepresent0_vvec, const VecW* phaseinfo0_vvec, const VecW* phasepresent1_vvec, const VecW* phaseinfo1_vvec, uint32_t vec_ct, uint32_t* __restrict hethet_decr_ptr, uint32_t* __restrict not_dotprod_ptr) {
// vec_ct must be a multiple of 3
const VecW m1 = VCONST_W(kMask5555);
const VecW m2 = VCONST_W(kMask3333);
const VecW m4 = VCONST_W(kMask0F0F);
const VecW* phasepresent0_vvec_iter = phasepresent0_vvec;
const VecW* phaseinfo0_vvec_iter = phaseinfo0_vvec;
const VecW* phasepresent1_vvec_iter = phasepresent1_vvec;
const VecW* phaseinfo1_vvec_iter = phaseinfo1_vvec;
VecW acc_hethet_decr = vecw_setzero();
VecW acc_not_dotprod = vecw_setzero(); // like not_hotdog, but more useful
uint32_t cur_incr = 30;
for (; ; vec_ct -= cur_incr) {
if (vec_ct < 30) {
if (!vec_ct) {
*hethet_decr_ptr = HsumW(acc_hethet_decr);
*not_dotprod_ptr = HsumW(acc_not_dotprod);
return;
}
cur_incr = vec_ct;
}
VecW inner_acc_hethet_decr = vecw_setzero();
VecW inner_acc_not_dotprod = vecw_setzero();
const VecW* phasepresent0_vvec_stop = &(phasepresent0_vvec_iter[cur_incr]);
do {
// todo: benchmark against simpler one-vec-at-a-time loop
VecW mask1 = (*phasepresent0_vvec_iter++) & (*phasepresent1_vvec_iter++);
VecW mask2 = (*phasepresent0_vvec_iter++) & (*phasepresent1_vvec_iter++);
VecW mask_half1 = (*phasepresent0_vvec_iter++) & (*phasepresent1_vvec_iter++);
VecW mask_half2 = vecw_srli(mask_half1, 1) & m1;
mask_half1 = mask_half1 & m1;
VecW not_dotprod_count1 = (*phaseinfo0_vvec_iter++) ^ (*phaseinfo1_vvec_iter++);
VecW not_dotprod_count2 = (*phaseinfo0_vvec_iter++) ^ (*phaseinfo1_vvec_iter++);
VecW not_dotprod_half1 = (*phaseinfo0_vvec_iter++) ^ (*phaseinfo1_vvec_iter++);
// bugfix (4 Nov 2017): incorrectly had mask_half1 here
VecW not_dotprod_half2 = vecw_srli(not_dotprod_half1, 1) & mask_half2;
not_dotprod_count1 = not_dotprod_count1 & mask1;
not_dotprod_count2 = not_dotprod_count2 & mask2;
not_dotprod_half1 = not_dotprod_half1 & mask_half1;
mask1 = mask1 - (vecw_srli(mask1, 1) & m1);
mask2 = mask2 - (vecw_srli(mask2, 1) & m1);
not_dotprod_count1 = not_dotprod_count1 - (vecw_srli(not_dotprod_count1, 1) & m1);
not_dotprod_count2 = not_dotprod_count2 - (vecw_srli(not_dotprod_count2, 1) & m1);
mask1 = mask1 + mask_half1;
mask2 = mask2 + mask_half2;
not_dotprod_count1 = not_dotprod_count1 + not_dotprod_half1;
not_dotprod_count2 = not_dotprod_count2 + not_dotprod_half2;
mask1 = (mask1 & m2) + (vecw_srli(mask1, 2) & m2);
not_dotprod_count1 = (not_dotprod_count1 & m2) + (vecw_srli(not_dotprod_count1, 2) & m2);
mask1 = mask1 + (mask2 & m2) + (vecw_srli(mask2, 2) & m2);
not_dotprod_count1 = not_dotprod_count1 + (not_dotprod_count2 & m2) + (vecw_srli(not_dotprod_count2, 2) & m2);
inner_acc_hethet_decr = inner_acc_hethet_decr + (mask1 & m4) + (vecw_srli(mask1, 4) & m4);
inner_acc_not_dotprod = inner_acc_not_dotprod + (not_dotprod_count1 & m4) + (vecw_srli(not_dotprod_count1, 4) & m4);
} while (phasepresent0_vvec_iter < phasepresent0_vvec_stop);
const VecW m0 = vecw_setzero();
acc_hethet_decr = acc_hethet_decr + vecw_bytesum(inner_acc_hethet_decr, m0);
acc_not_dotprod = acc_not_dotprod + vecw_bytesum(inner_acc_not_dotprod, m0);
}
}
// only needs to be called when hethet_ct > 0, phasepresent0_ct > 0, and
// phasepresent1_ct > 0.
void HardcallPhasedR2Refine(const uintptr_t* phasepresent0, const uintptr_t* phaseinfo0, const uintptr_t* phasepresent1, const uintptr_t* phaseinfo1, uint32_t word_ct, uint32_t* __restrict known_dotprod_ptr, uint32_t* __restrict unknown_hethet_ct_ptr) {
// unknown_hethet_ct -= popcount(phasepresent0 & phasepresent1)
// known_dotprod_ptr += popcount(phasepresent0 & phasepresent1 &
// (~(phaseinfo0 ^ phaseinfo1)))
uint32_t hethet_decr = 0;
uint32_t not_dotprod = 0;
if (word_ct >= 3 * kWordsPerVec) {
const uint32_t remainder = word_ct % (3 * kWordsPerVec);
const uint32_t main_block_word_ct = word_ct - remainder;
word_ct = remainder;
HardcallPhasedR2RefineMain(R_CAST(const VecW*, phasepresent0), R_CAST(const VecW*, phaseinfo0), R_CAST(const VecW*, phasepresent1), R_CAST(const VecW*, phaseinfo1), main_block_word_ct / kWordsPerVec, &hethet_decr, ¬_dotprod);
phasepresent0 = &(phasepresent0[main_block_word_ct]);
phaseinfo0 = &(phaseinfo0[main_block_word_ct]);
phasepresent1 = &(phasepresent1[main_block_word_ct]);
phaseinfo1 = &(phaseinfo1[main_block_word_ct]);
}
for (uint32_t trailing_word_idx = 0; trailing_word_idx != word_ct; ++trailing_word_idx) {
const uintptr_t mask = phasepresent0[trailing_word_idx] & phasepresent1[trailing_word_idx];
const uintptr_t xor_word = phaseinfo0[trailing_word_idx] ^ phaseinfo1[trailing_word_idx];
hethet_decr += PopcountWord(mask);
not_dotprod += PopcountWord(mask & xor_word);
}
*known_dotprod_ptr += hethet_decr - not_dotprod;
*unknown_hethet_ct_ptr -= hethet_decr;
}
void HardcallPhasedR2RefineSubsetMain(const VecW* subset_vvec, const VecW* phasepresent0_vvec, const VecW* phaseinfo0_vvec, const VecW* phasepresent1_vvec, const VecW* phaseinfo1_vvec, uint32_t vec_ct, uint32_t* __restrict hethet_decr_ptr, uint32_t* __restrict not_dotprod_ptr) {
// vec_ct must be a multiple of 3
const VecW m1 = VCONST_W(kMask5555);
const VecW m2 = VCONST_W(kMask3333);
const VecW m4 = VCONST_W(kMask0F0F);
const VecW* subset_vvec_iter = subset_vvec;
const VecW* phasepresent0_vvec_iter = phasepresent0_vvec;
const VecW* phaseinfo0_vvec_iter = phaseinfo0_vvec;
const VecW* phasepresent1_vvec_iter = phasepresent1_vvec;
const VecW* phaseinfo1_vvec_iter = phaseinfo1_vvec;
VecW acc_hethet_decr = vecw_setzero();
VecW acc_not_dotprod = vecw_setzero();
uint32_t cur_incr = 30;
for (; ; vec_ct -= cur_incr) {
if (vec_ct < 30) {
if (!vec_ct) {
*hethet_decr_ptr = HsumW(acc_hethet_decr);
*not_dotprod_ptr = HsumW(acc_not_dotprod);
return;
}
cur_incr = vec_ct;
}
VecW inner_acc_hethet_decr = vecw_setzero();
VecW inner_acc_not_dotprod = vecw_setzero();
const VecW* phasepresent0_vvec_stop = &(phasepresent0_vvec_iter[cur_incr]);
do {
VecW mask1 = (*phasepresent0_vvec_iter++) & (*phasepresent1_vvec_iter++) & (*subset_vvec_iter++);
VecW mask2 = (*phasepresent0_vvec_iter++) & (*phasepresent1_vvec_iter++) & (*subset_vvec_iter++);
VecW mask_half1 = (*phasepresent0_vvec_iter++) & (*phasepresent1_vvec_iter++) & (*subset_vvec_iter++);
VecW mask_half2 = vecw_srli(mask_half1, 1) & m1;
mask_half1 = mask_half1 & m1;
VecW not_dotprod_count1 = (*phaseinfo0_vvec_iter++) ^ (*phaseinfo1_vvec_iter++);
VecW not_dotprod_count2 = (*phaseinfo0_vvec_iter++) ^ (*phaseinfo1_vvec_iter++);
VecW not_dotprod_half1 = (*phaseinfo0_vvec_iter++) ^ (*phaseinfo1_vvec_iter++);
VecW not_dotprod_half2 = vecw_srli(not_dotprod_half1, 1) & mask_half2;
not_dotprod_count1 = not_dotprod_count1 & mask1;
not_dotprod_count2 = not_dotprod_count2 & mask2;
not_dotprod_half1 = not_dotprod_half1 & mask_half1;
mask1 = mask1 - (vecw_srli(mask1, 1) & m1);
mask2 = mask2 - (vecw_srli(mask2, 1) & m1);
not_dotprod_count1 = not_dotprod_count1 - (vecw_srli(not_dotprod_count1, 1) & m1);
not_dotprod_count2 = not_dotprod_count2 - (vecw_srli(not_dotprod_count2, 1) & m1);
mask1 = mask1 + mask_half1;
mask2 = mask2 + mask_half2;
not_dotprod_count1 = not_dotprod_count1 + not_dotprod_half1;
not_dotprod_count2 = not_dotprod_count2 + not_dotprod_half2;
mask1 = (mask1 & m2) + (vecw_srli(mask1, 2) & m2);
not_dotprod_count1 = (not_dotprod_count1 & m2) + (vecw_srli(not_dotprod_count1, 2) & m2);
mask1 = mask1 + (mask2 & m2) + (vecw_srli(mask2, 2) & m2);
not_dotprod_count1 = not_dotprod_count1 + (not_dotprod_count2 & m2) + (vecw_srli(not_dotprod_count2, 2) & m2);
inner_acc_hethet_decr = inner_acc_hethet_decr + (mask1 & m4) + (vecw_srli(mask1, 4) & m4);
inner_acc_not_dotprod = inner_acc_not_dotprod + (not_dotprod_count1 & m4) + (vecw_srli(not_dotprod_count1, 4) & m4);
} while (phasepresent0_vvec_iter < phasepresent0_vvec_stop);
const VecW m0 = vecw_setzero();
acc_hethet_decr = acc_hethet_decr + vecw_bytesum(inner_acc_hethet_decr, m0);
acc_not_dotprod = acc_not_dotprod + vecw_bytesum(inner_acc_not_dotprod, m0);
}
}
void HardcallPhasedR2RefineSubset(const uintptr_t* subset_mask, const uintptr_t* phasepresent0, const uintptr_t* phaseinfo0, const uintptr_t* phasepresent1, const uintptr_t* phaseinfo1, uint32_t word_ct, uint32_t* __restrict known_dotprod_ptr, uint32_t* __restrict unknown_hethet_ct_ptr) {
uint32_t hethet_decr = 0;
uint32_t not_dotprod = 0;
if (word_ct >= 3 * kWordsPerVec) {
const uint32_t remainder = word_ct % (3 * kWordsPerVec);
const uint32_t main_block_word_ct = word_ct - remainder;
word_ct = remainder;
HardcallPhasedR2RefineSubsetMain(R_CAST(const VecW*, subset_mask), R_CAST(const VecW*, phasepresent0), R_CAST(const VecW*, phaseinfo0), R_CAST(const VecW*, phasepresent1), R_CAST(const VecW*, phaseinfo1), main_block_word_ct / kWordsPerVec, &hethet_decr, ¬_dotprod);
subset_mask = &(subset_mask[main_block_word_ct]);
phasepresent0 = &(phasepresent0[main_block_word_ct]);
phaseinfo0 = &(phaseinfo0[main_block_word_ct]);
phasepresent1 = &(phasepresent1[main_block_word_ct]);
phaseinfo1 = &(phaseinfo1[main_block_word_ct]);
}
for (uint32_t trailing_word_idx = 0; trailing_word_idx != word_ct; ++trailing_word_idx) {
const uintptr_t mask = phasepresent0[trailing_word_idx] & phasepresent1[trailing_word_idx] & subset_mask[trailing_word_idx];
const uintptr_t xor_word = phaseinfo0[trailing_word_idx] ^ phaseinfo1[trailing_word_idx];
hethet_decr += PopcountWord(mask);
not_dotprod += PopcountWord(mask & xor_word);
}
*known_dotprod_ptr += hethet_decr - not_dotprod;
*unknown_hethet_ct_ptr -= hethet_decr;
}
// (Phased-)dosage r^2:
// 1. This must be defined such that, as the phased-dosages approach integers,
// r^2 converges to the corresponding phased-hardcall value.
// 2. We also want r^2 between a variant and itself to be 1 (unless we have no
// data at all). Unfortunately, the formula used before 26 Oct 2023 did not
// have this property.
//
// Suppose one unphased sample has dosage(var0)=0.2 and dosage(var1)=0.2.
// We treat this as P(var0=0/0)=0.8, P(var0=0/1)=0.2,
// P(var1=0/0)=0.8, P(var1=0/1)=0.2.
// Previously, we treated the two variants as independent, acting as if
// P(var0=0/0, var1=0/1) = 0.8 * 0.2, etc.; but that is incompatible with (2),
// and generally contrary to the whole point of a LD estimate.
// Revised computation has unknown-hethet frequency equal to the
// min(P(var0=0/1), P(var1=0/1)) upper bound, and known-dotprod equal to the
// corresponding max(0, P(var0=1/1) + P(var1=1/1) - 1) lower bound.
static_assert(sizeof(Dosage) == 2, "plink2_ld dosage-handling routines must be updated.");
#ifdef __LP64__
# ifdef USE_AVX2
void FillDosageHet(const Dosage* dosage_vec, uint32_t dosagev_ct, Dosage* dosage_het) {
const __m256i* dosage_vvec_iter = R_CAST(const __m256i*, dosage_vec);
# if defined(__APPLE__) && ((!defined(__cplusplus)) || (__cplusplus < 201103L))
const __m256i all_n32768 = _mm256_set1_epi16(0x8000);
const __m256i all_n16384 = _mm256_set1_epi16(0xc000);
# else
const __m256i all_n32768 = _mm256_set1_epi64x(-0x7fff7fff7fff8000LL);
const __m256i all_n16384 = _mm256_set1_epi64x(-0x3fff3fff3fff4000LL);
# endif
const __m256i all0 = _mm256_setzero_si256();
const __m256i all1 = _mm256_cmpeq_epi16(all0, all0);
// 0-16384: leave unchanged
// 16385-32768: subtract from 32768
// 65535: set to 0
// subtract from 0, cmp_epi16 to produce mask, add 32768
__m256i* dosage_het_iter = R_CAST(__m256i*, dosage_het);
for (uint32_t vec_idx = 0; vec_idx != dosagev_ct; ++vec_idx) {
__m256i dosagev = *dosage_vvec_iter++;
__m256i cur_mask = _mm256_cmpeq_epi16(dosagev, all1);
dosagev = _mm256_andnot_si256(cur_mask, dosagev); // 65535 -> 0
// xor with -32768 is same as subtracting it
__m256i dosagev_opp = _mm256_xor_si256(dosagev, all_n32768);
// anything > -16384 after this subtraction was originally >16384.
// calling the original value x, we want to flip the sign of (x - 32768)
cur_mask = _mm256_cmpgt_epi16(dosagev_opp, all_n16384);
dosagev_opp = _mm256_and_si256(cur_mask, dosagev_opp);
// has the <= 16384 values
dosagev = _mm256_andnot_si256(cur_mask, dosagev);
dosagev_opp = _mm256_sub_epi16(all0, dosagev_opp);
*dosage_het_iter++ = _mm256_add_epi16(dosagev, dosagev_opp);
}
}
uint64_t DenseDosageSum(const Dosage* dosage_vec, uint32_t vec_ct) {
// end of dosage_vec assumed to be missing-padded (0-padded also ok)
const __m256i* dosage_vvec_iter = R_CAST(const __m256i*, dosage_vec);
const __m256i m16 = _mm256_set1_epi64x(kMask0000FFFF);
const __m256i all1 = _mm256_cmpeq_epi16(m16, m16);
uint64_t sum = 0;
for (uint32_t vecs_left = vec_ct; ; ) {
__m256i sumv = _mm256_setzero_si256();
const __m256i* dosage_vvec_stop;
// individual values in [0..32768]
// 32768 * 8191 * 16 dosages per __m256i = just under 2^32
if (vecs_left < 8191) {
if (!vecs_left) {
return sum;
}
dosage_vvec_stop = &(dosage_vvec_iter[vecs_left]);
vecs_left = 0;
} else {
dosage_vvec_stop = &(dosage_vvec_iter[8191]);
vecs_left -= 8191;
}
do {
__m256i dosagev = *dosage_vvec_iter++;
__m256i invmask = _mm256_cmpeq_epi16(dosagev, all1);
dosagev = _mm256_andnot_si256(invmask, dosagev);
dosagev = _mm256_add_epi64(_mm256_and_si256(dosagev, m16), _mm256_and_si256(_mm256_srli_epi64(dosagev, 16), m16));
sumv = _mm256_add_epi64(sumv, dosagev);
} while (dosage_vvec_iter < dosage_vvec_stop);
UniVec acc;
acc.vw = R_CAST(VecW, sumv);
sum += UniVecHsum32(acc);
}
}
uint64_t DenseDosageSumSubset(const Dosage* dosage_vec, const Dosage* dosage_mask_vec, uint32_t vec_ct) {
// end of dosage_vec assumed to be missing-padded (0-padded also ok)
const __m256i* dosage_vvec_iter = R_CAST(const __m256i*, dosage_vec);
const __m256i* dosage_mask_vvec_iter = R_CAST(const __m256i*, dosage_mask_vec);
const __m256i m16 = _mm256_set1_epi64x(kMask0000FFFF);
const __m256i all1 = _mm256_cmpeq_epi16(m16, m16);
uint64_t sum = 0;
for (uint32_t vecs_left = vec_ct; ; ) {
__m256i sumv = _mm256_setzero_si256();
const __m256i* dosage_vvec_stop;
if (vecs_left < 8191) {
if (!vecs_left) {
return sum;
}
dosage_vvec_stop = &(dosage_vvec_iter[vecs_left]);
vecs_left = 0;
} else {
dosage_vvec_stop = &(dosage_vvec_iter[8191]);
vecs_left -= 8191;
}
do {
__m256i invmask = *dosage_mask_vvec_iter++;
__m256i dosagev = *dosage_vvec_iter++;
invmask = _mm256_cmpeq_epi16(invmask, all1);
invmask = _mm256_or_si256(invmask, _mm256_cmpeq_epi16(dosagev, all1));
dosagev = _mm256_andnot_si256(invmask, dosagev);
dosagev = _mm256_add_epi64(_mm256_and_si256(dosagev, m16), _mm256_and_si256(_mm256_srli_epi64(dosagev, 16), m16));
sumv = _mm256_add_epi64(sumv, dosagev);
} while (dosage_vvec_iter < dosage_vvec_stop);
UniVec acc;
acc.vw = R_CAST(VecW, sumv);
sum += UniVecHsum32(acc);
}
}
// 65535 treated as missing
uint64_t DosageUnsignedDotprod(const Dosage* dosage_vec0, const Dosage* dosage_vec1, uint32_t vec_ct) {
const __m256i* dosage_vvec0_iter = R_CAST(const __m256i*, dosage_vec0);
const __m256i* dosage_vvec1_iter = R_CAST(const __m256i*, dosage_vec1);
const __m256i m16 = _mm256_set1_epi64x(kMask0000FFFF);
const __m256i all1 = _mm256_cmpeq_epi16(m16, m16);
uint64_t dotprod = 0;
for (uint32_t vecs_left = vec_ct; ; ) {
__m256i dotprod_lo = _mm256_setzero_si256();
__m256i dotprod_hi = _mm256_setzero_si256();
const __m256i* dosage_vvec0_stop;
// Products in [0..2^30]; dotprod_lo part is in 0..65535, dotprod_hi part
// is in 0..16384.
// 65535 * 4096 * 16 dosages per __m256i = just under 2^32
if (vecs_left < 4096) {
if (!vecs_left) {
return dotprod;
}
dosage_vvec0_stop = &(dosage_vvec0_iter[vecs_left]);
vecs_left = 0;
} else {
dosage_vvec0_stop = &(dosage_vvec0_iter[4096]);
vecs_left -= 4096;
}
do {
__m256i dosage0 = *dosage_vvec0_iter++;
__m256i dosage1 = *dosage_vvec1_iter++;
__m256i invmask = _mm256_cmpeq_epi16(dosage0, all1);
invmask = _mm256_or_si256(invmask, _mm256_cmpeq_epi16(dosage1, all1));
dosage0 = _mm256_andnot_si256(invmask, dosage0);
dosage1 = _mm256_andnot_si256(invmask, dosage1);
// todo: try rewriting this loop without 256-bit multiplication, to avoid
// ~15% universal clock frequency slowdown (128-bit? sparse?)
__m256i lo16 = _mm256_mullo_epi16(dosage0, dosage1);
__m256i hi16 = _mm256_mulhi_epu16(dosage0, dosage1);
lo16 = _mm256_add_epi64(_mm256_and_si256(lo16, m16), _mm256_and_si256(_mm256_srli_epi64(lo16, 16), m16));
hi16 = _mm256_and_si256(_mm256_add_epi64(hi16, _mm256_srli_epi64(hi16, 16)), m16);
dotprod_lo = _mm256_add_epi64(dotprod_lo, lo16);
dotprod_hi = _mm256_add_epi64(dotprod_hi, hi16);
} while (dosage_vvec0_iter < dosage_vvec0_stop);
UniVec acc_lo;
UniVec acc_hi;
acc_lo.vw = R_CAST(VecW, dotprod_lo);
acc_hi.vw = R_CAST(VecW, dotprod_hi);
dotprod += UniVecHsum32(acc_lo) + 65536 * UniVecHsum32(acc_hi);
}
}
uint64_t DosageUnsignedDotprodSubset(const Dosage* dosage_mask_vec, const Dosage* dosage_vec0, const Dosage* dosage_vec1, uint32_t vec_ct) {
const __m256i* dosage_mask_iter = R_CAST(const __m256i*, dosage_mask_vec);
const __m256i* dosage_vvec0_iter = R_CAST(const __m256i*, dosage_vec0);
const __m256i* dosage_vvec1_iter = R_CAST(const __m256i*, dosage_vec1);
const __m256i m16 = _mm256_set1_epi64x(kMask0000FFFF);
const __m256i all1 = _mm256_cmpeq_epi16(m16, m16);
uint64_t dotprod = 0;
for (uint32_t vecs_left = vec_ct; ; ) {
__m256i dotprod_lo = _mm256_setzero_si256();
__m256i dotprod_hi = _mm256_setzero_si256();
const __m256i* dosage_vvec0_stop;
if (vecs_left < 4096) {
if (!vecs_left) {
return dotprod;
}
dosage_vvec0_stop = &(dosage_vvec0_iter[vecs_left]);
vecs_left = 0;
} else {
dosage_vvec0_stop = &(dosage_vvec0_iter[4096]);
vecs_left -= 4096;
}
do {
__m256i cur_mask = *dosage_mask_iter++;
__m256i dosage0 = *dosage_vvec0_iter++;
__m256i dosage1 = *dosage_vvec1_iter++;
__m256i invmask = _mm256_cmpeq_epi16(dosage0, all1);
invmask = _mm256_or_si256(invmask, _mm256_cmpeq_epi16(dosage1, all1));
invmask = _mm256_or_si256(invmask, _mm256_cmpeq_epi16(cur_mask, all1));
dosage0 = _mm256_andnot_si256(invmask, dosage0);
dosage1 = _mm256_andnot_si256(invmask, dosage1);
// todo: try rewriting this loop without 256-bit multiplication, to avoid
// ~15% universal clock frequency slowdown (128-bit? sparse?)
__m256i lo16 = _mm256_mullo_epi16(dosage0, dosage1);
__m256i hi16 = _mm256_mulhi_epu16(dosage0, dosage1);
lo16 = _mm256_add_epi64(_mm256_and_si256(lo16, m16), _mm256_and_si256(_mm256_srli_epi64(lo16, 16), m16));
hi16 = _mm256_and_si256(_mm256_add_epi64(hi16, _mm256_srli_epi64(hi16, 16)), m16);
dotprod_lo = _mm256_add_epi64(dotprod_lo, lo16);
dotprod_hi = _mm256_add_epi64(dotprod_hi, hi16);
} while (dosage_vvec0_iter < dosage_vvec0_stop);
UniVec acc_lo;
UniVec acc_hi;
acc_lo.vw = R_CAST(VecW, dotprod_lo);
acc_hi.vw = R_CAST(VecW, dotprod_hi);
dotprod += UniVecHsum32(acc_lo) + 65536 * UniVecHsum32(acc_hi);
}
}
void DosageUnphasedDotprodComponents(const Dosage* dosage_vec0, const Dosage* dosage_vec1, const Dosage* dosage_het0, const Dosage* dosage_het1, uint32_t vec_ct, uint64_t* known_dotprod_dosagep, uint64_t* uhethet_dosagep) {
const __m256i* dosage_vvec0_iter = R_CAST(const __m256i*, dosage_vec0);
const __m256i* dosage_vvec1_iter = R_CAST(const __m256i*, dosage_vec1);
const __m256i* dosage_het0_iter = R_CAST(const __m256i*, dosage_het0);
const __m256i* dosage_het1_iter = R_CAST(const __m256i*, dosage_het1);
const __m256i all_32767 = _mm256_set1_epi16(0x7fff);
const __m256i m16 = _mm256_set1_epi64x(kMask0000FFFF);
const __m256i all0 = _mm256_setzero_si256();
const __m256i all1 = _mm256_cmpeq_epi16(all0, all0);
uint64_t uhethet_dosage = 0;
uint64_t known_dotprod = 0;
for (uint32_t vecs_left = vec_ct; ; ) {
__m256i uhethet_sumv = _mm256_setzero_si256();
__m256i dotprod_sumv = _mm256_setzero_si256();
const __m256i* dosage_vvec0_stop;
// individual dotprod_incr values in [0..32768]
// 32768 * 8191 * 16 dosages per __m256i = just under 2^32
if (vecs_left < 8191) {
if (!vecs_left) {
*known_dotprod_dosagep = known_dotprod * 2;
*uhethet_dosagep = uhethet_dosage * 2;
return;
}
dosage_vvec0_stop = &(dosage_vvec0_iter[vecs_left]);
vecs_left = 0;
} else {
dosage_vvec0_stop = &(dosage_vvec0_iter[8191]);
vecs_left -= 8191;
}
do {
// We wish to compute max(0, dosage0 + dosage1 - 32768), where dosage0
// and dosage1 are uint16s in {0..32768, 65535}, where 65535 corresponds
// to a missing value.
// An annoying property of this computation is that
// (dosage0 + dosage1 - 32768) ranges from -32768 to 32768, which just
// barely exceeds the range of a (u)int16.
// We work around this by observing that dosage0==0 can be treated as if
// it were a missing value: it is impossible for dosage0 + dosage1 -
// 32768 to exceed 0 if dosage0 is 0. With that case made ignorable,
// (dosage0 + dosage1 - 32769) is then in the -32768..32767 int16 range,
// so we compute 1 + max(-1, dosage0 + dosage1 - 32769) and then apply
// our augmented mask.
const __m256i dosage0_plus_32767 = _mm256_add_epi16(*dosage_vvec0_iter++, all_32767);
const __m256i dosage1 = *dosage_vvec1_iter++;
const __m256i het0 = *dosage_het0_iter++;
const __m256i het1 = *dosage_het1_iter++;
// Conveniently, dosage0 + 32767 > 0 in int16 space iff dosage0 is
// missing or zero.
const __m256i invmask = _mm256_or_si256(_mm256_cmpgt_epi16(dosage0_plus_32767, all0), _mm256_cmpeq_epi16(dosage1, all1));
// No need to mask this, het0 or het1 is already equal to 0 when there's
// a missing value.
__m256i uhethet_incr = _mm256_min_epi16(het0, het1);
// Adding 32767 and subtracting 32769 are equivalent in vector int16
// space. (Though they're not equivalent when working with single
// int16_ts!)
const __m256i dosagesum_m32769 = _mm256_add_epi16(dosage0_plus_32767, dosage1);
const __m256i unmasked_dotprod_incr = _mm256_sub_epi16(_mm256_max_epi16(dosagesum_m32769, all1), all1);
__m256i dotprod_incr = _mm256_andnot_si256(invmask, unmasked_dotprod_incr);
uhethet_incr = _mm256_and_si256(_mm256_add_epi64(uhethet_incr, _mm256_srli_epi64(uhethet_incr, 16)), m16);
dotprod_incr = _mm256_add_epi64(_mm256_and_si256(dotprod_incr, m16), _mm256_and_si256(_mm256_srli_epi64(dotprod_incr, 16), m16));
uhethet_sumv = _mm256_add_epi64(uhethet_sumv, uhethet_incr);
dotprod_sumv = _mm256_add_epi64(dotprod_sumv, dotprod_incr);
} while (dosage_vvec0_iter < dosage_vvec0_stop);
UniVec uhethet_acc;
UniVec dotprod_acc;
uhethet_acc.vw = R_CAST(VecW, uhethet_sumv);
dotprod_acc.vw = R_CAST(VecW, dotprod_sumv);
uhethet_dosage += UniVecHsum32(uhethet_acc);
known_dotprod += UniVecHsum32(dotprod_acc);
}
}
void DosageUnphasedDotprodComponentsSubset(const Dosage* subset_invmask, const Dosage* dosage_vec0, const Dosage* dosage_vec1, const Dosage* dosage_het0, const Dosage* dosage_het1, uint32_t vec_ct, uint64_t* known_dotprod_dosagep, uint64_t* uhethet_dosagep) {
const __m256i* invmask_iter = R_CAST(const __m256i*, subset_invmask);
const __m256i* dosage_vvec0_iter = R_CAST(const __m256i*, dosage_vec0);
const __m256i* dosage_vvec1_iter = R_CAST(const __m256i*, dosage_vec1);
const __m256i* dosage_het0_iter = R_CAST(const __m256i*, dosage_het0);
const __m256i* dosage_het1_iter = R_CAST(const __m256i*, dosage_het1);
const __m256i all_32767 = _mm256_set1_epi16(0x7fff);
const __m256i m16 = _mm256_set1_epi64x(kMask0000FFFF);
const __m256i all0 = _mm256_setzero_si256();
const __m256i all1 = _mm256_cmpeq_epi16(all0, all0);
uint64_t uhethet_dosage = 0;
uint64_t known_dotprod = 0;
for (uint32_t vecs_left = vec_ct; ; ) {
__m256i uhethet_sumv = _mm256_setzero_si256();
__m256i dotprod_sumv = _mm256_setzero_si256();
const __m256i* dosage_vvec0_stop;
if (vecs_left < 8191) {
if (!vecs_left) {
*known_dotprod_dosagep = known_dotprod * 2;
*uhethet_dosagep = uhethet_dosage * 2;
return;
}
dosage_vvec0_stop = &(dosage_vvec0_iter[vecs_left]);
vecs_left = 0;
} else {
dosage_vvec0_stop = &(dosage_vvec0_iter[8191]);
vecs_left -= 8191;
}
do {
const __m256i raw_invmask = *invmask_iter++;
const __m256i dosage0_plus_32767 = _mm256_add_epi16(*dosage_vvec0_iter++, all_32767);
const __m256i dosage1 = *dosage_vvec1_iter++;
const __m256i het0 = *dosage_het0_iter++;
const __m256i het1 = *dosage_het1_iter++;
__m256i uhethet_incr = _mm256_andnot_si256(raw_invmask, _mm256_min_epi16(het0, het1));
__m256i invmask = _mm256_or_si256(raw_invmask, _mm256_cmpgt_epi16(dosage0_plus_32767, all0));
invmask = _mm256_or_si256(invmask, _mm256_cmpeq_epi16(dosage1, all1));
const __m256i dosagesum_m32769 = _mm256_add_epi16(dosage0_plus_32767, dosage1);
const __m256i unmasked_dotprod_incr = _mm256_sub_epi16(_mm256_max_epi16(dosagesum_m32769, all1), all1);
__m256i dotprod_incr = _mm256_andnot_si256(invmask, unmasked_dotprod_incr);
uhethet_incr = _mm256_and_si256(_mm256_add_epi64(uhethet_incr, _mm256_srli_epi64(uhethet_incr, 16)), m16);
dotprod_incr = _mm256_add_epi64(_mm256_and_si256(dotprod_incr, m16), _mm256_and_si256(_mm256_srli_epi64(dotprod_incr, 16), m16));
uhethet_sumv = _mm256_add_epi64(uhethet_sumv, uhethet_incr);
dotprod_sumv = _mm256_add_epi64(dotprod_sumv, dotprod_incr);
} while (dosage_vvec0_iter < dosage_vvec0_stop);
UniVec uhethet_acc;
UniVec dotprod_acc;
uhethet_acc.vw = R_CAST(VecW, uhethet_sumv);
dotprod_acc.vw = R_CAST(VecW, dotprod_sumv);
uhethet_dosage += UniVecHsum32(uhethet_acc);
known_dotprod += UniVecHsum32(dotprod_acc);
}
}
void DosagePhasedDotprodComponents(const Dosage* dosage_vec0, const Dosage* dosage_vec1, const SDosage* dphase_delta0, const SDosage* dphase_delta1, uint32_t vec_ct, uint64_t* known_dotprod_dosagep, uint64_t* uhethet_dosagep) {
const __m256i* dosage_vvec0_iter = R_CAST(const __m256i*, dosage_vec0);
const __m256i* dosage_vvec1_iter = R_CAST(const __m256i*, dosage_vec1);
const __m256i* dphase_delta0_iter = R_CAST(const __m256i*, dphase_delta0);
const __m256i* dphase_delta1_iter = R_CAST(const __m256i*, dphase_delta1);
const __m256i all_16384 = _mm256_set1_epi16(0x4000);
const __m256i all_32767 = _mm256_set1_epi16(0x7fff);
# if defined(__APPLE__) && ((!defined(__cplusplus)) || (__cplusplus < 201103L))
const __m256i all_n32768 = _mm256_set1_epi16(0x8000);
# else
const __m256i all_n32768 = _mm256_set1_epi64x(-0x7fff7fff7fff8000LL);
# endif
const __m256i m16 = _mm256_set1_epi64x(kMask0000FFFF);
const __m256i all0 = _mm256_setzero_si256();
const __m256i all1 = _mm256_cmpeq_epi16(all0, all0);
uint64_t uhethet_dosage = 0;
uint64_t known_dotprod = 0;
for (uint32_t vecs_left = vec_ct; ; ) {
__m256i uhethet_sumv = _mm256_setzero_si256();
__m256i dotprod_sumv = _mm256_setzero_si256();
const __m256i* dosage_vvec0_stop;
// dotprod_incrA and dotprod_incrB values in [0..32768]
// 65536 * 4095 * 16 dosages per __m256i = just under 2^32
if (vecs_left < 4095) {
if (!vecs_left) {
*known_dotprod_dosagep = known_dotprod;
*uhethet_dosagep = uhethet_dosage;
return;
}
dosage_vvec0_stop = &(dosage_vvec0_iter[vecs_left]);
vecs_left = 0;
} else {
dosage_vvec0_stop = &(dosage_vvec0_iter[4095]);
vecs_left -= 4095;
}
do {
const __m256i dosage0 = *dosage_vvec0_iter++;
const __m256i dosage1 = *dosage_vvec1_iter++;
const __m256i delta0 = *dphase_delta0_iter++;
const __m256i delta1 = *dphase_delta1_iter++;
const __m256i invmask = _mm256_or_si256(_mm256_cmpeq_epi16(dosage0, all1), _mm256_cmpeq_epi16(dosage1, all1));
const __m256i dosage0A = _mm256_add_epi16(dosage0, delta0);
const __m256i dosage1A = _mm256_add_epi16(dosage1, delta1);
const __m256i dosage0B = _mm256_sub_epi16(dosage0, delta0);
const __m256i dosage1B = _mm256_sub_epi16(dosage1, delta1);
const __m256i dosageA_m32769 = _mm256_add_epi16(_mm256_add_epi16(dosage0A, dosage1A), all_32767);
const __m256i dosageB_m32769 = _mm256_add_epi16(_mm256_add_epi16(dosage0B, dosage1B), all_32767);
const __m256i invmaskA = _mm256_or_si256(invmask, _mm256_cmpeq_epi16(dosage0A, all0));
const __m256i invmaskB = _mm256_or_si256(invmask, _mm256_cmpeq_epi16(dosage0B, all0));
const __m256i unmasked_dotprod_incrA = _mm256_sub_epi16(_mm256_max_epi16(dosageA_m32769, all1), all1);
const __m256i unmasked_dotprod_incrB = _mm256_sub_epi16(_mm256_max_epi16(dosageB_m32769, all1), all1);
__m256i dotprod_incrA = _mm256_andnot_si256(invmaskA, unmasked_dotprod_incrA);
__m256i dotprod_incrB = _mm256_andnot_si256(invmaskB, unmasked_dotprod_incrB);
dotprod_incrA = _mm256_add_epi64(_mm256_and_si256(dotprod_incrA, m16), _mm256_and_si256(_mm256_srli_epi64(dotprod_incrA, 16), m16));
dotprod_incrB = _mm256_add_epi64(_mm256_and_si256(dotprod_incrB, m16), _mm256_and_si256(_mm256_srli_epi64(dotprod_incrB, 16), m16));
dotprod_sumv = _mm256_add_epi64(dotprod_sumv, dotprod_incrA);
dotprod_sumv = _mm256_add_epi64(dotprod_sumv, dotprod_incrB);
const __m256i known0A = _mm256_abs_epi16(_mm256_sub_epi16(all_16384, dosage0A));
const __m256i known1A = _mm256_abs_epi16(_mm256_sub_epi16(all_16384, dosage1A));
const __m256i known0B = _mm256_abs_epi16(_mm256_sub_epi16(all_16384, dosage0B));
const __m256i known1B = _mm256_abs_epi16(_mm256_sub_epi16(all_16384, dosage1B));
const __m256i maxknownA = _mm256_max_epi16(known0A, known1A);
const __m256i maxknownB = _mm256_max_epi16(known0B, known1B);
__m256i uhethet_incr = _mm256_andnot_si256(invmask, _mm256_sub_epi16(all_n32768, _mm256_add_epi16(maxknownA, maxknownB)));
uhethet_incr = _mm256_add_epi64(_mm256_and_si256(uhethet_incr, m16), _mm256_and_si256(_mm256_srli_epi64(uhethet_incr, 16), m16));
uhethet_sumv = _mm256_add_epi64(uhethet_sumv, uhethet_incr);
} while (dosage_vvec0_iter < dosage_vvec0_stop);
UniVec dotprod_acc;
UniVec uhethet_acc;
dotprod_acc.vw = R_CAST(VecW, dotprod_sumv);
uhethet_acc.vw = R_CAST(VecW, uhethet_sumv);
known_dotprod += UniVecHsum32(dotprod_acc);
uhethet_dosage += UniVecHsum32(uhethet_acc);
}
}
void DosagePhasedDotprodComponentsSubset(const Dosage* subset_invmask, const Dosage* dosage_vec0, const Dosage* dosage_vec1, const SDosage* dphase_delta0, const SDosage* dphase_delta1, uint32_t vec_ct, uint64_t* known_dotprod_dosagep, uint64_t* uhethet_dosagep) {
const __m256i* invmask_iter = R_CAST(const __m256i*, subset_invmask);
const __m256i* dosage_vvec0_iter = R_CAST(const __m256i*, dosage_vec0);
const __m256i* dosage_vvec1_iter = R_CAST(const __m256i*, dosage_vec1);
const __m256i* dphase_delta0_iter = R_CAST(const __m256i*, dphase_delta0);
const __m256i* dphase_delta1_iter = R_CAST(const __m256i*, dphase_delta1);
const __m256i all_16384 = _mm256_set1_epi16(0x4000);
const __m256i all_32767 = _mm256_set1_epi16(0x7fff);
# if defined(__APPLE__) && ((!defined(__cplusplus)) || (__cplusplus < 201103L))
const __m256i all_n32768 = _mm256_set1_epi16(0x8000);
# else
const __m256i all_n32768 = _mm256_set1_epi64x(-0x7fff7fff7fff8000LL);
# endif
const __m256i m16 = _mm256_set1_epi64x(kMask0000FFFF);
const __m256i all0 = _mm256_setzero_si256();
const __m256i all1 = _mm256_cmpeq_epi16(all0, all0);
uint64_t uhethet_dosage = 0;
uint64_t known_dotprod = 0;
for (uint32_t vecs_left = vec_ct; ; ) {
__m256i uhethet_sumv = _mm256_setzero_si256();
__m256i dotprod_sumv = _mm256_setzero_si256();
const __m256i* dosage_vvec0_stop;
if (vecs_left < 4095) {
if (!vecs_left) {
*known_dotprod_dosagep = known_dotprod;
*uhethet_dosagep = uhethet_dosage;
return;
}
dosage_vvec0_stop = &(dosage_vvec0_iter[vecs_left]);
vecs_left = 0;
} else {
dosage_vvec0_stop = &(dosage_vvec0_iter[4095]);
vecs_left -= 4095;
}
do {
__m256i invmask = *invmask_iter++;
const __m256i dosage0 = *dosage_vvec0_iter++;
const __m256i dosage1 = *dosage_vvec1_iter++;
const __m256i delta0 = *dphase_delta0_iter++;
const __m256i delta1 = *dphase_delta1_iter++;
invmask = _mm256_or_si256(invmask, _mm256_cmpeq_epi16(dosage0, all1));
invmask = _mm256_or_si256(invmask, _mm256_cmpeq_epi16(dosage1, all1));
const __m256i dosage0A = _mm256_add_epi16(dosage0, delta0);
const __m256i dosage1A = _mm256_add_epi16(dosage1, delta1);
const __m256i dosage0B = _mm256_sub_epi16(dosage0, delta0);
const __m256i dosage1B = _mm256_sub_epi16(dosage1, delta1);
const __m256i dosageA_m32769 = _mm256_add_epi16(_mm256_add_epi16(dosage0A, dosage1A), all_32767);
const __m256i dosageB_m32769 = _mm256_add_epi16(_mm256_add_epi16(dosage0B, dosage1B), all_32767);
const __m256i invmaskA = _mm256_or_si256(invmask, _mm256_cmpeq_epi16(dosage0A, all0));
const __m256i invmaskB = _mm256_or_si256(invmask, _mm256_cmpeq_epi16(dosage0B, all0));
const __m256i unmasked_dotprod_incrA = _mm256_sub_epi16(_mm256_max_epi16(dosageA_m32769, all1), all1);
const __m256i unmasked_dotprod_incrB = _mm256_sub_epi16(_mm256_max_epi16(dosageB_m32769, all1), all1);
__m256i dotprod_incrA = _mm256_andnot_si256(invmaskA, unmasked_dotprod_incrA);
__m256i dotprod_incrB = _mm256_andnot_si256(invmaskB, unmasked_dotprod_incrB);
dotprod_incrA = _mm256_add_epi64(_mm256_and_si256(dotprod_incrA, m16), _mm256_and_si256(_mm256_srli_epi64(dotprod_incrA, 16), m16));
dotprod_incrB = _mm256_add_epi64(_mm256_and_si256(dotprod_incrB, m16), _mm256_and_si256(_mm256_srli_epi64(dotprod_incrB, 16), m16));
dotprod_sumv = _mm256_add_epi64(dotprod_sumv, dotprod_incrA);
dotprod_sumv = _mm256_add_epi64(dotprod_sumv, dotprod_incrB);
const __m256i known0A = _mm256_abs_epi16(_mm256_sub_epi16(all_16384, dosage0A));
const __m256i known1A = _mm256_abs_epi16(_mm256_sub_epi16(all_16384, dosage1A));
const __m256i known0B = _mm256_abs_epi16(_mm256_sub_epi16(all_16384, dosage0B));
const __m256i known1B = _mm256_abs_epi16(_mm256_sub_epi16(all_16384, dosage1B));
const __m256i maxknownA = _mm256_max_epi16(known0A, known1A);
const __m256i maxknownB = _mm256_max_epi16(known0B, known1B);
__m256i uhethet_incr = _mm256_andnot_si256(invmask, _mm256_sub_epi16(all_n32768, _mm256_add_epi16(maxknownA, maxknownB)));
uhethet_incr = _mm256_add_epi64(_mm256_and_si256(uhethet_incr, m16), _mm256_and_si256(_mm256_srli_epi64(uhethet_incr, 16), m16));
uhethet_sumv = _mm256_add_epi64(uhethet_sumv, uhethet_incr);
} while (dosage_vvec0_iter < dosage_vvec0_stop);
UniVec dotprod_acc;
UniVec uhethet_acc;
dotprod_acc.vw = R_CAST(VecW, dotprod_sumv);
uhethet_acc.vw = R_CAST(VecW, uhethet_sumv);
known_dotprod += UniVecHsum32(dotprod_acc);
uhethet_dosage += UniVecHsum32(uhethet_acc);
}
}
# else // !USE_AVX2
void FillDosageHet(const Dosage* dosage_vec, uint32_t dosagev_ct, Dosage* dosage_het) {
const __m128i* dosage_vvec_iter = R_CAST(const __m128i*, dosage_vec);
# if defined(__APPLE__) && ((!defined(__cplusplus)) || (__cplusplus < 201103L))
const __m128i all_n32768 = _mm_set1_epi16(0x8000);
const __m128i all_n16384 = _mm_set1_epi16(0xc000);
# else
const __m128i all_n32768 = _mm_set1_epi64x(-0x7fff7fff7fff8000LL);
const __m128i all_n16384 = _mm_set1_epi64x(-0x3fff3fff3fff4000LL);
# endif
const __m128i all0 = _mm_setzero_si128();
const __m128i all1 = _mm_cmpeq_epi16(all0, all0);
// 0-16384: leave unchanged
// 16385-32768: subtract from 32768
// 65535: set to 0
// subtract from 0, _mm_cmplt_epi16 to produce mask, add 32768
__m128i* dosage_het_iter = R_CAST(__m128i*, dosage_het);
for (uint32_t vec_idx = 0; vec_idx != dosagev_ct; ++vec_idx) {
__m128i dosagev = *dosage_vvec_iter++;
__m128i cur_mask = _mm_cmpeq_epi16(dosagev, all1);
dosagev = _mm_andnot_si128(cur_mask, dosagev); // 65535 -> 0
// xor with -32768 is same as subtracting it
__m128i dosagev_opp = _mm_xor_si128(dosagev, all_n32768);
// anything > -16384 after this subtraction was originally >16384.
// calling the original value x, we want to flip the sign of (x - 32768)
cur_mask = _mm_cmpgt_epi16(dosagev_opp, all_n16384);
dosagev_opp = _mm_and_si128(cur_mask, dosagev_opp);
dosagev = _mm_andnot_si128(cur_mask, dosagev); // has the <= 16384 values
dosagev_opp = _mm_sub_epi16(all0, dosagev_opp);
*dosage_het_iter++ = _mm_add_epi16(dosagev, dosagev_opp);
}
}
uint64_t DenseDosageSum(const Dosage* dosage_vec, uint32_t vec_ct) {
// end of dosage_vec assumed to be missing-padded (0-padded also ok)
const __m128i* dosage_vvec_iter = R_CAST(const __m128i*, dosage_vec);
const __m128i m16 = _mm_set1_epi64x(kMask0000FFFF);
const __m128i all1 = _mm_cmpeq_epi16(m16, m16);
uint64_t sum = 0;
for (uint32_t vecs_left = vec_ct; ; ) {
__m128i sumv = _mm_setzero_si128();
const __m128i* dosage_vvec_stop;
// individual values in [0..32768]
// 32768 * 16383 * 8 dosages per __m128i = just under 2^32
if (vecs_left < 16383) {
if (!vecs_left) {
return sum;
}
dosage_vvec_stop = &(dosage_vvec_iter[vecs_left]);
vecs_left = 0;
} else {
dosage_vvec_stop = &(dosage_vvec_iter[16383]);
vecs_left -= 16383;
}
do {
__m128i dosagev = *dosage_vvec_iter++;
__m128i invmask = _mm_cmpeq_epi16(dosagev, all1);
dosagev = _mm_andnot_si128(invmask, dosagev);
dosagev = _mm_add_epi64(_mm_and_si128(dosagev, m16), _mm_and_si128(_mm_srli_epi64(dosagev, 16), m16));
sumv = _mm_add_epi64(sumv, dosagev);
} while (dosage_vvec_iter < dosage_vvec_stop);
UniVec acc;
acc.vw = R_CAST(VecW, sumv);
sum += UniVecHsum32(acc);
}
}
uint64_t DenseDosageSumSubset(const Dosage* dosage_vec, const Dosage* dosage_mask_vec, uint32_t vec_ct) {
// end of dosage_vec assumed to be missing-padded (0-padded also ok)
const __m128i* dosage_vvec_iter = R_CAST(const __m128i*, dosage_vec);
const __m128i* dosage_mask_vvec_iter = R_CAST(const __m128i*, dosage_mask_vec);
const __m128i m16 = _mm_set1_epi64x(kMask0000FFFF);
const __m128i all1 = _mm_cmpeq_epi16(m16, m16);
uint64_t sum = 0;
for (uint32_t vecs_left = vec_ct; ; ) {
__m128i sumv = _mm_setzero_si128();
const __m128i* dosage_vvec_stop;
if (vecs_left < 16383) {
if (!vecs_left) {
return sum;
}
dosage_vvec_stop = &(dosage_vvec_iter[vecs_left]);
vecs_left = 0;
} else {
dosage_vvec_stop = &(dosage_vvec_iter[16383]);
vecs_left -= 16383;
}
do {
__m128i invmask = *dosage_mask_vvec_iter++;
__m128i dosagev = *dosage_vvec_iter++;
invmask = _mm_cmpeq_epi16(invmask, all1);
invmask = _mm_or_si128(invmask, _mm_cmpeq_epi16(dosagev, all1));
dosagev = _mm_andnot_si128(invmask, dosagev);
dosagev = _mm_add_epi64(_mm_and_si128(dosagev, m16), _mm_and_si128(_mm_srli_epi64(dosagev, 16), m16));
sumv = _mm_add_epi64(sumv, dosagev);
} while (dosage_vvec_iter < dosage_vvec_stop);
UniVec acc;
acc.vw = R_CAST(VecW, sumv);
sum += UniVecHsum32(acc);
}
}
// 65535 treated as missing
uint64_t DosageUnsignedDotprod(const Dosage* dosage_vec0, const Dosage* dosage_vec1, uint32_t vec_ct) {
const __m128i* dosage_vvec0_iter = R_CAST(const __m128i*, dosage_vec0);
const __m128i* dosage_vvec1_iter = R_CAST(const __m128i*, dosage_vec1);
const __m128i m16 = _mm_set1_epi64x(kMask0000FFFF);
const __m128i all1 = _mm_cmpeq_epi16(m16, m16);
uint64_t dotprod = 0;
for (uint32_t vecs_left = vec_ct; ; ) {
__m128i dotprod_lo = _mm_setzero_si128();
__m128i dotprod_hi = _mm_setzero_si128();
const __m128i* dosage_vvec0_stop;
if (vecs_left < 8192) {
if (!vecs_left) {
return dotprod;
}
dosage_vvec0_stop = &(dosage_vvec0_iter[vecs_left]);
vecs_left = 0;
} else {
dosage_vvec0_stop = &(dosage_vvec0_iter[8192]);
vecs_left -= 8192;
}
do {
__m128i dosage0 = *dosage_vvec0_iter++;
__m128i dosage1 = *dosage_vvec1_iter++;
__m128i invmask = _mm_cmpeq_epi16(dosage0, all1);
invmask = _mm_or_si128(invmask, _mm_cmpeq_epi16(dosage1, all1));
dosage0 = _mm_andnot_si128(invmask, dosage0);
dosage1 = _mm_andnot_si128(invmask, dosage1);
__m128i lo16 = _mm_mullo_epi16(dosage0, dosage1);
__m128i hi16 = _mm_mulhi_epu16(dosage0, dosage1);
lo16 = _mm_add_epi64(_mm_and_si128(lo16, m16), _mm_and_si128(_mm_srli_epi64(lo16, 16), m16));
hi16 = _mm_and_si128(_mm_add_epi64(hi16, _mm_srli_epi64(hi16, 16)), m16);
dotprod_lo = _mm_add_epi64(dotprod_lo, lo16);
dotprod_hi = _mm_add_epi64(dotprod_hi, hi16);
} while (dosage_vvec0_iter < dosage_vvec0_stop);
UniVec acc_lo;
UniVec acc_hi;
acc_lo.vw = R_CAST(VecW, dotprod_lo);
acc_hi.vw = R_CAST(VecW, dotprod_hi);
dotprod += UniVecHsum32(acc_lo) + 65536 * UniVecHsum32(acc_hi);
}
}
uint64_t DosageUnsignedDotprodSubset(const Dosage* dosage_mask_vec, const Dosage* dosage_vec0, const Dosage* dosage_vec1, uint32_t vec_ct) {
const __m128i* dosage_mask_iter = R_CAST(const __m128i*, dosage_mask_vec);
const __m128i* dosage_vvec0_iter = R_CAST(const __m128i*, dosage_vec0);
const __m128i* dosage_vvec1_iter = R_CAST(const __m128i*, dosage_vec1);
const __m128i m16 = _mm_set1_epi64x(kMask0000FFFF);
const __m128i all1 = _mm_cmpeq_epi16(m16, m16);
uint64_t dotprod = 0;
for (uint32_t vecs_left = vec_ct; ; ) {
__m128i dotprod_lo = _mm_setzero_si128();
__m128i dotprod_hi = _mm_setzero_si128();
const __m128i* dosage_vvec0_stop;
if (vecs_left < 8192) {
if (!vecs_left) {
return dotprod;
}
dosage_vvec0_stop = &(dosage_vvec0_iter[vecs_left]);
vecs_left = 0;
} else {
dosage_vvec0_stop = &(dosage_vvec0_iter[8192]);
vecs_left -= 8192;
}
do {
__m128i cur_mask = *dosage_mask_iter++;
__m128i dosage0 = *dosage_vvec0_iter++;
__m128i dosage1 = *dosage_vvec1_iter++;
__m128i invmask = _mm_cmpeq_epi16(dosage0, all1);
invmask = _mm_or_si128(invmask, _mm_cmpeq_epi16(dosage1, all1));
invmask = _mm_or_si128(invmask, _mm_cmpeq_epi16(cur_mask, all1));
dosage0 = _mm_andnot_si128(invmask, dosage0);
dosage1 = _mm_andnot_si128(invmask, dosage1);
__m128i lo16 = _mm_mullo_epi16(dosage0, dosage1);
__m128i hi16 = _mm_mulhi_epu16(dosage0, dosage1);
lo16 = _mm_add_epi64(_mm_and_si128(lo16, m16), _mm_and_si128(_mm_srli_epi64(lo16, 16), m16));
hi16 = _mm_and_si128(_mm_add_epi64(hi16, _mm_srli_epi64(hi16, 16)), m16);
dotprod_lo = _mm_add_epi64(dotprod_lo, lo16);
dotprod_hi = _mm_add_epi64(dotprod_hi, hi16);
} while (dosage_vvec0_iter < dosage_vvec0_stop);
UniVec acc_lo;
UniVec acc_hi;
acc_lo.vw = R_CAST(VecW, dotprod_lo);
acc_hi.vw = R_CAST(VecW, dotprod_hi);
dotprod += UniVecHsum32(acc_lo) + 65536 * UniVecHsum32(acc_hi);
}
}
void DosageUnphasedDotprodComponents(const Dosage* dosage_vec0, const Dosage* dosage_vec1, const Dosage* dosage_het0, const Dosage* dosage_het1, uint32_t vec_ct, uint64_t* known_dotprod_dosagep, uint64_t* uhethet_dosagep) {
const __m128i* dosage_vvec0_iter = R_CAST(const __m128i*, dosage_vec0);
const __m128i* dosage_vvec1_iter = R_CAST(const __m128i*, dosage_vec1);
const __m128i* dosage_het0_iter = R_CAST(const __m128i*, dosage_het0);
const __m128i* dosage_het1_iter = R_CAST(const __m128i*, dosage_het1);
const __m128i all_32767 = _mm_set1_epi16(0x7fff);
const __m128i m16 = _mm_set1_epi64x(kMask0000FFFF);
const __m128i all0 = _mm_setzero_si128();
const __m128i all1 = _mm_cmpeq_epi16(all0, all0);
uint64_t uhethet_dosage = 0;
uint64_t known_dotprod = 0;
for (uint32_t vecs_left = vec_ct; ; ) {
__m128i uhethet_sumv = _mm_setzero_si128();
__m128i dotprod_sumv = _mm_setzero_si128();
const __m128i* dosage_vvec0_stop;
if (vecs_left < 16383) {
if (!vecs_left) {
*known_dotprod_dosagep = known_dotprod * 2;
*uhethet_dosagep = uhethet_dosage * 2;
return;
}
dosage_vvec0_stop = &(dosage_vvec0_iter[vecs_left]);
vecs_left = 0;
} else {
dosage_vvec0_stop = &(dosage_vvec0_iter[16383]);
vecs_left -= 16383;
}
do {
const __m128i dosage0_plus_32767 = _mm_add_epi16(*dosage_vvec0_iter++, all_32767);
const __m128i dosage1 = *dosage_vvec1_iter++;
const __m128i het0 = *dosage_het0_iter++;
const __m128i het1 = *dosage_het1_iter++;
const __m128i invmask = _mm_or_si128(_mm_cmpgt_epi16(dosage0_plus_32767, all0), _mm_cmpeq_epi16(dosage1, all1));
__m128i uhethet_incr = _mm_min_epi16(het0, het1);
const __m128i dosagesum_m32769 = _mm_add_epi16(dosage0_plus_32767, dosage1);
const __m128i unmasked_dotprod_incr = _mm_sub_epi16(_mm_max_epi16(dosagesum_m32769, all1), all1);
__m128i dotprod_incr = _mm_andnot_si128(invmask, unmasked_dotprod_incr);
uhethet_incr = _mm_and_si128(_mm_add_epi64(uhethet_incr, _mm_srli_epi64(uhethet_incr, 16)), m16);
dotprod_incr = _mm_add_epi64(_mm_and_si128(dotprod_incr, m16), _mm_and_si128(_mm_srli_epi64(dotprod_incr, 16), m16));
uhethet_sumv = _mm_add_epi64(uhethet_sumv, uhethet_incr);
dotprod_sumv = _mm_add_epi64(dotprod_sumv, dotprod_incr);
} while (dosage_vvec0_iter < dosage_vvec0_stop);
UniVec uhethet_acc;
UniVec dotprod_acc;
uhethet_acc.vw = R_CAST(VecW, uhethet_sumv);
dotprod_acc.vw = R_CAST(VecW, dotprod_sumv);
uhethet_dosage += UniVecHsum32(uhethet_acc);
known_dotprod += UniVecHsum32(dotprod_acc);
}
}
void DosageUnphasedDotprodComponentsSubset(const Dosage* subset_invmask, const Dosage* dosage_vec0, const Dosage* dosage_vec1, const Dosage* dosage_het0, const Dosage* dosage_het1, uint32_t vec_ct, uint64_t* known_dotprod_dosagep, uint64_t* uhethet_dosagep) {
const __m128i* invmask_iter = R_CAST(const __m128i*, subset_invmask);
const __m128i* dosage_vvec0_iter = R_CAST(const __m128i*, dosage_vec0);
const __m128i* dosage_vvec1_iter = R_CAST(const __m128i*, dosage_vec1);
const __m128i* dosage_het0_iter = R_CAST(const __m128i*, dosage_het0);
const __m128i* dosage_het1_iter = R_CAST(const __m128i*, dosage_het1);
const __m128i all_32767 = _mm_set1_epi16(0x7fff);
const __m128i m16 = _mm_set1_epi64x(kMask0000FFFF);
const __m128i all0 = _mm_setzero_si128();
const __m128i all1 = _mm_cmpeq_epi16(all0, all0);
uint64_t uhethet_dosage = 0;
uint64_t known_dotprod = 0;
for (uint32_t vecs_left = vec_ct; ; ) {
__m128i uhethet_sumv = _mm_setzero_si128();
__m128i dotprod_sumv = _mm_setzero_si128();
const __m128i* dosage_vvec0_stop;
if (vecs_left < 16383) {
if (!vecs_left) {
*known_dotprod_dosagep = known_dotprod * 2;
*uhethet_dosagep = uhethet_dosage * 2;
return;
}
dosage_vvec0_stop = &(dosage_vvec0_iter[vecs_left]);
vecs_left = 0;
} else {
dosage_vvec0_stop = &(dosage_vvec0_iter[16383]);
vecs_left -= 16383;
}
do {
const __m128i raw_invmask = *invmask_iter++;
const __m128i dosage0_plus_32767 = _mm_add_epi16(*dosage_vvec0_iter++, all_32767);
const __m128i dosage1 = *dosage_vvec1_iter++;
const __m128i het0 = *dosage_het0_iter++;
const __m128i het1 = *dosage_het1_iter++;
__m128i uhethet_incr = _mm_andnot_si128(raw_invmask, _mm_min_epi16(het0, het1));
__m128i invmask = _mm_or_si128(raw_invmask, _mm_cmpgt_epi16(dosage0_plus_32767, all0));
invmask = _mm_or_si128(invmask, _mm_cmpeq_epi16(dosage1, all1));
const __m128i dosagesum_m32769 = _mm_add_epi16(dosage0_plus_32767, dosage1);
const __m128i unmasked_dotprod_incr = _mm_sub_epi16(_mm_max_epi16(dosagesum_m32769, all1), all1);
__m128i dotprod_incr = _mm_andnot_si128(invmask, unmasked_dotprod_incr);
uhethet_incr = _mm_and_si128(_mm_add_epi64(uhethet_incr, _mm_srli_epi64(uhethet_incr, 16)), m16);
dotprod_incr = _mm_add_epi64(_mm_and_si128(dotprod_incr, m16), _mm_and_si128(_mm_srli_epi64(dotprod_incr, 16), m16));
uhethet_sumv = _mm_add_epi64(uhethet_sumv, uhethet_incr);
dotprod_sumv = _mm_add_epi64(dotprod_sumv, dotprod_incr);
} while (dosage_vvec0_iter < dosage_vvec0_stop);
UniVec uhethet_acc;
UniVec dotprod_acc;
uhethet_acc.vw = R_CAST(VecW, uhethet_sumv);
dotprod_acc.vw = R_CAST(VecW, dotprod_sumv);
uhethet_dosage += UniVecHsum32(uhethet_acc);
known_dotprod += UniVecHsum32(dotprod_acc);
}
}
void DosagePhasedDotprodComponents(const Dosage* dosage_vec0, const Dosage* dosage_vec1, const SDosage* dphase_delta0, const SDosage* dphase_delta1, uint32_t vec_ct, uint64_t* known_dotprod_dosagep, uint64_t* uhethet_dosagep) {
const __m128i* dosage_vvec0_iter = R_CAST(const __m128i*, dosage_vec0);
const __m128i* dosage_vvec1_iter = R_CAST(const __m128i*, dosage_vec1);
const __m128i* dphase_delta0_iter = R_CAST(const __m128i*, dphase_delta0);
const __m128i* dphase_delta1_iter = R_CAST(const __m128i*, dphase_delta1);
const __m128i all_16384 = _mm_set1_epi16(0x4000);
const __m128i all_32767 = _mm_set1_epi16(0x7fff);
# if defined(__APPLE__) && ((!defined(__cplusplus)) || (__cplusplus < 201103L))
const __m128i all_n32768 = _mm_set1_epi16(0x8000);
# else
const __m128i all_n32768 = _mm_set1_epi64x(-0x7fff7fff7fff8000LL);
# endif
const __m128i m16 = _mm_set1_epi64x(kMask0000FFFF);
const __m128i all0 = _mm_setzero_si128();
const __m128i all1 = _mm_cmpeq_epi16(all0, all0);
uint64_t known_dotprod = 0;
uint64_t uhethet_dosage = 0;
for (uint32_t vecs_left = vec_ct; ; ) {
__m128i dotprod_sumv = _mm_setzero_si128();
__m128i uhethet_sumv = _mm_setzero_si128();
const __m128i* dosage_vvec0_stop;
if (vecs_left < 8191) {
if (!vecs_left) {
*known_dotprod_dosagep = known_dotprod;
*uhethet_dosagep = uhethet_dosage;
return;
}
dosage_vvec0_stop = &(dosage_vvec0_iter[vecs_left]);
vecs_left = 0;
} else {
dosage_vvec0_stop = &(dosage_vvec0_iter[8191]);
vecs_left -= 8191;
}
do {
const __m128i dosage0 = *dosage_vvec0_iter++;
const __m128i dosage1 = *dosage_vvec1_iter++;
const __m128i delta0 = *dphase_delta0_iter++;
const __m128i delta1 = *dphase_delta1_iter++;
const __m128i invmask = _mm_or_si128(_mm_cmpeq_epi16(dosage0, all1), _mm_cmpeq_epi16(dosage1, all1));
const __m128i dosage0A = _mm_add_epi16(dosage0, delta0);
const __m128i dosage1A = _mm_add_epi16(dosage1, delta1);
const __m128i dosage0B = _mm_sub_epi16(dosage0, delta0);
const __m128i dosage1B = _mm_sub_epi16(dosage1, delta1);
const __m128i dosageA_m32769 = _mm_add_epi16(_mm_add_epi16(dosage0A, dosage1A), all_32767);
const __m128i dosageB_m32769 = _mm_add_epi16(_mm_add_epi16(dosage0B, dosage1B), all_32767);
const __m128i invmaskA = _mm_or_si128(invmask, _mm_cmpeq_epi16(dosage0A, all0));
const __m128i invmaskB = _mm_or_si128(invmask, _mm_cmpeq_epi16(dosage0B, all0));
const __m128i unmasked_dotprod_incrA = _mm_sub_epi16(_mm_max_epi16(dosageA_m32769, all1), all1);
const __m128i unmasked_dotprod_incrB = _mm_sub_epi16(_mm_max_epi16(dosageB_m32769, all1), all1);
__m128i dotprod_incrA = _mm_andnot_si128(invmaskA, unmasked_dotprod_incrA);
__m128i dotprod_incrB = _mm_andnot_si128(invmaskB, unmasked_dotprod_incrB);
dotprod_incrA = _mm_add_epi64(_mm_and_si128(dotprod_incrA, m16), _mm_and_si128(_mm_srli_epi64(dotprod_incrA, 16), m16));
dotprod_incrB = _mm_add_epi64(_mm_and_si128(dotprod_incrB, m16), _mm_and_si128(_mm_srli_epi64(dotprod_incrB, 16), m16));
dotprod_sumv = _mm_add_epi64(dotprod_sumv, dotprod_incrA);
dotprod_sumv = _mm_add_epi64(dotprod_sumv, dotprod_incrB);
# ifdef USE_SSE42
const __m128i known0A = _mm_abs_epi16(_mm_sub_epi16(all_16384, dosage0A));
const __m128i known1A = _mm_abs_epi16(_mm_sub_epi16(all_16384, dosage1A));
const __m128i known0B = _mm_abs_epi16(_mm_sub_epi16(all_16384, dosage0B));
const __m128i known1B = _mm_abs_epi16(_mm_sub_epi16(all_16384, dosage1B));
# else
const __m128i pos0A = _mm_sub_epi16(all_16384, dosage0A);
const __m128i neg0A = _mm_sub_epi16(dosage0A, all_16384);
const __m128i pos1A = _mm_sub_epi16(all_16384, dosage1A);
const __m128i neg1A = _mm_sub_epi16(dosage1A, all_16384);
const __m128i pos0B = _mm_sub_epi16(all_16384, dosage0B);
const __m128i neg0B = _mm_sub_epi16(dosage0B, all_16384);
const __m128i pos1B = _mm_sub_epi16(all_16384, dosage1B);
const __m128i neg1B = _mm_sub_epi16(dosage1B, all_16384);
const __m128i known0A = _mm_max_epi16(pos0A, neg0A);
const __m128i known1A = _mm_max_epi16(pos1A, neg1A);
const __m128i known0B = _mm_max_epi16(pos0B, neg0B);
const __m128i known1B = _mm_max_epi16(pos1B, neg1B);
# endif
const __m128i maxknownA = _mm_max_epi16(known0A, known1A);
const __m128i maxknownB = _mm_max_epi16(known0B, known1B);
__m128i uhethet_incr = _mm_andnot_si128(invmask, _mm_sub_epi16(all_n32768, _mm_add_epi16(maxknownA, maxknownB)));
uhethet_incr = _mm_add_epi64(_mm_and_si128(uhethet_incr, m16), _mm_and_si128(_mm_srli_epi64(uhethet_incr, 16), m16));
uhethet_sumv = _mm_add_epi64(uhethet_sumv, uhethet_incr);
} while (dosage_vvec0_iter < dosage_vvec0_stop);
UniVec dotprod_acc;
UniVec uhethet_acc;
dotprod_acc.vw = R_CAST(VecW, dotprod_sumv);
uhethet_acc.vw = R_CAST(VecW, uhethet_sumv);
known_dotprod += UniVecHsum32(dotprod_acc);
uhethet_dosage += UniVecHsum32(uhethet_acc);
}
}
void DosagePhasedDotprodComponentsSubset(const Dosage* subset_invmask, const Dosage* dosage_vec0, const Dosage* dosage_vec1, const SDosage* dphase_delta0, const SDosage* dphase_delta1, uint32_t vec_ct, uint64_t* known_dotprod_dosagep, uint64_t* uhethet_dosagep) {
const __m128i* invmask_iter = R_CAST(const __m128i*, subset_invmask);
const __m128i* dosage_vvec0_iter = R_CAST(const __m128i*, dosage_vec0);
const __m128i* dosage_vvec1_iter = R_CAST(const __m128i*, dosage_vec1);
const __m128i* dphase_delta0_iter = R_CAST(const __m128i*, dphase_delta0);
const __m128i* dphase_delta1_iter = R_CAST(const __m128i*, dphase_delta1);
const __m128i all_16384 = _mm_set1_epi16(0x4000);
const __m128i all_32767 = _mm_set1_epi16(0x7fff);
# if defined(__APPLE__) && ((!defined(__cplusplus)) || (__cplusplus < 201103L))
const __m128i all_n32768 = _mm_set1_epi16(0x8000);
# else
const __m128i all_n32768 = _mm_set1_epi64x(-0x7fff7fff7fff8000LL);
# endif
const __m128i m16 = _mm_set1_epi64x(kMask0000FFFF);
const __m128i all0 = _mm_setzero_si128();
const __m128i all1 = _mm_cmpeq_epi16(all0, all0);
uint64_t known_dotprod = 0;
uint64_t uhethet_dosage = 0;
for (uint32_t vecs_left = vec_ct; ; ) {
__m128i dotprod_sumv = _mm_setzero_si128();
__m128i uhethet_sumv = _mm_setzero_si128();
const __m128i* dosage_vvec0_stop;
if (vecs_left < 8191) {
if (!vecs_left) {
*known_dotprod_dosagep = known_dotprod;
*uhethet_dosagep = uhethet_dosage;
return;
}
dosage_vvec0_stop = &(dosage_vvec0_iter[vecs_left]);
vecs_left = 0;
} else {
dosage_vvec0_stop = &(dosage_vvec0_iter[8191]);
vecs_left -= 8191;
}
do {
__m128i invmask = *invmask_iter++;
const __m128i dosage0 = *dosage_vvec0_iter++;
const __m128i dosage1 = *dosage_vvec1_iter++;
const __m128i delta0 = *dphase_delta0_iter++;
const __m128i delta1 = *dphase_delta1_iter++;
invmask = _mm_or_si128(invmask, _mm_cmpeq_epi16(dosage0, all1));
invmask = _mm_or_si128(invmask, _mm_cmpeq_epi16(dosage1, all1));
const __m128i dosage0A = _mm_add_epi16(dosage0, delta0);
const __m128i dosage1A = _mm_add_epi16(dosage1, delta1);
const __m128i dosage0B = _mm_sub_epi16(dosage0, delta0);
const __m128i dosage1B = _mm_sub_epi16(dosage1, delta1);
const __m128i dosageA_m32769 = _mm_add_epi16(_mm_add_epi16(dosage0A, dosage1A), all_32767);
const __m128i dosageB_m32769 = _mm_add_epi16(_mm_add_epi16(dosage0B, dosage1B), all_32767);
const __m128i invmaskA = _mm_or_si128(invmask, _mm_cmpeq_epi16(dosage0A, all0));
const __m128i invmaskB = _mm_or_si128(invmask, _mm_cmpeq_epi16(dosage0B, all0));
const __m128i unmasked_dotprod_incrA = _mm_sub_epi16(_mm_max_epi16(dosageA_m32769, all1), all1);
const __m128i unmasked_dotprod_incrB = _mm_sub_epi16(_mm_max_epi16(dosageB_m32769, all1), all1);
__m128i dotprod_incrA = _mm_andnot_si128(invmaskA, unmasked_dotprod_incrA);
__m128i dotprod_incrB = _mm_andnot_si128(invmaskB, unmasked_dotprod_incrB);
dotprod_incrA = _mm_add_epi64(_mm_and_si128(dotprod_incrA, m16), _mm_and_si128(_mm_srli_epi64(dotprod_incrA, 16), m16));
dotprod_incrB = _mm_add_epi64(_mm_and_si128(dotprod_incrB, m16), _mm_and_si128(_mm_srli_epi64(dotprod_incrB, 16), m16));
dotprod_sumv = _mm_add_epi64(dotprod_sumv, dotprod_incrA);
dotprod_sumv = _mm_add_epi64(dotprod_sumv, dotprod_incrB);
# ifdef USE_SSE42
const __m128i known0A = _mm_abs_epi16(_mm_sub_epi16(all_16384, dosage0A));
const __m128i known1A = _mm_abs_epi16(_mm_sub_epi16(all_16384, dosage1A));
const __m128i known0B = _mm_abs_epi16(_mm_sub_epi16(all_16384, dosage0B));
const __m128i known1B = _mm_abs_epi16(_mm_sub_epi16(all_16384, dosage1B));
# else
const __m128i pos0A = _mm_sub_epi16(all_16384, dosage0A);
const __m128i neg0A = _mm_sub_epi16(dosage0A, all_16384);
const __m128i pos1A = _mm_sub_epi16(all_16384, dosage1A);
const __m128i neg1A = _mm_sub_epi16(dosage1A, all_16384);
const __m128i pos0B = _mm_sub_epi16(all_16384, dosage0B);
const __m128i neg0B = _mm_sub_epi16(dosage0B, all_16384);
const __m128i pos1B = _mm_sub_epi16(all_16384, dosage1B);
const __m128i neg1B = _mm_sub_epi16(dosage1B, all_16384);
const __m128i known0A = _mm_max_epi16(pos0A, neg0A);
const __m128i known1A = _mm_max_epi16(pos1A, neg1A);
const __m128i known0B = _mm_max_epi16(pos0B, neg0B);
const __m128i known1B = _mm_max_epi16(pos1B, neg1B);
# endif
const __m128i maxknownA = _mm_max_epi16(known0A, known1A);
const __m128i maxknownB = _mm_max_epi16(known0B, known1B);
__m128i uhethet_incr = _mm_andnot_si128(invmask, _mm_sub_epi16(all_n32768, _mm_add_epi16(maxknownA, maxknownB)));
uhethet_incr = _mm_add_epi64(_mm_and_si128(uhethet_incr, m16), _mm_and_si128(_mm_srli_epi64(uhethet_incr, 16), m16));
uhethet_sumv = _mm_add_epi64(uhethet_sumv, uhethet_incr);
} while (dosage_vvec0_iter < dosage_vvec0_stop);
UniVec dotprod_acc;
UniVec uhethet_acc;
dotprod_acc.vw = R_CAST(VecW, dotprod_sumv);
uhethet_acc.vw = R_CAST(VecW, uhethet_sumv);
known_dotprod += UniVecHsum32(dotprod_acc);
uhethet_dosage += UniVecHsum32(uhethet_acc);
}
}
# endif // !USE_AVX2
#else // !__LP64__
void FillDosageHet(const Dosage* dosage_vec, uint32_t dosagev_ct, Dosage* dosage_het) {
const uint32_t sample_ctav = dosagev_ct * kDosagePerVec;
for (uint32_t sample_idx = 0; sample_idx != sample_ctav; ++sample_idx) {
const uint32_t cur_dosage = dosage_vec[sample_idx];
uint32_t cur_hetval = cur_dosage;
if (cur_hetval > 16384) {
if (cur_hetval == kDosageMissing) {
cur_hetval = 0;
} else {
cur_hetval = 32768 - cur_hetval;
}
}
dosage_het[sample_idx] = cur_hetval;
}
}
uint64_t DenseDosageSum(const Dosage* dosage_vec, uint32_t vec_ct) {
const uint32_t sample_ctav = vec_ct * kDosagePerVec;
uint64_t sum = 0;
for (uint32_t sample_idx = 0; sample_idx != sample_ctav; ++sample_idx) {
const uint32_t cur_dosage = dosage_vec[sample_idx];
if (cur_dosage != kDosageMissing) {
sum += cur_dosage;
}
}
return sum;
}
uint64_t DenseDosageSumSubset(const Dosage* dosage_vec, const Dosage* dosage_mask_vec, uint32_t vec_ct) {
const uint32_t sample_ctav = vec_ct * kDosagePerVec;
uint64_t sum = 0;
for (uint32_t sample_idx = 0; sample_idx != sample_ctav; ++sample_idx) {
const uint32_t cur_dosage = dosage_vec[sample_idx];
const uint32_t other_dosage = dosage_mask_vec[sample_idx];
if ((cur_dosage != kDosageMissing) && (other_dosage != kDosageMissing)) {
sum += cur_dosage;
}
}
return sum;
}
uint64_t DosageUnsignedDotprod(const Dosage* dosage_vec0, const Dosage* dosage_vec1, uint32_t vec_ct) {
const uint32_t sample_ctav = vec_ct * kDosagePerVec;
uint64_t dotprod = 0;
for (uint32_t sample_idx = 0; sample_idx != sample_ctav; ++sample_idx) {
const uint32_t cur_dosage0 = dosage_vec0[sample_idx];
const uint32_t cur_dosage1 = dosage_vec1[sample_idx];
if ((cur_dosage0 != kDosageMissing) && (cur_dosage1 != kDosageMissing)) {
dotprod += cur_dosage0 * cur_dosage1;
}
}
return dotprod;
}
uint64_t DosageUnsignedDotprodSubset(const Dosage* dosage_mask_vec, const Dosage* dosage_vec0, const Dosage* dosage_vec1, uint32_t vec_ct) {
const uint32_t sample_ctav = vec_ct * kDosagePerVec;
uint64_t dotprod = 0;
for (uint32_t sample_idx = 0; sample_idx != sample_ctav; ++sample_idx) {
const uint32_t cur_dosage_maskval = dosage_mask_vec[sample_idx];
const uint32_t cur_dosage0 = dosage_vec0[sample_idx];
const uint32_t cur_dosage1 = dosage_vec1[sample_idx];
if ((cur_dosage_maskval != kDosageMissing) && (cur_dosage0 != kDosageMissing) && (cur_dosage1 != kDosageMissing)) {
dotprod += cur_dosage0 * cur_dosage1;
}
}
return dotprod;
}
void DosageUnphasedDotprodComponents(const Dosage* dosage_vec0, const Dosage* dosage_vec1, const Dosage* dosage_het0, const Dosage* dosage_het1, uint32_t vec_ct, uint64_t* known_dotprod_dosagep, uint64_t* uhethet_dosagep) {
const uint32_t sample_ctav = vec_ct * kDosagePerVec;
// Multiply by 2 later so unphased and phased cases are on the same scale.
// (Specifically, known_dotprod is in 1/kDosageMax increments and the logical
// value ranges from 0..2n, where n is founder_ct; and unknown_hethet is in
// 1/kDosageMax increments and ranges from 0..n.)
uint64_t half_known_dotprod_dosage = 0;
uint64_t half_uhethet_dosage = 0;
for (uint32_t sample_idx = 0; sample_idx != sample_ctav; ++sample_idx) {
const int32_t cur_dosage0 = dosage_vec0[sample_idx];
const int32_t cur_dosage1 = dosage_vec1[sample_idx];
if ((cur_dosage0 != kDosageMissing) && (cur_dosage1 != kDosageMissing)) {
half_known_dotprod_dosage += MAXV(0, cur_dosage0 + cur_dosage1 - S_CAST(int32_t, kDosageMax));
half_uhethet_dosage += MINV(dosage_het0[sample_idx], dosage_het1[sample_idx]);
}
}
*known_dotprod_dosagep = half_known_dotprod_dosage * 2;
*uhethet_dosagep = half_uhethet_dosage * 2;
}
// subset_invmask values required to be in {0, 65535}, for the sake of the
// vectorized implementations
void DosageUnphasedDotprodComponentsSubset(const Dosage* subset_invmask, const Dosage* dosage_vec0, const Dosage* dosage_vec1, const Dosage* dosage_het0, const Dosage* dosage_het1, uint32_t vec_ct, uint64_t* known_dotprod_dosagep, uint64_t* uhethet_dosagep) {
const uint32_t sample_ctav = vec_ct * kDosagePerVec;
// Multiply by 2 later so unphased and phased cases are on the same scale.
// (Specifically, known_dotprod is in 1/kDosageMax increments and the logical
// value ranges from 0..2n, where n is founder_ct; and unknown_hethet is in
// 1/kDosageMax increments and ranges from 0..n.)
uint64_t half_known_dotprod_dosage = 0;
uint64_t half_uhethet_dosage = 0;
for (uint32_t sample_idx = 0; sample_idx != sample_ctav; ++sample_idx) {
const int32_t cur_dosage0 = dosage_vec0[sample_idx] | subset_invmask[sample_idx];
const int32_t cur_dosage1 = dosage_vec1[sample_idx];
if ((cur_dosage0 != kDosageMissing) && (cur_dosage1 != kDosageMissing)) {
half_known_dotprod_dosage += MAXV(0, cur_dosage0 + cur_dosage1 - S_CAST(int32_t, kDosageMax));
half_uhethet_dosage += MINV(dosage_het0[sample_idx], dosage_het1[sample_idx]);
}
}
*known_dotprod_dosagep = half_known_dotprod_dosage * 2;
*uhethet_dosagep = half_uhethet_dosage * 2;
}
void DosagePhasedDotprodComponents(const Dosage* dosage_vec0, const Dosage* dosage_vec1, const SDosage* dphase_delta0, const SDosage* dphase_delta1, uint32_t vec_ct, uint64_t* known_dotprod_dosagep, uint64_t* uhethet_dosagep) {
const uint32_t sample_ctav = vec_ct * kDosagePerVec;
uint64_t known_dotprod_dosage = 0;
uint64_t uhethet_dosage = 0;
for (uint32_t sample_idx = 0; sample_idx != sample_ctav; ++sample_idx) {
const uint32_t cur_dosage0 = dosage_vec0[sample_idx];
const uint32_t cur_dosage1 = dosage_vec1[sample_idx];
if ((cur_dosage0 != kDosageMissing) && (cur_dosage1 != kDosageMissing)) {
// dosage0 = a + b
// delta0 = a - b
// -> dosage + delta = 2a
// dosage - delta = 2b
const int32_t cur_delta0 = dphase_delta0[sample_idx];
const int32_t cur_delta1 = dphase_delta1[sample_idx];
const int32_t dosage0A_x2 = cur_dosage0 + cur_delta0;
const int32_t dosage1A_x2 = cur_dosage1 + cur_delta1;
const int32_t dosage0B_x2 = cur_dosage0 - cur_delta0;
const int32_t dosage1B_x2 = cur_dosage1 - cur_delta1;
known_dotprod_dosage += MAXV(0, dosage0A_x2 + dosage1A_x2 - S_CAST(int32_t, kDosageMax)) + MAXV(0, dosage0B_x2 + dosage1B_x2 - S_CAST(int32_t, kDosageMax));
const uint32_t known0A = abs_i32(kDosageMid - dosage0A_x2);
const uint32_t known1A = abs_i32(kDosageMid - dosage1A_x2);
const uint32_t known0B = abs_i32(kDosageMid - dosage0B_x2);
const uint32_t known1B = abs_i32(kDosageMid - dosage1B_x2);
uhethet_dosage += kDosageMax - MAXV(known0A, known1A) - MAXV(known0B, known1B);
}
}
*known_dotprod_dosagep = known_dotprod_dosage;
*uhethet_dosagep = uhethet_dosage;
}
void DosagePhasedDotprodComponentsSubset(const Dosage* subset_invmask, const Dosage* dosage_vec0, const Dosage* dosage_vec1, const SDosage* dphase_delta0, const SDosage* dphase_delta1, uint32_t vec_ct, uint64_t* known_dotprod_dosagep, uint64_t* uhethet_dosagep) {
const uint32_t sample_ctav = vec_ct * kDosagePerVec;
uint64_t known_dotprod_dosage = 0;
uint64_t uhethet_dosage = 0;
for (uint32_t sample_idx = 0; sample_idx != sample_ctav; ++sample_idx) {
const uint32_t cur_dosage0 = dosage_vec0[sample_idx] | subset_invmask[sample_idx];
const uint32_t cur_dosage1 = dosage_vec1[sample_idx];
if ((cur_dosage0 != kDosageMissing) && (cur_dosage1 != kDosageMissing)) {
// dosage0 = a + b
// delta0 = a - b
// -> dosage + delta = 2a
// dosage - delta = 2b
const int32_t cur_delta0 = dphase_delta0[sample_idx];
const int32_t cur_delta1 = dphase_delta1[sample_idx];
const int32_t dosage0A_x2 = cur_dosage0 + cur_delta0;
const int32_t dosage1A_x2 = cur_dosage1 + cur_delta1;
const int32_t dosage0B_x2 = cur_dosage0 - cur_delta0;
const int32_t dosage1B_x2 = cur_dosage1 - cur_delta1;
known_dotprod_dosage += MAXV(0, dosage0A_x2 + dosage1A_x2 - S_CAST(int32_t, kDosageMax)) + MAXV(0, dosage0B_x2 + dosage1B_x2 - S_CAST(int32_t, kDosageMax));
const uint32_t known0A = abs_i32(kDosageMid - dosage0A_x2);
const uint32_t known1A = abs_i32(kDosageMid - dosage1A_x2);
const uint32_t known0B = abs_i32(kDosageMid - dosage0B_x2);
const uint32_t known1B = abs_i32(kDosageMid - dosage1B_x2);
uhethet_dosage += kDosageMax - MAXV(known0A, known1A) - MAXV(known0B, known1B);
}
}
*known_dotprod_dosagep = known_dotprod_dosage;
*uhethet_dosagep = uhethet_dosage;
}
#endif
// nmaj_dosages assumed to be initialized to whole-vector sums
uint32_t DosageR2Freqs(const Dosage* dosage_vec0, const uintptr_t* nm_bitvec0, const Dosage* dosage_vec1, const uintptr_t* nm_bitvec1, uint32_t sample_ct, uint32_t nm_ct0, uint32_t nm_ct1, uint64_t* __restrict nmaj_dosages) {
const uint32_t sample_ctl = BitCtToWordCt(sample_ct);
uint32_t nm_intersection_ct;
if ((nm_ct0 != sample_ct) && (nm_ct1 != sample_ct)) {
nm_intersection_ct = PopcountWordsIntersect(nm_bitvec0, nm_bitvec1, sample_ctl);
if (!nm_intersection_ct) {
nmaj_dosages[0] = 0;
nmaj_dosages[1] = 0;
return 0;
}
} else {
nm_intersection_ct = MINV(nm_ct0, nm_ct1);
}
const uint32_t vec_ct = DivUp(sample_ct, kDosagePerVec);
if (nm_ct0 != nm_intersection_ct) {
nmaj_dosages[0] = DenseDosageSumSubset(dosage_vec0, dosage_vec1, vec_ct);
}
if (nm_ct1 != nm_intersection_ct) {
nmaj_dosages[1] = DenseDosageSumSubset(dosage_vec1, dosage_vec0, vec_ct);
}
return nm_intersection_ct;
}
// nmaj_dosages assumed to be initialized to subsetted-vector sums.
uint32_t DosageR2FreqsSubset(const Dosage* dosage_vec0, const uintptr_t* nm_bitvec0, const Dosage* dosage_vec1, const uintptr_t* nm_bitvec1, const uintptr_t* sample_include, uint32_t raw_sample_ct, uint32_t sample_ct, uint32_t subsetted_nm_ct0, uint32_t subsetted_nm_ct1, uint64_t* __restrict nmaj_dosages, uintptr_t* cur_nm_buf, Dosage* invmask_buf) {
// bugfix (29 Oct 2023): got raw_sample_ct / sample_ct mixed up
const uint32_t raw_sample_ctl = BitCtToWordCt(raw_sample_ct);
if (subsetted_nm_ct0 == sample_ct) {
if (subsetted_nm_ct1 == sample_ct) {
return sample_ct;
}
BitvecAndCopy(nm_bitvec1, sample_include, raw_sample_ctl, cur_nm_buf);
} else {
BitvecAndCopy(nm_bitvec0, sample_include, raw_sample_ctl, cur_nm_buf);
if (subsetted_nm_ct1 != sample_ct) {
BitvecAnd(nm_bitvec1, raw_sample_ctl, cur_nm_buf);
}
}
const uint32_t nm_intersection_ct = PopcountWords(cur_nm_buf, raw_sample_ctl);
if (!nm_intersection_ct) {
nmaj_dosages[0] = 0;
nmaj_dosages[1] = 0;
return 0;
}
Expand1bitTo16(cur_nm_buf, RoundUpPow2(raw_sample_ct, kDosagePerVec), 0xffff, invmask_buf);
const uint32_t vec_ct = DivUp(raw_sample_ct, kDosagePerVec);
nmaj_dosages[0] = DenseDosageSumSubset(dosage_vec0, invmask_buf, vec_ct);
nmaj_dosages[1] = DenseDosageSumSubset(dosage_vec1, invmask_buf, vec_ct);
return nm_intersection_ct;
}
// "unscaled" because you need to multiply by allele count to get the proper
// log-likelihood
double EmPhaseUnscaledLnlike(double freq11, double freq12, double freq21, double freq22, double half_hethet_share, double freq11_incr) {
// bugfix (11 Dec 2023): can't modify freq11, etc. in-place because then
// they're no longer scaled with old calc_lnlike() known11, etc.
const double adj_freq11 = freq11 + freq11_incr;
const double adj_freq22 = freq22 + freq11_incr;
const double adj_freq12 = freq12 + half_hethet_share - freq11_incr;
const double adj_freq21 = freq21 + half_hethet_share - freq11_incr;
const double cross_sum = adj_freq11 * adj_freq22 + adj_freq12 * adj_freq21;
double lnlike = 0.0;
if (cross_sum != 0.0) {
lnlike = half_hethet_share * log(cross_sum);
}
if (adj_freq11 != 0.0) {
lnlike += freq11 * log(adj_freq11);
}
if (adj_freq12 != 0.0) {
lnlike += freq12 * log(adj_freq12);
}
if (adj_freq21 != 0.0) {
lnlike += freq21 * log(adj_freq21);
}
if (adj_freq22 != 0.0) {
lnlike += freq22 * log(adj_freq22);
}
return lnlike;
}
ENUM_U31_DEF_START()
kLDErrNone,
kLDMonomorphic0,
kLDMonomorphic1
ENUM_U31_DEF_END(LDErr);
typedef struct PhasedLDExtraRetStruct {
uint32_t sol_ct;
uint32_t best_lnlike_mask;
double freq_majmaj;
double freq_majmin;
double freq_minmaj;
double freq_minmin;
double half_unphased_hethet_share;
double freq_majx;
double freq_minx;
double freq_xmaj;
double freq_xmin;
} PhasedLDExtraRet;
// If extra_retp is non-null, results contains relevant cubic_sols.
// If extra_retp is nullptr, results[0] contains r2, and if
// compute_d_and_dprime is true, results[1] = D and results[2] = D'.
LDErr PhasedLD(const double* nmajsums_d, double known_dotprod_d, double unknown_hethet_d, double twice_tot_recip, uint32_t compute_d_and_dprime, PhasedLDExtraRet* extra_retp, double* results, uint32_t* is_neg_ptr) {
// known-diplotype dosages (sum is 2 * (valid_obs_d - unknown_hethet_d)):
// var0 var1
// 0 - 0 : 2 * valid_obs_d - majsums[0] - majsums[1] + known_dotprod
// 1 - 0 : majsums[0] - known_dotprod - unknown_hethet_d
// 0 - 1 : majsums[1] - known_dotprod - unknown_hethet_d
// 1 - 1 : known_dotprod
// bugfix (15 Sep 2023): otherwise possible for freq_majmaj to be slightly
// less than zero, and this breaks EmPhaseUnscaledLnlike().
const double freq_majmaj = MAXV(1.0 - (nmajsums_d[0] + nmajsums_d[1] - known_dotprod_d) * twice_tot_recip, 0.0);
const double freq_majmin = (nmajsums_d[1] - known_dotprod_d - unknown_hethet_d) * twice_tot_recip;
const double freq_minmaj = (nmajsums_d[0] - known_dotprod_d - unknown_hethet_d) * twice_tot_recip;
const double freq_minmin = known_dotprod_d * twice_tot_recip;
const double half_unphased_hethet_share = unknown_hethet_d * twice_tot_recip;
const double freq_majx = freq_majmaj + freq_majmin + half_unphased_hethet_share;
const double freq_minx = 1.0 - freq_majx;
const double freq_xmaj = freq_majmaj + freq_minmaj + half_unphased_hethet_share;
const double freq_xmin = 1.0 - freq_xmaj;
// frequency of ~2^{-46} is actually possible with dosages and 2 billion
// samples, so set this threshold at 2^{-47}
if ((freq_majx < (kSmallEpsilon * 0.125)) || (freq_minx < (kSmallEpsilon * 0.125))) {
return kLDMonomorphic0;
}
if ((freq_xmaj < (kSmallEpsilon * 0.125)) || (freq_xmin < (kSmallEpsilon * 0.125))) {
return kLDMonomorphic1;
}
uint32_t cubic_sol_ct = 0;
uint32_t first_relevant_sol_idx = 0;
uint32_t best_lnlike_mask = 0;
STD_ARRAY_DECL(double, 3, cubic_sols);
if (half_unphased_hethet_share != 0.0) {
// detect degenerate cases to avoid e-17 ugliness
if ((freq_majmaj * freq_minmin != 0.0) || (freq_majmin * freq_minmaj != 0.0)) {
// (f11 + x)(f22 + x)(K - x) = x(f12 + K - x)(f21 + K - x)
// (x - K)(x + f11)(x + f22) + x(x - K - f12)(x - K - f21) = 0
// x^3 + (f11 + f22 - K)x^2 + (f11*f22 - K*f11 - K*f22)x - K*f11*f22
// + x^3 - (2K + f12 + f21)x^2 + (K + f12)(K + f21)x = 0
cubic_sol_ct = CubicRealRoots(0.5 * (freq_majmaj + freq_minmin - freq_majmin - freq_minmaj - 3 * half_unphased_hethet_share), 0.5 * (freq_majmaj * freq_minmin + freq_majmin * freq_minmaj + half_unphased_hethet_share * (freq_majmin + freq_minmaj - freq_majmaj - freq_minmin + half_unphased_hethet_share)), -0.5 * half_unphased_hethet_share * freq_majmaj * freq_minmin, cubic_sols);
if (cubic_sol_ct > 1) {
// have encountered 7.9e-11 difference in testing, which is more than
// twice kSmallishEpsilon.
while (cubic_sols[cubic_sol_ct - 1] > half_unphased_hethet_share + 8 * kSmallishEpsilon) {
--cubic_sol_ct;
if (cubic_sol_ct == 1) {
break;
}
}
if (cubic_sols[cubic_sol_ct - 1] > half_unphased_hethet_share - 8 * kSmallishEpsilon) {
cubic_sols[cubic_sol_ct - 1] = half_unphased_hethet_share;
}
while ((cubic_sols[first_relevant_sol_idx] < 8 * -kSmallishEpsilon) && (first_relevant_sol_idx + 1 < cubic_sol_ct)) {
++first_relevant_sol_idx;
}
}
// bugfix (29 Jan 2025): Also need to clip up to 0 when there's only one
// solution.
if (cubic_sols[first_relevant_sol_idx] < 8 * kSmallishEpsilon) {
cubic_sols[first_relevant_sol_idx] = 0.0;
}
} else {
// At least one of {f11, f22} is zero, and one of {f12, f21} is zero.
// Initially suppose that the zero-values are f11 and f12. Then the
// equality becomes
// x(f22 + x)(K - x) = x(K - x)(f21 + K - x)
// x=0 and x=K are always solutions; the rest becomes
// f22 + x = f21 + K - x
// 2x = K + f21 - f22
// x = (K + f21 - f22)/2; in-range iff (f21 - f22) in (-K, K).
// So far so good. However, plink 1.9 incorrectly *always* checked
// (f21 - f22) before 6 Oct 2017, when it needed to use all the nonzero
// values.
cubic_sols[0] = 0.0;
const double nonzero_freq_xx = freq_majmaj + freq_minmin;
const double nonzero_freq_xy = freq_majmin + freq_minmaj;
// (current code still works if three or all four values are zero)
if ((nonzero_freq_xx + kSmallishEpsilon < half_unphased_hethet_share + nonzero_freq_xy) && (nonzero_freq_xy + kSmallishEpsilon < half_unphased_hethet_share + nonzero_freq_xx)) {
cubic_sol_ct = 3;
cubic_sols[1] = (half_unphased_hethet_share + nonzero_freq_xy - nonzero_freq_xx) * 0.5;
cubic_sols[2] = half_unphased_hethet_share;
} else {
cubic_sol_ct = 2;
cubic_sols[1] = half_unphased_hethet_share;
}
}
// cubic_sol_ct does not contain trailing too-large solutions
if (cubic_sol_ct > first_relevant_sol_idx + 1) {
double best_unscaled_lnlike = -DBL_MAX;
for (uint32_t sol_idx = first_relevant_sol_idx; sol_idx < cubic_sol_ct; ++sol_idx) {
const double cur_unscaled_lnlike = EmPhaseUnscaledLnlike(freq_majmaj, freq_majmin, freq_minmaj, freq_minmin, half_unphased_hethet_share, cubic_sols[sol_idx]);
if (cur_unscaled_lnlike > best_unscaled_lnlike) {
best_unscaled_lnlike = cur_unscaled_lnlike;
best_lnlike_mask = 1 << sol_idx;
} else if (cur_unscaled_lnlike == best_unscaled_lnlike) {
best_lnlike_mask |= 1 << sol_idx;
}
}
}
} else {
cubic_sol_ct = 1;
cubic_sols[0] = 0.0;
}
if (!extra_retp) {
uint32_t sol_idx = first_relevant_sol_idx;
if (cubic_sol_ct - first_relevant_sol_idx > 1) {
sol_idx = ctzu32(best_lnlike_mask);
}
const double cur_sol_xx = cubic_sols[sol_idx];
double dd = freq_majmaj + cur_sol_xx - freq_majx * freq_xmaj;
if (fabs(dd) < kSmallEpsilon) {
dd = 0.0;
}
results[0] = dd * dd / (freq_majx * freq_xmaj * freq_minx * freq_xmin);
*is_neg_ptr = (dd < 0.0);
if (compute_d_and_dprime) {
// maybe this should just always be computed since it's such a small
// fraction of the total cost?
results[1] = dd;
if (dd >= 0.0) {
results[2] = dd / MINV(freq_xmaj * freq_minx, freq_xmin * freq_majx);
} else {
// note that this preserves sign
results[2] = dd / MINV(freq_xmaj * freq_majx, freq_xmin * freq_minx);
}
}
} else {
extra_retp->sol_ct = cubic_sol_ct - first_relevant_sol_idx;
extra_retp->best_lnlike_mask = best_lnlike_mask >> first_relevant_sol_idx;
extra_retp->freq_majmaj = freq_majmaj;
extra_retp->freq_majmin = freq_majmin;
extra_retp->freq_minmaj = freq_minmaj;
extra_retp->freq_minmin = freq_minmin;
extra_retp->half_unphased_hethet_share = half_unphased_hethet_share;
extra_retp->freq_majx = freq_majx;
extra_retp->freq_minx = freq_minx;
extra_retp->freq_xmaj = freq_xmaj;
extra_retp->freq_xmin = freq_xmin;
for (uint32_t sol_idx = first_relevant_sol_idx; sol_idx != cubic_sol_ct; ++sol_idx) {
results[sol_idx - first_relevant_sol_idx] = cubic_sols[sol_idx];
}
}
return kLDErrNone;
}
PglErr LdConsole(const uintptr_t* variant_include, const ChrInfo* cip, const char* const* variant_ids, const uintptr_t* allele_idx_offsets, const char* const* allele_storage, const AlleleCode* maj_alleles, const uintptr_t* founder_info, const uintptr_t* sex_nm, const uintptr_t* sex_male, const LdInfo* ldip, uint32_t variant_ct, uint32_t raw_sample_ct, uint32_t founder_ct, PgenReader* simple_pgrp) {
unsigned char* bigstack_mark = g_bigstack_base;
PglErr reterr = kPglRetSuccess;
{
if (unlikely(founder_ct < 2)) {
logerrputs("Error: --ld requires at least two founders. (--make-founders may come in handy\nhere.)\n");
goto LdConsole_ret_INCONSISTENT_INPUT;
}
STD_ARRAY_KREF(char*, 2) ld_console_varids = ldip->ld_console_varids;
// ok to ignore chr_mask here
const uint32_t x_code = cip->xymt_codes[kChrOffsetX];
const uint32_t y_code = cip->xymt_codes[kChrOffsetY];
// is_x:
// * male het calls treated as missing hardcalls
// * males only have half weight in all computations (or sqrt(0.5) if one
// variant on chrX and one variant elsewhere)
// * SNPHWEX used for HWE stats
//
// is_nonx_haploid:
// * all het calls treated as missing hardcalls
uint32_t var_uidxs[2];
uint32_t chr_idxs[2];
uint32_t is_xs[2];
uint32_t is_haploids[2];
uint32_t y_ct = 0;
for (uint32_t var_idx = 0; var_idx != 2; ++var_idx) {
const char* cur_varid = ld_console_varids[var_idx];
int32_t ii = GetVariantUidxWithoutHtable(cur_varid, variant_ids, variant_include, variant_ct);
if (unlikely(ii == -1)) {
snprintf(g_logbuf, kLogbufSize, "Error: --ld variant '%s' does not appear in dataset.\n", cur_varid);
goto LdConsole_ret_INCONSISTENT_INPUT_WW;
} else if (unlikely(ii == -2)) {
snprintf(g_logbuf, kLogbufSize, "Error: --ld variant '%s' appears multiple times in dataset.\n", cur_varid);
goto LdConsole_ret_INCONSISTENT_INPUT_WW;
}
const uint32_t cur_var_uidx = ii;
var_uidxs[var_idx] = cur_var_uidx;
const uint32_t chr_idx = GetVariantChr(cip, cur_var_uidx);
chr_idxs[var_idx] = chr_idx;
const uint32_t is_x = (chr_idx == x_code);
is_xs[var_idx] = is_x;
uint32_t is_haploid = 0;
if (IsSet(cip->haploid_mask, chr_idx)) {
is_haploid = 1;
y_ct += (chr_idx == y_code);
}
is_haploids[var_idx] = is_haploid;
}
const uint32_t raw_sample_ctl = BitCtToWordCt(raw_sample_ct);
// if both unplaced, don't count as same-chromosome
const uint32_t is_same_chr = chr_idxs[0] && (chr_idxs[0] == chr_idxs[1]);
if (y_ct) {
// only keep non-female founders
// (relaxed on 12 Oct 2023 to be consistent with plink2 --set-hh-missing
// behavior)
uintptr_t* founder_info_tmp;
if (unlikely(bigstack_alloc_w(raw_sample_ctl, &founder_info_tmp))) {
goto LdConsole_ret_NOMEM;
}
// female = sex_nm & (~sex_male)
// this leaves trailing bits set, but BitvecAnd with founder_info clears
// them
BitvecInvertCopy(sex_nm, raw_sample_ctl, founder_info_tmp);
BitvecOr(sex_male, raw_sample_ctl, founder_info_tmp);
BitvecAnd(founder_info, raw_sample_ctl, founder_info_tmp);
founder_info = founder_info_tmp;
founder_ct = PopcountWords(founder_info, raw_sample_ctl);
if (unlikely(founder_ct < 2)) {
logerrputs("Error: --ld requires at least two non-female founders when a chrY variant is\nspecified. (--make-founders may come in handy here.)\n");
goto LdConsole_ret_INCONSISTENT_INPUT;
}
}
const uint32_t founder_ctl = BitCtToWordCt(founder_ct);
uint32_t* founder_info_cumulative_popcounts;
PgenVariant pgvs[2];
PreinitPgv(&(pgvs[0]));
PreinitPgv(&(pgvs[1]));
if (unlikely(bigstack_alloc_u32(founder_ctl, &founder_info_cumulative_popcounts) ||
BigstackAllocPgv(founder_ct, 0, kfPgenGlobalHardcallPhasePresent | kfPgenGlobalDosagePresent | kfPgenGlobalDosagePhasePresent, &(pgvs[0])) ||
BigstackAllocPgv(founder_ct, 0, kfPgenGlobalHardcallPhasePresent | kfPgenGlobalDosagePresent | kfPgenGlobalDosagePhasePresent, &(pgvs[1])))) {
goto LdConsole_ret_NOMEM;
}
const uint32_t x_present = (is_xs[0] || is_xs[1]);
const uint32_t founder_ctv = BitCtToVecCt(founder_ct);
const uint32_t founder_ctaw = founder_ctv * kWordsPerVec;
uintptr_t* sex_male_collapsed = nullptr;
uintptr_t* sex_male_collapsed_interleaved = nullptr;
uint32_t x_male_ct = 0;
if (x_present) {
if (unlikely(bigstack_alloc_w(founder_ctaw, &sex_male_collapsed) ||
bigstack_alloc_w(founder_ctaw, &sex_male_collapsed_interleaved))) {
goto LdConsole_ret_NOMEM;
}
CopyBitarrSubset(sex_male, founder_info, founder_ct, sex_male_collapsed);
ZeroTrailingWords(founder_ctl, sex_male_collapsed);
FillInterleavedMaskVec(sex_male_collapsed, founder_ctv, sex_male_collapsed_interleaved);
x_male_ct = PopcountWords(sex_male_collapsed, founder_ctaw);
}
FillCumulativePopcounts(founder_info, founder_ctl, founder_info_cumulative_popcounts);
PgrSampleSubsetIndex pssi;
PgrSetSampleSubsetIndex(founder_info_cumulative_popcounts, simple_pgrp, &pssi);
for (uint32_t var_idx = 0; var_idx != 2; ++var_idx) {
const uint32_t variant_uidx = var_uidxs[var_idx];
// (unconditionally allocating phaseinfo/dosage_main and using the most
// general-purpose loader makes sense when this loop only executes twice,
// but --r2 will want to use different pgenlib loaders depending on
// context.)
PgenVariant* pgvp = &(pgvs[var_idx]);
reterr = PgrGetInv1Dp(founder_info, pssi, founder_ct, variant_uidx, maj_alleles[variant_uidx], simple_pgrp, pgvp);
if (unlikely(reterr)) {
PgenErrPrintNV(reterr, variant_uidx);
goto LdConsole_ret_1;
}
ZeroTrailingNyps(founder_ct, pgvp->genovec);
if (is_haploids[var_idx]) {
if (x_male_ct && is_xs[var_idx]) {
if (pgvp->phasepresent_ct) {
BitvecInvmask(sex_male_collapsed, founder_ctl, pgvp->phasepresent);
pgvp->phasepresent_ct = PopcountWords(pgvp->phasepresent, founder_ctl);
}
if (pgvp->dphase_ct) {
EraseMaleDphases(sex_male_collapsed, &(pgvp->dphase_ct), pgvp->dphase_present, pgvp->dphase_delta);
}
} else {
pgvp->phasepresent_ct = 0;
pgvp->dphase_ct = 0;
}
}
}
const uint32_t use_phase = is_same_chr && (pgvs[0].phasepresent_ct || pgvs[0].dphase_ct) && (pgvs[1].phasepresent_ct || pgvs[1].dphase_ct);
// in haploid case, het -> 0.5
const uint32_t use_dosage = pgvs[0].dosage_ct || pgvs[1].dosage_ct || is_haploids[0] || is_haploids[1];
// values of interest:
// mutually-nonmissing observation count
// (all other values computed over mutually-nonmissing set)
// 4 known-diplotype dosages (0..2 for each sample, in unphased het-het)
// (unphased het-het fractional count can be inferred)
// dosage sum for each variant
uint32_t valid_x_male_ct = 0;
double nmajsums_d[2];
double x_male_nmajsums_d[2];
double known_dotprod_d;
double unknown_hethet_d;
uint32_t valid_obs_ct;
uint32_t hethet_hc_found = 0;
if (!use_dosage) {
// While we could theoretically optimize around the fact that we only
// need to make a single phased-r^2 computation, that's silly; it makes a
// lot more sense to use this as a testing ground for algorithms and data
// representations suitable for --r/--r2, etc.
uintptr_t* one_bitvecs[2];
uintptr_t* two_bitvecs[2];
uintptr_t* nm_bitvecs[2];
if (unlikely(bigstack_alloc_w(founder_ctaw, &one_bitvecs[0]) ||
bigstack_alloc_w(founder_ctaw, &two_bitvecs[0]) ||
bigstack_alloc_w(founder_ctaw, &nm_bitvecs[0]) ||
bigstack_alloc_w(founder_ctaw, &one_bitvecs[1]) ||
bigstack_alloc_w(founder_ctaw, &two_bitvecs[1]) ||
bigstack_alloc_w(founder_ctaw, &nm_bitvecs[1]))) {
goto LdConsole_ret_NOMEM;
}
uint32_t nmaj_cts[2];
uint32_t nm_cts[2]; // ugh.
for (uint32_t var_idx = 0; var_idx != 2; ++var_idx) {
GenoarrSplit12Nm(pgvs[var_idx].genovec, founder_ct, one_bitvecs[var_idx], two_bitvecs[var_idx], nm_bitvecs[var_idx]);
nmaj_cts[var_idx] = GenoBitvecSum(one_bitvecs[var_idx], two_bitvecs[var_idx], founder_ctl);
nm_cts[var_idx] = PopcountWords(nm_bitvecs[var_idx], founder_ctl);
}
uint32_t known_dotprod;
uint32_t unknown_hethet_ct;
valid_obs_ct = HardcallPhasedR2Stats(one_bitvecs[0], two_bitvecs[0], nm_bitvecs[0], one_bitvecs[1], two_bitvecs[1], nm_bitvecs[1], founder_ct, nm_cts[0], nm_cts[1], nmaj_cts, &known_dotprod, &unknown_hethet_ct);
if (unlikely(!valid_obs_ct)) {
goto LdConsole_ret_NO_VALID_OBSERVATIONS;
}
hethet_hc_found = (unknown_hethet_ct != 0);
if (use_phase && hethet_hc_found) {
// all that's needed for the hardcall-phase correction is:
// popcount(phasepresent0 & phasepresent1)
// popcount(phasepresent0 & phasepresent1 &
// (phaseinfo0 ^ phaseinfo1))
HardcallPhasedR2Refine(pgvs[0].phasepresent, pgvs[0].phaseinfo, pgvs[1].phasepresent, pgvs[1].phaseinfo, founder_ctl, &known_dotprod, &unknown_hethet_ct);
}
nmajsums_d[0] = u31tod(nmaj_cts[0]);
nmajsums_d[1] = u31tod(nmaj_cts[1]);
known_dotprod_d = S_CAST(double, known_dotprod);
unknown_hethet_d = u31tod(unknown_hethet_ct);
} else {
const uint32_t founder_dosagev_ct = DivUp(founder_ct, kDosagePerVec);
Dosage* dosage_vecs[2];
Dosage* dosage_hets[2];
uintptr_t* nm_bitvecs[2];
// founder_ct automatically rounded up as necessary
if (unlikely(bigstack_alloc_dosage(founder_ct, &dosage_vecs[0]) ||
bigstack_alloc_dosage(founder_ct, &dosage_vecs[1]) ||
bigstack_alloc_dosage(founder_ct, &dosage_hets[0]) ||
bigstack_alloc_dosage(founder_ct, &dosage_hets[1]) ||
bigstack_alloc_w(founder_ctl, &nm_bitvecs[0]) ||
bigstack_alloc_w(founder_ctl, &nm_bitvecs[1]))) {
goto LdConsole_ret_NOMEM;
}
uint64_t nmaj_dosages[2];
uint32_t nm_cts[2];
for (uint32_t var_idx = 0; var_idx != 2; ++var_idx) {
const uint32_t dosage_ct = pgvs[var_idx].dosage_ct;
PopulateDenseDosage(pgvs[var_idx].genovec, pgvs[var_idx].dosage_present, pgvs[var_idx].dosage_main, founder_ct, dosage_ct, dosage_vecs[var_idx]);
nmaj_dosages[var_idx] = DenseDosageSum(dosage_vecs[var_idx], founder_dosagev_ct);
FillDosageHet(dosage_vecs[var_idx], founder_dosagev_ct, dosage_hets[var_idx]);
GenoarrToNonmissing(pgvs[var_idx].genovec, founder_ct, nm_bitvecs[var_idx]);
// bugfix (10 Dec 2023)
if (dosage_ct) {
BitvecOr(pgvs[var_idx].dosage_present, founder_ctl, nm_bitvecs[var_idx]);
}
nm_cts[var_idx] = PopcountWords(nm_bitvecs[var_idx], founder_ctl);
}
SDosage* main_dphase_deltas[2];
main_dphase_deltas[0] = nullptr;
main_dphase_deltas[1] = nullptr;
if (use_phase) {
if (unlikely(bigstack_alloc_dphase(founder_ct, &main_dphase_deltas[0]) ||
bigstack_alloc_dphase(founder_ct, &main_dphase_deltas[1]))) {
goto LdConsole_ret_NOMEM;
}
for (uint32_t var_idx = 0; var_idx != 2; ++var_idx) {
PopulateDenseDphase(pgvs[var_idx].phasepresent, pgvs[var_idx].phaseinfo, pgvs[var_idx].dosage_present, dosage_vecs[var_idx], pgvs[var_idx].dphase_present, pgvs[var_idx].dphase_delta, founder_ct, pgvs[var_idx].phasepresent_ct, pgvs[var_idx].dosage_ct, pgvs[var_idx].dphase_ct, main_dphase_deltas[var_idx]);
}
}
valid_obs_ct = DosageR2Freqs(dosage_vecs[0], nm_bitvecs[0], dosage_vecs[1], nm_bitvecs[1], founder_ct, nm_cts[0], nm_cts[1], nmaj_dosages);
if (unlikely(!valid_obs_ct)) {
goto LdConsole_ret_NO_VALID_OBSERVATIONS;
}
nmajsums_d[0] = u63tod(nmaj_dosages[0]) * kRecipDosageMid;
nmajsums_d[1] = u63tod(nmaj_dosages[1]) * kRecipDosageMid;
uint64_t known_dotprod_dosage;
uint64_t uhethet_dosage;
if (!x_male_ct) {
if (!use_phase) {
DosageUnphasedDotprodComponents(dosage_vecs[0], dosage_vecs[1], dosage_hets[0], dosage_hets[1], founder_dosagev_ct, &known_dotprod_dosage, &uhethet_dosage);
} else {
DosagePhasedDotprodComponents(dosage_vecs[0], dosage_vecs[1], main_dphase_deltas[0], main_dphase_deltas[1], founder_dosagev_ct, &known_dotprod_dosage, &uhethet_dosage);
}
known_dotprod_d = u63tod(known_dotprod_dosage) * kRecipDosageMax;
unknown_hethet_d = u63tod(uhethet_dosage) * kRecipDosageMax;
} else {
Dosage* x_nonmale_dosage_invmask;
Dosage* x_male_dosage_invmask;
uintptr_t* sex_nonmale_collapsed;
uintptr_t* nm_buf;
Dosage* invmask_buf;
if (unlikely(bigstack_alloc_dosage(founder_ct, &x_nonmale_dosage_invmask) ||
bigstack_alloc_dosage(founder_ct, &x_male_dosage_invmask) ||
bigstack_alloc_w(founder_ctl, &sex_nonmale_collapsed) ||
bigstack_alloc_w(founder_ctl, &nm_buf) ||
bigstack_alloc_dosage(founder_ct, &invmask_buf))) {
goto LdConsole_ret_NOMEM;
}
BitvecInvertCopy(sex_male_collapsed, founder_ctl, sex_nonmale_collapsed);
ZeroTrailingBits(founder_ct, sex_nonmale_collapsed);
Expand1bitTo16(sex_nonmale_collapsed, RoundUpPow2(founder_ct, kDosagePerVec), 0xffff, x_nonmale_dosage_invmask);
Expand1bitTo16(sex_male_collapsed, RoundUpPow2(founder_ct, kDosagePerVec), 0xffff, x_male_dosage_invmask);
uint32_t x_male_nm_cts[2];
x_male_nm_cts[0] = PopcountWordsIntersect(sex_male_collapsed, nm_bitvecs[0], founder_ctl);
x_male_nm_cts[1] = PopcountWordsIntersect(sex_male_collapsed, nm_bitvecs[1], founder_ctl);
uint64_t x_male_nmaj_dosages[2];
x_male_nmaj_dosages[0] = DenseDosageSumSubset(dosage_vecs[0], x_male_dosage_invmask, founder_dosagev_ct);
x_male_nmaj_dosages[1] = DenseDosageSumSubset(dosage_vecs[1], x_male_dosage_invmask, founder_dosagev_ct);
valid_x_male_ct = DosageR2FreqsSubset(dosage_vecs[0], nm_bitvecs[0], dosage_vecs[1], nm_bitvecs[1], sex_male_collapsed, founder_ct, x_male_ct, x_male_nm_cts[0], x_male_nm_cts[1], x_male_nmaj_dosages, nm_buf, invmask_buf);
if (!use_phase) {
DosageUnphasedDotprodComponentsSubset(x_nonmale_dosage_invmask, dosage_vecs[0], dosage_vecs[1], dosage_hets[0], dosage_hets[1], founder_dosagev_ct, &known_dotprod_dosage, &uhethet_dosage);
} else {
DosagePhasedDotprodComponentsSubset(x_nonmale_dosage_invmask, dosage_vecs[0], dosage_vecs[1], main_dphase_deltas[0], main_dphase_deltas[1], founder_dosagev_ct, &known_dotprod_dosage, &uhethet_dosage);
}
uint64_t x_male_known_dotprod_dosage;
uint64_t x_male_uhethet_dosage;
DosageUnphasedDotprodComponentsSubset(x_male_dosage_invmask, dosage_vecs[0], dosage_vecs[1], dosage_hets[0], dosage_hets[1], founder_dosagev_ct, &x_male_known_dotprod_dosage, &x_male_uhethet_dosage);
// males have sqrt(0.5) weight if one variant is chrX, half-weight if
// both are chrX
const double male_mult = (is_xs[0] && is_xs[1])? 0.5 : (0.5 * kSqrt2);
// unknown_hethet_d = u63tod(uhethet_dosage) * kRecipDosageMax;
known_dotprod_d = (u63tod(known_dotprod_dosage) + male_mult * u63tod(x_male_known_dotprod_dosage)) * kRecipDosageMax;
unknown_hethet_d = (u63tod(uhethet_dosage) + male_mult * u63tod(x_male_uhethet_dosage)) * kRecipDosageMax;
x_male_nmajsums_d[0] = u63tod(x_male_nmaj_dosages[0]) * kRecipDosageMid;
x_male_nmajsums_d[1] = u63tod(x_male_nmaj_dosages[1]) * kRecipDosageMid;
}
}
double valid_obs_d = u31tod(valid_obs_ct);
if (valid_x_male_ct) {
const double male_decr = (is_xs[0] && is_xs[1])? 0.5 : (1.0 - 0.5 * kSqrt2);
nmajsums_d[0] -= male_decr * x_male_nmajsums_d[0];
nmajsums_d[1] -= male_decr * x_male_nmajsums_d[1];
valid_obs_d -= male_decr * u31tod(valid_x_male_ct);
}
const double twice_tot_recip = 0.5 / valid_obs_d;
// in plink 1.9, "freq12" refers to first variant=1, second variant=2
// this most closely corresponds to freq_majmin here
PhasedLDExtraRet extra_ret;
double cubic_sols[3];
const LDErr ld_err = PhasedLD(nmajsums_d, known_dotprod_d, unknown_hethet_d, twice_tot_recip, 1, &extra_ret, cubic_sols, nullptr);
if (ld_err) {
logerrprintfww("Warning: Skipping --ld since %s is monomorphic across all valid observations.\n", ld_console_varids[ld_err - 1]);
goto LdConsole_ret_1;
}
logputs("\n");
logprintfww("--ld %s %s:\n", ld_console_varids[0], ld_console_varids[1]);
logputs("\n");
char* write_poststop = &(g_logbuf[80]);
uint32_t varid_slens[2];
uint32_t cur_allele_ct = 2;
for (uint32_t var_idx = 0; var_idx != 2; ++var_idx) {
const uint32_t cur_variant_uidx = var_uidxs[var_idx];
uintptr_t allele_idx_offset_base = cur_variant_uidx * 2;
if (allele_idx_offsets) {
allele_idx_offset_base = allele_idx_offsets[cur_variant_uidx];
cur_allele_ct = allele_idx_offsets[cur_variant_uidx + 1] - allele_idx_offset_base;
}
const char* const* cur_alleles = &(allele_storage[allele_idx_offset_base]);
const char* cur_varid = ld_console_varids[var_idx];
const uint32_t cur_varid_slen = strlen(ld_console_varids[var_idx]);
varid_slens[var_idx] = cur_varid_slen;
char* write_iter = memcpya(g_logbuf, cur_varid, cur_varid_slen);
write_iter = strcpya_k(write_iter, " alleles:\n");
*write_iter = '\0';
WordWrapB(0);
logputsb();
write_iter = strcpya_k(g_logbuf, " MAJOR = ");
const uint32_t maj_idx = maj_alleles[cur_variant_uidx];
const char* maj_allele = cur_alleles[maj_idx];
const uint32_t maj_slen = strlen(maj_allele);
uint32_t slen_limit = 70;
if (!maj_idx) {
write_iter = strcpya_k(write_iter, "REF = ");
slen_limit -= 6;
}
if (maj_slen < slen_limit) {
write_iter = memcpyax(write_iter, maj_allele, maj_slen, '\n');
} else {
write_iter = memcpya(write_iter, maj_allele, slen_limit - 3);
write_iter = strcpya_k(write_iter, "...\n");
}
*write_iter = '\0';
logputsb();
write_iter = strcpya_k(g_logbuf, " MINOR = ");
uint32_t allele_idx = (maj_idx == 0)? 1 : 0;
while (1) {
const char* cur_allele = cur_alleles[allele_idx];
const uint32_t cur_slen = strlen(cur_allele);
if (S_CAST(uintptr_t, write_poststop - write_iter) <= cur_slen) {
char* write_ellipsis_start = &(g_logbuf[76]);
if (write_ellipsis_start > write_iter) {
const uint32_t final_char_ct = S_CAST(uintptr_t, write_ellipsis_start - write_iter);
memcpy(write_iter, cur_allele, final_char_ct);
}
write_iter = strcpya_k(write_ellipsis_start, "...");
break;
}
write_iter = memcpya(write_iter, cur_allele, cur_slen);
++allele_idx;
if (allele_idx == maj_idx) {
++allele_idx;
}
if (allele_idx == cur_allele_ct) {
break;
}
*write_iter++ = ',';
}
*write_iter++ = '\n';
*write_iter = '\0';
logputsb();
if (maj_idx) {
write_iter = strcpya_k(g_logbuf, " (REF = ");
const char* ref_allele = cur_alleles[0];
const uint32_t ref_slen = strlen(ref_allele);
if (ref_slen < 70) {
write_iter = memcpya(write_iter, ref_allele, ref_slen);
} else {
write_iter = memcpya(write_iter, ref_allele, 67);
write_iter = strcpya_k(write_iter, "...");
}
memcpy_k(write_iter, ")\n\0", 4);
logputsb();
}
}
logputs("\n");
char* write_iter = u32toa(valid_obs_ct, g_logbuf);
write_iter = strcpya_k(write_iter, " valid");
if (y_ct) {
write_iter = strcpya_k(write_iter, " non-female");
}
write_iter = strcpya_k(write_iter, " sample");
if (valid_obs_ct != 1) {
*write_iter++ = 's';
}
if (valid_x_male_ct && ((!y_ct) || (valid_x_male_ct < valid_obs_ct))) {
write_iter = strcpya_k(write_iter, " (");
write_iter = u32toa(valid_x_male_ct, write_iter);
write_iter = strcpya_k(write_iter, " male)");
}
if (unknown_hethet_d == 0.0) {
// not currently checking for (fractional) het pairs in dosage case.
if (!use_dosage) {
write_iter = strcpya_k(write_iter, "; ");
if (hethet_hc_found) {
write_iter = strcpya_k(write_iter, "all phased");
} else {
// not a literal "het pair" in the haploid case, but same concept, so
// I'll just leave the language unchanged for now
write_iter = strcpya_k(write_iter, "no het pairs present");
}
}
} else {
write_iter = strcpya_k(write_iter, "; ");
// ddosagetoa() assumes kDosageMax rather than kDosageMid multiplier
const uint64_t unknown_hethet_int_ddosage = S_CAST(int64_t, unknown_hethet_d * kDosageMax);
char* write_iter2 = ddosagetoa(unknown_hethet_int_ddosage, write_iter);
const uint32_t wrote_exactly_1 = (write_iter2 == &(write_iter[1])) && (write_iter[0] == '1');
write_iter = strcpya_k(write_iter2, " het pair");
if (!wrote_exactly_1) {
*write_iter++ = 's';
}
write_iter = strcpya_k(write_iter, " statistically phased");
}
assert(write_iter - g_logbuf < 78);
memcpy_k(write_iter, ".\n\0", 4);
logputsb();
// sol_ct does not contain trailing too-large solutions
const uint32_t sol_ct = extra_ret.sol_ct;
if (sol_ct > 1) {
logputs("Multiple phasing solutions; sample size, HWE, or random mating assumption may\nbe violated.\n\nHWE exact test p-values\n-----------------------\n");
// (can't actually get here in nonx_haploid_or_mt case, impossible to
// have a hethet)
const uint32_t hwe_midp = (ldip->ld_console_flags / kfLdConsoleHweMidp) & 1;
uint32_t x_nosex_ct = 0; // usually shouldn't exist, but...
uintptr_t* nosex_collapsed = nullptr;
if (x_present) {
x_nosex_ct = founder_ct - PopcountWordsIntersect(founder_info, sex_nm, raw_sample_ctl);
if (x_nosex_ct) {
if (unlikely(bigstack_alloc_w(founder_ctl, &nosex_collapsed))) {
goto LdConsole_ret_NOMEM;
}
CopyBitarrSubset(sex_nm, founder_info, founder_ct, nosex_collapsed);
// bugfix (17 Oct 2023): need to pass bit count, not word count
AlignedBitarrInvert(founder_ct, nosex_collapsed);
}
}
// Unlike plink 1.9, we don't restrict these HWE computations to the
// nonmissing intersection.
for (uint32_t var_idx = 0; var_idx != 2; ++var_idx) {
const uintptr_t* cur_genovec = pgvs[var_idx].genovec;
STD_ARRAY_DECL(uint32_t, 4, genocounts);
GenoarrCountFreqsUnsafe(cur_genovec, founder_ct, genocounts);
write_iter = strcpya_k(g_logbuf, " ");
write_iter = strcpya(write_iter, ld_console_varids[var_idx]);
write_iter = strcpya_k(write_iter, ": ");
double hwe_ln_pval;
if (!is_xs[var_idx]) {
hwe_ln_pval = HweLnP(genocounts[1], genocounts[0], genocounts[2], hwe_midp);
} else {
STD_ARRAY_DECL(uint32_t, 4, male_genocounts);
GenoarrCountSubsetFreqs(cur_genovec, sex_male_collapsed_interleaved, founder_ct, x_male_ct, male_genocounts);
assert(!male_genocounts[1]);
if (x_nosex_ct) {
STD_ARRAY_DECL(uint32_t, 4, nosex_genocounts);
GenoarrCountSubsetFreqs2(cur_genovec, nosex_collapsed, founder_ct, x_nosex_ct, nosex_genocounts);
genocounts[0] -= nosex_genocounts[0];
genocounts[1] -= nosex_genocounts[1];
genocounts[2] -= nosex_genocounts[2];
}
hwe_ln_pval = HweXchrLnP(genocounts[1], genocounts[0] - male_genocounts[0], genocounts[2] - male_genocounts[2], male_genocounts[0], male_genocounts[2], hwe_midp);
}
write_iter = lntoa_g(hwe_ln_pval, write_iter);
memcpy_k(write_iter, "\n", 2);
logputsb();
}
}
logputs("\n");
const uint32_t best_lnlike_mask = extra_ret.best_lnlike_mask;
const double freq_majmaj = extra_ret.freq_majmaj;
const double freq_majmin = extra_ret.freq_majmin;
const double freq_minmaj = extra_ret.freq_minmaj;
const double freq_minmin = extra_ret.freq_minmin;
const double half_unphased_hethet_share = extra_ret.half_unphased_hethet_share;
const double freq_majx = extra_ret.freq_majx;
const double freq_minx = extra_ret.freq_minx;
const double freq_xmaj = extra_ret.freq_xmaj;
const double freq_xmin = extra_ret.freq_xmin;
for (uint32_t sol_idx = 0; sol_idx < sol_ct; ++sol_idx) {
if (sol_ct > 1) {
write_iter = strcpya_k(g_logbuf, "Solution #");
write_iter = u32toa(sol_idx + 1, write_iter);
if ((best_lnlike_mask >> sol_idx) & 1) {
write_iter = strcpya_k(write_iter, " (");
if (best_lnlike_mask & ((1 << sol_idx) - 1)) {
write_iter = strcpya_k(write_iter, "tied for ");
}
write_iter = strcpya_k(write_iter, "best likelihood)");
}
assert(write_iter - g_logbuf < 78);
memcpy_k(write_iter, ":\n\0", 4);
logputsb();
}
const double cur_sol_xx = cubic_sols[sol_idx];
double dd = freq_majmaj + cur_sol_xx - freq_majx * freq_xmaj;
if (fabs(dd) < kSmallEpsilon) {
dd = 0.0;
}
write_iter = strcpya_k(g_logbuf, " r^2 = ");
write_iter = dtoa_g(dd * dd / (freq_majx * freq_xmaj * freq_minx * freq_xmin), write_iter);
write_iter = strcpya_k(write_iter, " |D'| = ");
double d_prime;
if (dd >= 0.0) {
d_prime = dd / MINV(freq_xmaj * freq_minx, freq_xmin * freq_majx);
} else {
d_prime = -dd / MINV(freq_xmaj * freq_majx, freq_xmin * freq_minx);
}
write_iter = dtoa_g(d_prime, write_iter);
assert(write_iter - g_logbuf < 79);
strcpy_k(write_iter, "\n");
logputsb();
logputs("\n");
// Default layout:
// [8 spaces]Frequencies : [centered varID[1]]
// (expectations under LE) MAJOR MINOR
// ---------- ----------
// MAJOR a.bcdefg a.bcdefg
// (a.bcdefg) (a.bcdefg)
// [r-justified varID[0]]
// MINOR a.bcdefg a.bcdefg
// (a.bcdefg) (a.bcdefg)
//
// (decimals are fixed-point, and trailing zeroes are erased iff there is
// an exact match to ~13-digit precision; this is slightly more stringent
// than plink 1.9's dtoa_f_w9p6_spaced() since there isn't much room here
// for floating-point error to accumulate)
// As for long variant IDs:
// The default layout uses 55 columns, and stops working when
// strlen(varID[0]) > 26. So the right half can be shifted up to 24
// characters before things get ugly in terminal windows. Thus, once
// string length > 50, we print only the first 47 characters of varID and
// follow it with "...".
// Similarly, when strlen(varID[1]) <= 51, centering is pretty
// straightforward; beyond that, we print only the first 48 chars.
uint32_t extra_initial_spaces = 0;
const uint32_t varid_slen0 = varid_slens[0];
if (varid_slen0 > 26) {
// formatting fix (1 Feb 2018): cap this at 24, not 50
extra_initial_spaces = MINV(varid_slen0 - 26, 24);
}
write_iter = strcpya_k(g_logbuf, " Frequencies : ");
// default center column index is 43 + extra_initial_spaces; we're
// currently at column 28
// for length-1, we want to occupy just the center column index; for
// length-2, both center and (center + 1), etc.
// ((16 + extra_initial_spaces) * 2 - strlen(varID[1])) / 2
const uint32_t varid_slen1 = varid_slens[1];
if (varid_slen1 > 51) {
write_iter = memcpya(write_iter, ld_console_varids[1], 48);
write_iter = strcpya_k(write_iter, "...");
} else {
uint32_t offset_x2 = (16 + extra_initial_spaces) * 2;
if (offset_x2 > varid_slen1) {
uint32_t varid1_padding = (offset_x2 - varid_slen1) / 2;
if (varid1_padding + varid_slen1 > 51) {
varid1_padding = 51 - varid_slen1;
}
write_iter = memseta(write_iter, 32, varid1_padding);
}
write_iter = memcpya(write_iter, ld_console_varids[1], varid_slen1);
}
strcpy_k(write_iter, "\n");
logputsb();
write_iter = strcpya_k(g_logbuf, " (expectations under LE)");
write_iter = memseta(write_iter, 32, extra_initial_spaces + 10);
snprintf(write_iter, 81 - 25 - 24 - 10, "MAJOR MINOR\n");
logputsb();
write_iter = memseta(g_logbuf, 32, extra_initial_spaces + 33);
snprintf(write_iter, 81 - 24 - 33, "---------- ----------\n");
logputsb();
write_iter = strcpya_k(&(g_logbuf[27 + extra_initial_spaces]), "MAJOR ");
write_iter = dtoa_f_probp6_spaced(freq_majmaj + cur_sol_xx, write_iter);
write_iter = strcpya_k(write_iter, " ");
const double cur_sol_xy = half_unphased_hethet_share - cur_sol_xx;
write_iter = dtoa_f_probp6_clipped(freq_majmin + cur_sol_xy, write_iter);
strcpy_k(write_iter, "\n");
logputsb();
write_iter = strcpya_k(&(g_logbuf[27 + extra_initial_spaces]), " (");
char* next_paren_open = &(write_iter[11]);
write_iter = dtoa_f_probp6_clipped(freq_xmaj * freq_majx, write_iter);
*write_iter++ = ')';
memset(write_iter, ' ', next_paren_open - write_iter);
*next_paren_open++ = '(';
write_iter = dtoa_f_probp6_clipped(freq_xmin * freq_majx, next_paren_open);
memcpy_k(write_iter, ")\n\0", 4);
logputsb();
write_iter = g_logbuf;
if (varid_slen0 < 26) {
write_iter = &(write_iter[26 - varid_slen0]);
}
write_iter = memcpya(write_iter, ld_console_varids[0], varid_slen0);
strcpy_k(write_iter, "\n");
logputsb();
write_iter = memseta(g_logbuf, 32, 27 + extra_initial_spaces);
write_iter = strcpya_k(write_iter, "MINOR ");
write_iter = dtoa_f_probp6_spaced(freq_minmaj + cur_sol_xy, write_iter);
write_iter = strcpya_k(write_iter, " ");
write_iter = dtoa_f_probp6_clipped(freq_minmin + cur_sol_xx, write_iter);
strcpy_k(write_iter, "\n");
logputsb();
write_iter = strcpya_k(&(g_logbuf[27 + extra_initial_spaces]), " (");
next_paren_open = &(write_iter[11]);
write_iter = dtoa_f_probp6_clipped(freq_xmaj * freq_minx, write_iter);
*write_iter++ = ')';
memset(write_iter, ' ', next_paren_open - write_iter);
*next_paren_open++ = '(';
write_iter = dtoa_f_probp6_clipped(freq_xmin * freq_minx, next_paren_open);
memcpy_k(write_iter, ")\n\0", 4);
logputsb();
logputs("\n");
if (dd > 0.0) {
logputs(" Major alleles are in phase with each other.\n\n");
} else if (dd < 0.0) {
logputs(" Major alleles are out of phase with each other.\n\n");
}
}
}
while (0) {
LdConsole_ret_NOMEM:
reterr = kPglRetNomem;
break;
LdConsole_ret_INCONSISTENT_INPUT_WW:
WordWrapB(0);
logerrputsb();
LdConsole_ret_INCONSISTENT_INPUT:
reterr = kPglRetInconsistentInput;
break;
LdConsole_ret_NO_VALID_OBSERVATIONS:
logerrputs("Error: No valid observations for --ld.\n");
reterr = kPglRetDegenerateData;
break;
}
LdConsole_ret_1:
BigstackReset(bigstack_mark);
return reterr;
}
// distinguish fully-unphased r^2 computation from no-phased-calls subcase in
// phased-r^2 computation
ENUM_U31_DEF_START()
kR2PhaseTypeUnphased,
kR2PhaseTypeOmit,
kR2PhaseTypePresent
ENUM_U31_DEF_END(R2PhaseType);
static inline R2PhaseType R2PhaseOmit(R2PhaseType phase_type) {
// convert kR2PhaseTypePresent to kR2PhaseTypeOmit, leave other values
// unchanged
return S_CAST(R2PhaseType, phase_type != kR2PhaseTypeUnphased);
}
static inline R2PhaseType GetR2PhaseType(uint32_t phased_r2, uint32_t phase_present) {
return S_CAST(R2PhaseType, phased_r2 * (1 + phase_present));
}
// ***** --clump implementation starts here *****
// We want to support --glm's handling of multiallelic variants, where we're
// working in terms of (variant, allele) pairs rather than just variants.
// So we maintain variant-based *and* allele-based bitvectors tracking the
// pairs under consideration.
//
// Current multithreading strategies are restricted to a single index variant
// at a time across all threads. Possible todo: implement a strategy similar
// to --indep-pair{phase,wise}, where each thread works on its own island, and
// benchmark on typical datasets against the existing implementation.
uint32_t GetNextIsland(const ChrInfo* cip, const uint32_t* variant_bps, const uintptr_t* icandidate_vbitvec, const uintptr_t* observed_variants, uint32_t raw_variant_ct, uint32_t bp_radius, uint32_t* vidx_endp, uint32_t* chr_fo_idxp) {
uint32_t vidx_start = *vidx_endp;
uint32_t index_vidx = AdvBoundedTo1Bit(icandidate_vbitvec, vidx_start, raw_variant_ct);
if (index_vidx == raw_variant_ct) {
// ensure chr_fo_idx compares unequal
*chr_fo_idxp = UINT32_MAX;
return raw_variant_ct;
}
uint32_t chr_fo_idx = *chr_fo_idxp;
uint32_t chr_end_vidx = cip->chr_fo_vidx_start[chr_fo_idx + 1];
if (index_vidx >= chr_end_vidx) {
chr_fo_idx = GetVariantChrFoIdx(cip, index_vidx);
*chr_fo_idxp = chr_fo_idx;
chr_end_vidx = cip->chr_fo_vidx_start[chr_fo_idx + 1];
}
uint32_t index_variant_bp = variant_bps[index_vidx];
const uint32_t chr_start_vidx = cip->chr_fo_vidx_start[chr_fo_idx];
// Locate the left end of the island. This is straightforward since we
// already have the leftmost index variant.
uint32_t search_bp = (index_variant_bp < bp_radius)? 0 : (index_variant_bp - bp_radius);
const uint32_t first_vidx_in_range = LowerBoundConstrainedNonemptyU32(variant_bps, chr_start_vidx, chr_end_vidx, search_bp);
vidx_start = AdvTo1Bit(observed_variants, first_vidx_in_range);
// Now locate the right end of the island. This requires either
// - identifying a pair of index variants that are more than bp_radius bp
// apart from each other, which also don't share a non-index variant
// candidate; or
// - reaching the end of the chromosome without observing such a gap.
uint32_t last_known_bp = index_variant_bp;
for (uint32_t vidx_end = index_vidx + 1; ; ++vidx_end) {
// Jump (bp_radius + 1) bp to the right, and identify the index variants
// flanking that spot. (We know the end of the island cannot come before
// this boundary.)
vidx_end = ExpsearchU32(variant_bps, vidx_end, chr_end_vidx, last_known_bp + bp_radius + 1);
const uint32_t last_index_vidx = FindLast1BitBefore(icandidate_vbitvec, vidx_end);
const uint32_t last_index_bp = variant_bps[last_index_vidx];
vidx_end = AdvBoundedTo1Bit(icandidate_vbitvec, vidx_end, chr_end_vidx);
// Now vidx_end is either the first possibly-out-of-island index variant,
// or equal to chr_end_vidx (which indicates end-of-chromosome).
if (vidx_end < chr_end_vidx) {
const uint32_t later_index_bp = variant_bps[vidx_end];
const uint32_t delta = later_index_bp - last_index_bp;
if (delta <= bp_radius) {
// Obviously no gap here.
last_known_bp = later_index_bp;
continue;
}
}
// Either the next index variant is separated by > bp_radius bp from the
// last confirmed on-island index variant, or no such next index variant
// exists at all.
// In both cases, we want to locate the rightmost index-or-non-index
// variant in range of the last confirmed on-island index variant.
const uint32_t search_start_vidx = last_index_vidx + 1;
const uint32_t first_out_of_range_vidx = ExpsearchU32(variant_bps, search_start_vidx, chr_end_vidx, last_index_bp + bp_radius + 1);
const uint32_t last_in_range_vidx = FindLast1BitBefore(observed_variants, first_out_of_range_vidx);
if ((vidx_end == chr_end_vidx) || (variant_bps[vidx_end] - variant_bps[last_in_range_vidx] <= bp_radius)) {
*vidx_endp = last_in_range_vidx + 1;
return vidx_start;
}
last_known_bp = variant_bps[vidx_end];
}
}
// allele_idx_first and _last, instead of _start and _end, because some
// allele_idxs are skipped.
uint32_t GetNextIslandIdxs(const ChrInfo* cip, const uint32_t* variant_bps, const uintptr_t* allele_idx_offsets, const uintptr_t* icandidate_vbitvec, const uintptr_t* observed_variants, const uintptr_t* observed_alleles, const uintptr_t* observed_alleles_cumulative_popcounts_w, uint32_t raw_variant_ct, uint32_t bp_radius, uintptr_t* oaidx_startp, uintptr_t* oaidx_endp, uint32_t* vidx_endp, uint32_t* chr_fo_idxp, uintptr_t* allele_idx_firstp, uintptr_t* allele_idx_lastp) {
uint32_t vidx_start = GetNextIsland(cip, variant_bps, icandidate_vbitvec, observed_variants, raw_variant_ct, bp_radius, vidx_endp, chr_fo_idxp);
if (vidx_start == raw_variant_ct) {
return raw_variant_ct;
}
const uint32_t vidx_end = *vidx_endp;
uintptr_t allele_idx_first;
uintptr_t allele_idx_last;
if (!allele_idx_offsets) {
allele_idx_first = vidx_start * 2;
allele_idx_last = vidx_end * 2;
} else {
allele_idx_first = allele_idx_offsets[vidx_start];
allele_idx_last = allele_idx_offsets[vidx_end];
}
allele_idx_first = AdvTo1Bit(observed_alleles, allele_idx_first);
allele_idx_last = FindLast1BitBefore(observed_alleles, allele_idx_last);
*allele_idx_firstp = allele_idx_first;
*allele_idx_lastp = allele_idx_last;
if (oaidx_startp) {
*oaidx_startp = RawToSubsettedPosW(observed_alleles, observed_alleles_cumulative_popcounts_w, allele_idx_first);
}
*oaidx_endp = 1 + RawToSubsettedPosW(observed_alleles, observed_alleles_cumulative_popcounts_w, allele_idx_last);
return vidx_start;
}
void ScanPhaseDosage(const uintptr_t* observed_variants, PgenFileInfo* pgfip, uint32_t vidx_start, uint32_t vidx_end, uint32_t check_phase, uint32_t check_dosage, uint32_t* load_phasep, uint32_t* load_dosagep) {
uint32_t vrtype_mask = 0;
if (*load_phasep != check_phase) {
vrtype_mask |= 0x90;
}
if (*load_dosagep != check_dosage) {
vrtype_mask |= 0x60;
}
if (!vrtype_mask) {
return;
}
// I suspect this is faster than calling AdvBoundedTo1Bit in the inner loop?
// Todo: benchmark.
const uint32_t vidx_ct = PopcountBitRange(observed_variants, vidx_start, vidx_end);
uintptr_t variant_uidx_base;
uintptr_t cur_bits;
BitIter1Start(observed_variants, vidx_start, &variant_uidx_base, &cur_bits);
for (uint32_t uii = 0; uii != vidx_ct; ++uii) {
const uintptr_t variant_uidx = BitIter1(observed_variants, &variant_uidx_base, &cur_bits);
const uint32_t vrtype = GetPgfiVrtype(pgfip, variant_uidx);
const uint32_t vrtype_masked = vrtype & vrtype_mask;
if (vrtype_masked) {
if (vrtype_masked & 0x90) {
*load_phasep = 1;
vrtype_mask &= ~0x90;
}
if (vrtype_masked & 0x60) {
*load_dosagep = 1;
vrtype_mask &= ~0x60;
}
if (!vrtype_mask) {
return;
}
}
}
}
typedef struct ClumpEntryStruct {
struct ClumpEntryStruct* next;
uint32_t pval_bin_x2; // low bit indicates >= --clump-p2 threshold
uint32_t file_idx1_x2; // low bit indicates A1=ALT in force_a1 case
} ClumpEntry;
typedef struct ClumpPvalStruct {
double ln_pval;
uintptr_t allele_idx;
#ifdef __cplusplus
bool operator<(const struct ClumpPvalStruct& rhs) const {
if (ln_pval != rhs.ln_pval) {
return (ln_pval < rhs.ln_pval);
}
return allele_idx < rhs.allele_idx;
}
#endif
} ClumpPval;
#ifndef __cplusplus
int32_t ClumpPvalCmp(const void* aa, const void* bb) {
const ClumpPval* cp1 = S_CAST(const ClumpPval*, aa);
const ClumpPval* cp2 = S_CAST(const ClumpPval*, bb);
const double ln_pval1 = cp1->ln_pval;
const double ln_pval2 = cp2->ln_pval;
if (ln_pval1 != ln_pval2) {
return (ln_pval1 < ln_pval2)? -1 : 1;
}
return (cp1->allele_idx < cp2->allele_idx)? -1 : 1;
}
#endif
ENUM_U31_DEF_START()
kClumpJobNone,
kClumpJobHighmemUnpack,
kClumpJobHighmemR2,
kClumpJobLowmemR2
ENUM_U31_DEF_END(ClumpJobType);
// Unpacked representations:
// 1. If not loading dosage:
// a. If not loading phase:
// uint32_t is_sparse, nm_ct, nmaj_ct, ssq:
// RoundUpPow2(16, kBytesPerVec)
// {one_bitvec, two_bitvec, nm_bitvec}: founder_ctaw words each, total
// 3 * bitvec_byte_ct
// uint32_t x_male_nm_ct, x_male_nmaj_ct, x_male_ssq: if chrX, another
// RoundUpPow2(12, kBytesPerVec)
// (sparse representation usually smaller, but need to compare if not
// AVX2)
// Male-specific values placed in the back so that the unpacker doesn't
// need to distinguish between no-x-male-stats and
// x-male-stats-not-needed.
// b. If loading phase, also need phasepresent and phaseinfo, founder_ctaw
// words each, for a total of 5 * bitvec_byte_ct +
// RoundUpPow2(16, kBytesPerVec) + RoundUpPow2(0|12, kBytesPerVec)
// 2. If loading dosage:
// a. If not loading phase:
// {dosage_vec, dosage_het}: founder_dosagev_ct vectors each; plus
// nm_bitvec, i.e. 2 * dosagevec_byte_ct + bitvec_byte_ct
// uint64_t nmaj_dosage, nmaj_dosage_ssq?, uint32_t nm_ct,
// x_male_nm_ct?, uint64_t x_male_nmaj_dosage?,
// x_male_nmaj_dosage_ssq?: RoundUpPow2({12|20|24|40}, kBytesPerVec)
// b. If loading phase, also need main_dphase_deltas, for a total of
// 3 * dosagevec_byte_ct + bitvec_byte_ct + RoundUpPow2({12|20|24|40},
// kBytesPerVec)
//
// Possible todo: Unpack the index variant in a way that allows r^2 to be
// computed efficiently against other variants *without* unpacking them.
// In the HighmemUnpack step, the main thread wants to prepare the next copy of
// this while the worker threads are processing the current copy.
typedef struct ClumpCtxAlternatingStruct {
uintptr_t* oaidx_starts;
unsigned char padding[kCacheline];
} ClumpCtxAlternating;
typedef struct ClumpCtxStruct {
// Shared constants.
const uintptr_t* observed_variants;
const uintptr_t* allele_idx_offsets;
const uintptr_t* variant_last_alidxs;
const uint32_t* variant_last_alidxs_cumulative_popcounts;
const uintptr_t* observed_alleles;
const uintptr_t* observed_alleles_cumulative_popcounts_w;
const uintptr_t* founder_info;
const uint32_t* founder_info_cumulative_popcounts;
const uintptr_t* founder_male_collapsed;
const Dosage* male_dosage_invmask;
const uintptr_t* founder_nonmale_collapsed;
const Dosage* nonmale_dosage_invmask;
const uintptr_t* founder_female_collapsed;
const uintptr_t* founder_female_collapsed_interleaved;
uint32_t founder_ct;
uint32_t founder_male_ct;
// Precomputed for convenience.
uintptr_t pgv_byte_stride;
uintptr_t bitvec_byte_ct;
uintptr_t dosagevec_byte_ct;
double r2_thresh;
unsigned char allow_overlap;
// Remaining non-index variants.
uintptr_t* candidate_oabitvec;
// In highmem mode, this is the base of (calc_thread_ct + 1) PgenVariant
// buffer groups, offset by pgv_byte_stride bytes from each other. They are
// used by worker-thread PgrGetDp() calls.
// In lowmem mode, this is the base of at least cur_nonindex_ct PgenVariant
// buffer groups, offset by pgv_byte_stride bytes from each other. They are
// filled by main-thread PgrGetDp() calls, and interpreted by the worker
// threads.
PgenVariant pgv_base;
// In lowmem mode, these store additional PgenVariant fields.
uint32_t* phasepresent_cts;
uint32_t* dosage_cts;
uint32_t* dphase_cts;
// Other per-thread resources.
// calc_thread_ct of these.
PgenReader** pgr_ptrs;
// Highmem: HighmemUnpack unpacks all current-island(-group) variants to this
// memory region, then HighmemR2 reads from here. Could have
// thousands, or even millions of variants here.
// LowmemR2: each thread just needs workspace for one variant here. Index
// variant is stored first.
// Unpacked variant representation can vary based on phase_type and
// load_dosage.
unsigned char* unpacked_variants;
// In unphased case, one of these per thread to enable sparse-optimization.
uintptr_t** raregeno_bufs;
uint32_t** difflist_sample_id_bufs;
// chrX workspaces
// nm_buf: max(founder_nonmale_ct, founder_male_ct) bits
// invmask_buf: max(founder_nonmale_ct, founder_male_ct) uint16s
uintptr_t** chrx_workspaces;
// Precomputed for convenience.
uintptr_t unpacked_byte_stride;
// Current island-group.
uintptr_t igroup_oaidx_start;
uintptr_t allele_widx_start;
uintptr_t allele_widx_end;
unsigned char is_x;
unsigned char is_y;
unsigned char phase_type;
unsigned char load_dosage;
ClumpJobType job_type;
uintptr_t index_oaidx_offset;
uintptr_t cur_nonindex_ct;
ClumpCtxAlternating a[2];
// Result buffers.
// (calc_thread_ct + 1) of these, since main thread joins in
uintptr_t** ld_idx_found;
uint64_t err_info;
} ClumpCtx;
// phase_type and load_dosage are not read from ctx, since they can change as
// we try to extend an island group along a single chromosome.
uintptr_t UnpackedByteStride(const ClumpCtx* ctx, R2PhaseType phase_type, uint32_t x_exists, uint32_t load_dosage) {
const uintptr_t bitvec_byte_ct = ctx->bitvec_byte_ct;
if (!load_dosage) {
uintptr_t stride = RoundUpPow2(16, kBytesPerVec) + (3 + 2 * (phase_type == kR2PhaseTypePresent)) * bitvec_byte_ct;
#ifndef USE_AVX2
const uint32_t founder_ct = ctx->founder_ct;
const uint32_t founder_ctl = BitCtToWordCt(founder_ct);
const uint32_t max_simple_difflist_len = founder_ct / 64;
const uintptr_t sparse_req = RoundUpPow2((6 + max_simple_difflist_len) * sizeof(int32_t), kBytesPerVec) + NypCtToVecCt(max_simple_difflist_len) * kBytesPerVec + RoundUpPow2(founder_ctl * (kBytesPerWord + sizeof(int32_t)), kBytesPerVec);
if (sparse_req > stride) {
stride = sparse_req;
}
#endif
if (x_exists) {
stride += RoundUpPow2((2 + (phase_type == kR2PhaseTypeUnphased)) * sizeof(int32_t), kBytesPerVec);
}
return stride;
}
const uintptr_t trail_byte_ct = RoundUpPow2(((1 + (phase_type == kR2PhaseTypeUnphased)) * sizeof(int64_t) + sizeof(int32_t)) << x_exists, kBytesPerVec);
return (1 + phase_type) * ctx->dosagevec_byte_ct + bitvec_byte_ct + trail_byte_ct;
}
// does not check multiallelic fields
void ClumpPgenVariantIncr(uintptr_t byte_ct, PgenVariant* pgvp) {
const uintptr_t word_ct = byte_ct / kBytesPerWord;
pgvp->genovec = &(pgvp->genovec[word_ct]);
if (pgvp->phasepresent) {
pgvp->phasepresent = &(pgvp->phasepresent[word_ct]);
pgvp->phaseinfo = &(pgvp->phaseinfo[word_ct]);
}
if (pgvp->dosage_present) {
const uintptr_t u16_ct = byte_ct / sizeof(int16_t);
pgvp->dosage_present = &(pgvp->dosage_present[word_ct]);
pgvp->dosage_main = &(pgvp->dosage_main[u16_ct]);
if (pgvp->dphase_present) {
pgvp->dphase_present = &(pgvp->dphase_present[word_ct]);
pgvp->dphase_delta = &(pgvp->dphase_delta[u16_ct]);
}
}
}
// x_male_nmaj_ct, x_male_ssq, and x_male_nm_ct only filled if
// founder_male_collapsed is non-null.
void LdUnpackNondosageDense(const PgenVariant* pgvp, const uintptr_t* founder_male_collapsed, uint32_t sample_ct, R2PhaseType phase_type, unsigned char* dst_iter) {
const uintptr_t sample_ctaw = BitCtToAlignedWordCt(sample_ct);
uint32_t* dst_u32 = R_CAST(uint32_t*, dst_iter);
dst_u32[0] = 0; // is_sparse
uintptr_t* dst_witer = R_CAST(uintptr_t*, &(dst_iter[RoundUpPow2(16, kBytesPerVec)]));
uintptr_t* one_bitvec = dst_witer;
dst_witer = &(dst_witer[sample_ctaw]);
uintptr_t* two_bitvec = dst_witer;
dst_witer = &(dst_witer[sample_ctaw]);
uintptr_t* nm_bitvec = dst_witer;
dst_witer = &(dst_witer[sample_ctaw]);
uintptr_t* phasepresent = nullptr;
uintptr_t* phaseinfo = nullptr;
if (phase_type == kR2PhaseTypePresent) {
phasepresent = dst_witer;
dst_witer = &(dst_witer[sample_ctaw]);
phaseinfo = dst_witer;
dst_witer = &(dst_witer[sample_ctaw]);
}
GenoarrSplit12Nm(pgvp->genovec, sample_ct, one_bitvec, two_bitvec, nm_bitvec);
const uint32_t sample_ctl = BitCtToWordCt(sample_ct);
dst_u32[1] = PopcountWords(nm_bitvec, sample_ctl);
dst_u32[2] = GenoBitvecSum(one_bitvec, two_bitvec, sample_ctl);
dst_u32[3] = 0; // defensive
if (phase_type == kR2PhaseTypePresent) {
if (!pgvp->phasepresent_ct) {
ZeroWArr(sample_ctl, phasepresent);
} else {
memcpy(phasepresent, pgvp->phasepresent, sample_ctl * sizeof(intptr_t));
memcpy(phaseinfo, pgvp->phaseinfo, sample_ctl * sizeof(intptr_t));
}
} else if (phase_type == kR2PhaseTypeUnphased) {
dst_u32[3] = dst_u32[2] + 2 * PopcountWords(two_bitvec, sample_ctl);
}
if (founder_male_collapsed) {
uint32_t* dst_x_u32 = R_CAST(uint32_t*, dst_witer);
// x_male_nm_ct
dst_x_u32[0] = PopcountWordsIntersect(founder_male_collapsed, nm_bitvec, sample_ctl);
dst_x_u32[1] = GenoBitvecSumSubset(founder_male_collapsed, one_bitvec, two_bitvec, sample_ctl);
if (phase_type == kR2PhaseTypeUnphased) {
// x_male_ssq
dst_x_u32[2] = dst_x_u32[1] + 2 * PopcountWordsIntersect(founder_male_collapsed, two_bitvec, sample_ctl);
}
}
}
// Ok if trailing bits of raregeno aren't clear.
void LdUnpackNondosageSparse(const uintptr_t* raregeno, const uint32_t* difflist_sample_ids, const uintptr_t* founder_male_collapsed, uint32_t sample_ct, uint32_t male_ct, uint32_t difflist_common_geno, uint32_t difflist_len, unsigned char* dst_iter) {
uint32_t* dst_u32 = R_CAST(uint32_t*, dst_iter);
dst_u32[0] = 1; // is_sparse
dst_u32[4] = difflist_common_geno;
dst_u32[5] = difflist_len;
uint32_t nm_ct = sample_ct;
uint32_t nmaj_ct = 0;
uint32_t ssq = 0;
if (difflist_common_geno) {
if (difflist_common_geno == 3) {
nm_ct = difflist_len;
} else {
const uint32_t two_ct = sample_ct - difflist_len;
nmaj_ct = 2 * two_ct;
ssq = 4 * two_ct;
}
}
uintptr_t* raregeno_dst = R_CAST(uintptr_t*, &(dst_iter[RoundUpPow2((6 + difflist_len) * sizeof(int32_t), kBytesPerVec)]));
const uint32_t raregeno_word_ct = NypCtToWordCt(difflist_len);
uintptr_t* difflist_include_dst = &(raregeno_dst[RoundUpPow2(raregeno_word_ct, kWordsPerVec)]);
const uint32_t sample_ctl = BitCtToWordCt(sample_ct);
ZeroWArr(sample_ctl, difflist_include_dst);
uint32_t* difflist_include_cumulative_popcounts_dst = R_CAST(uint32_t*, &(difflist_include_dst[sample_ctl]));
if (difflist_len) {
uint32_t* difflist_sample_ids_dst = &(dst_u32[6]);
for (uint32_t uii = 0; uii != difflist_len; ++uii) {
const uint32_t sample_idx = difflist_sample_ids[uii];
difflist_sample_ids_dst[uii] = sample_idx;
SetBit(sample_idx, difflist_include_dst);
}
FillCumulativePopcounts(difflist_include_dst, sample_ctl, difflist_include_cumulative_popcounts_dst);
memcpy(raregeno_dst, raregeno, raregeno_word_ct * sizeof(intptr_t));
ZeroTrailingNyps(difflist_len, raregeno_dst);
STD_ARRAY_DECL(uint32_t, 4, genocounts);
GenoarrCountFreqsUnsafe(raregeno_dst, difflist_len, genocounts);
nm_ct -= genocounts[3];
nmaj_ct += genocounts[1] + 2 * genocounts[2];
ssq += genocounts[1] + 4 * genocounts[2];
} else {
ZeroU32Arr(sample_ctl, difflist_include_cumulative_popcounts_dst);
}
dst_u32[1] = nm_ct;
dst_u32[2] = nmaj_ct;
dst_u32[3] = ssq;
if (founder_male_collapsed) {
uint32_t x_male_nm_ct = male_ct;
uint32_t x_male_nmaj_ct = 0;
uint32_t x_male_ssq = 0;
if (difflist_common_geno) {
if (difflist_common_geno == 3) {
x_male_nm_ct = 0;
} else {
x_male_nmaj_ct = male_ct * 2;
x_male_ssq = male_ct * 4;
}
}
if (difflist_len) {
const uint32_t word_ct_m1 = raregeno_word_ct - 1;
uint32_t genocounts[4];
ZeroU32Arr(4, genocounts);
uint32_t loop_len = kBitsPerWordD2;
for (uint32_t widx = 0; ; ++widx) {
if (widx >= word_ct_m1) {
if (widx > word_ct_m1) {
break;
}
loop_len = ModNz(difflist_len, kBitsPerWordD2);
}
const uint32_t* cur_difflist_sample_ids = &(difflist_sample_ids[widx * kBitsPerWordD2]);
uintptr_t raregeno_word = raregeno[widx];
for (uint32_t uii = 0; uii != loop_len; ++uii) {
const uint32_t sample_idx = cur_difflist_sample_ids[uii];
if (IsSet(founder_male_collapsed, sample_idx)) {
const uintptr_t cur_geno = raregeno_word & 3;
genocounts[cur_geno] += 1;
}
raregeno_word = raregeno_word >> 2;
}
}
if (difflist_common_geno != 3) {
x_male_nm_ct -= genocounts[3];
} else {
x_male_nm_ct = genocounts[0] + genocounts[1] + genocounts[2];
}
if (difflist_common_geno != 2) {
x_male_nmaj_ct = genocounts[1] + 2 * genocounts[2];
x_male_ssq = genocounts[1] + 4 * genocounts[2];
} else {
const uint32_t zero_or_missing_ct = genocounts[0] + genocounts[3];
x_male_nmaj_ct -= genocounts[1] + 2 * zero_or_missing_ct;
x_male_ssq -= 3 * genocounts[1] + 4 * zero_or_missing_ct;
}
}
uint32_t* dst_x_u32 = &(difflist_include_cumulative_popcounts_dst[sample_ctl]);
dst_x_u32[0] = x_male_nm_ct;
dst_x_u32[1] = x_male_nmaj_ct;
dst_x_u32[2] = x_male_ssq;
}
}
static inline uint32_t LdNondosageTrailAlignedByteCt(R2PhaseType phase_type, uint32_t x_exists) {
return x_exists * RoundUpPow2((2 + (phase_type == kR2PhaseTypeUnphased)) * sizeof(int32_t), kBytesPerVec);
}
static inline uint32_t LdDosageTrailAlignedByteCt(R2PhaseType phase_type, uint32_t x_exists) {
return RoundUpPow2((sizeof(int64_t) + sizeof(int32_t) + sizeof(int64_t) * (phase_type == kR2PhaseTypeUnphased)) << x_exists, kBytesPerVec);
}
void LdUnpackDosage(const PgenVariant* pgvp, const uintptr_t* founder_male_collapsed, const Dosage* male_dosage_invmask, uint32_t sample_ct, R2PhaseType phase_type, unsigned char* dst_iter) {
const uintptr_t dosagev_ct = DivUp(sample_ct, kDosagePerVec);
const uintptr_t dosagevec_byte_ct = dosagev_ct * kBytesPerVec;
Dosage* dosage_vec = R_CAST(Dosage*, dst_iter);
dst_iter = &(dst_iter[dosagevec_byte_ct]);
Dosage* dosage_het = nullptr;
if (phase_type != kR2PhaseTypeUnphased) {
dosage_het = R_CAST(Dosage*, dst_iter);
dst_iter = &(dst_iter[dosagevec_byte_ct]);
}
uintptr_t* nm_bitvec = R_CAST(uintptr_t*, dst_iter);
const uintptr_t bitvec_byte_ct = BitCtToVecCt(sample_ct) * kBytesPerVec;
dst_iter = &(dst_iter[bitvec_byte_ct]);
SDosage* dense_dphase_delta = nullptr;
if (phase_type == kR2PhaseTypePresent) {
dense_dphase_delta = R_CAST(SDosage*, dst_iter);
dst_iter = &(dst_iter[dosagevec_byte_ct]);
}
// In 32-bit build, no alignment guarantee for uint64s.
unsigned char* nmaj_dosage_uc_ptr = dst_iter;
dst_iter = &(dst_iter[sizeof(int64_t)]);
unsigned char* nmaj_dosage_ssq_uc_ptr = nullptr;
if (phase_type == kR2PhaseTypeUnphased) {
nmaj_dosage_ssq_uc_ptr = dst_iter;
dst_iter = &(dst_iter[sizeof(int64_t)]);
}
uint32_t* nm_ct_ptr = R_CAST(uint32_t*, dst_iter);
PopulateDenseDosage(pgvp->genovec, pgvp->dosage_present, pgvp->dosage_main, sample_ct, pgvp->dosage_ct, dosage_vec);
const uint64_t nmaj_dosage = DenseDosageSum(dosage_vec, dosagev_ct);
memcpy(nmaj_dosage_uc_ptr, &nmaj_dosage, sizeof(int64_t));
GenoarrToNonmissing(pgvp->genovec, sample_ct, nm_bitvec);
const uint32_t sample_ctl = BitCtToWordCt(sample_ct);
BitvecOr(pgvp->dosage_present, sample_ctl, nm_bitvec);
*nm_ct_ptr = PopcountWords(nm_bitvec, sample_ctl);
if (phase_type == kR2PhaseTypeUnphased) {
const uint64_t nmaj_dosage_ssq = DosageUnsignedDotprod(dosage_vec, dosage_vec, dosagev_ct);
memcpy(nmaj_dosage_ssq_uc_ptr, &nmaj_dosage_ssq, sizeof(int64_t));
} else {
FillDosageHet(dosage_vec, dosagev_ct, dosage_het);
if (phase_type == kR2PhaseTypePresent) {
PopulateDenseDphase(pgvp->phasepresent, pgvp->phaseinfo, pgvp->dosage_present, dosage_vec, pgvp->dphase_present, pgvp->dphase_delta, sample_ct, pgvp->phasepresent_ct, pgvp->dosage_ct, pgvp->dphase_ct, dense_dphase_delta);
}
}
if (founder_male_collapsed == nullptr) {
return;
}
dst_iter = &(dst_iter[sizeof(int32_t)]);
uint32_t* x_male_nm_ct_ptr = R_CAST(uint32_t*, dst_iter);
*x_male_nm_ct_ptr = PopcountWordsIntersect(founder_male_collapsed, nm_bitvec, sample_ctl);
dst_iter = &(dst_iter[sizeof(int32_t)]);
const uint64_t x_male_nmaj_dosage = DenseDosageSumSubset(dosage_vec, male_dosage_invmask, dosagev_ct);
memcpy(dst_iter, &x_male_nmaj_dosage, sizeof(int64_t));
if (phase_type == kR2PhaseTypeUnphased) {
dst_iter = &(dst_iter[sizeof(int64_t)]);
const uint64_t x_male_nmaj_dosage_ssq = DosageUnsignedDotprodSubset(male_dosage_invmask, dosage_vec, dosage_vec, dosagev_ct);
memcpy(dst_iter, &x_male_nmaj_dosage_ssq, sizeof(int64_t));
}
}
typedef struct R2NondosageDenseStruct {
const uintptr_t* one_bitvec;
const uintptr_t* two_bitvec;
const uintptr_t* nm_bitvec;
const uintptr_t* phasepresent; // may be uninitialized
const uintptr_t* phaseinfo; // may be uninitialized
} R2NondosageDense;
typedef struct R2NondosageSparseStruct {
uint32_t difflist_common_geno;
uint32_t difflist_len;
const uint32_t* difflist_sample_ids;
const uintptr_t* raregeno;
const uintptr_t* difflist_include;
const uint32_t* difflist_include_cumulative_popcounts;
// probable todo: support phase
} R2NondosageSparse;
typedef union {
R2NondosageDense d;
R2NondosageSparse s;
} R2NondosagePayload;
typedef struct R2NondosageVariantStruct {
uint32_t is_sparse;
uint32_t nm_ct;
uint32_t nmaj_ct;
uint32_t ssq; // set to 0 unless unphased calc
R2NondosagePayload p;
uint32_t x_male_nm_ct; // may be uninitialized
uint32_t x_male_nmaj_ct; // may be uninitialized
uint32_t x_male_ssq; // may be uninitialized
} R2NondosageVariant;
typedef struct R2DosageVariantStruct {
const Dosage* dosage_vec;
const Dosage* dosage_het; // may be uninitialized
const uintptr_t* nm_bitvec;
// probable todo: replace dense_dphase_delta with dosage_vec2 + dosage_het2.
// takes ~33% more space, but I'd be shocked if it didn't result in a
// noticeable phased-dosage r^2 speedup since computing the two het-sides
// from scratch is so annoying. (and if that's how we're handling
// dosage_het, we may as well handle dosage_vec the same way even though it
// needs it less.)
const SDosage* dense_dphase_delta; // may be uninitialized
uint64_t nmaj_dosage;
uint64_t nmaj_dosage_ssq; // may be uninitialized
uint32_t nm_ct;
uint32_t x_male_nm_ct; // may be uninitialized
uint64_t x_male_nmaj_dosage; // may be uninitialized
uint64_t x_male_nmaj_dosage_ssq; // may be uninitialized
} R2DosageVariant;
typedef union {
R2NondosageVariant nd;
R2DosageVariant d;
} R2Variant;
void FillR2Nondosage(const unsigned char* src_iter, uint32_t sample_ct, R2PhaseType phase_type, uint32_t is_x, R2NondosageVariant* ndp) {
// See LdUnpackNondosage{Dense,Sparse}().
const uint32_t* src_u32 = R_CAST(const uint32_t*, src_iter);
const uint32_t is_sparse = src_u32[0];
ndp->is_sparse = is_sparse;
ndp->nm_ct = src_u32[1];
ndp->nmaj_ct = src_u32[2];
ndp->ssq = src_u32[3];
if (is_sparse) {
R2NondosageSparse* ndsp = &(ndp->p.s);
ndsp->difflist_common_geno = src_u32[4];
const uint32_t difflist_len = src_u32[5];
ndsp->difflist_len = difflist_len;
ndsp->difflist_sample_ids = &(src_u32[6]);
const uintptr_t* raregeno = R_CAST(const uintptr_t*, &(src_iter[RoundUpPow2(sizeof(int32_t) * (6 + difflist_len), kBytesPerVec)]));
ndsp->raregeno = raregeno;
const uint32_t raregeno_word_ct = NypCtToWordCt(difflist_len);
const uintptr_t* difflist_include = &(raregeno[RoundUpPow2(raregeno_word_ct, kWordsPerVec)]);
ndsp->difflist_include = difflist_include;
const uint32_t sample_ctl = BitCtToWordCt(sample_ct);
const uint32_t* difflist_include_cumulative_popcounts = R_CAST(const uint32_t*, &(difflist_include[sample_ctl]));
ndsp->difflist_include_cumulative_popcounts = difflist_include_cumulative_popcounts;
if (is_x) {
const uint32_t* src_x_u32 = &(difflist_include_cumulative_popcounts[sample_ctl]);
ndp->x_male_nm_ct = src_x_u32[0];
ndp->x_male_nmaj_ct = src_x_u32[1];
ndp->x_male_ssq = src_x_u32[2];
}
return;
}
const uintptr_t* src_witer = R_CAST(const uintptr_t*, &(src_iter[RoundUpPow2(16, kBytesPerVec)]));
const uint32_t sample_ctaw = BitCtToAlignedWordCt(sample_ct);
R2NondosageDense* nddp = &(ndp->p.d);
nddp->one_bitvec = src_witer;
src_witer = &(src_witer[sample_ctaw]);
nddp->two_bitvec = src_witer;
src_witer = &(src_witer[sample_ctaw]);
nddp->nm_bitvec = src_witer;
src_witer = &(src_witer[sample_ctaw]);
if (phase_type == kR2PhaseTypePresent) {
nddp->phasepresent = src_witer;
src_witer = &(src_witer[sample_ctaw]);
nddp->phaseinfo = src_witer;
src_witer = &(src_witer[sample_ctaw]);
}
if (is_x) {
const uint32_t* src_x_u32 = R_CAST(const uint32_t*, src_witer);
ndp->x_male_nm_ct = src_x_u32[0];
ndp->x_male_nmaj_ct = src_x_u32[1];
if (phase_type == kR2PhaseTypeUnphased) {
ndp->x_male_ssq = src_x_u32[2];
}
}
}
void FillR2Dosage(const unsigned char* src_iter, uint32_t sample_ct, R2PhaseType phase_type, uint32_t is_x, R2DosageVariant* dp) {
// See LdUnpackDosage().
const uintptr_t dosagev_ct = DivUp(sample_ct, kDosagePerVec);
const uintptr_t dosagevec_byte_ct = dosagev_ct * kBytesPerVec;
dp->dosage_vec = R_CAST(const Dosage*, src_iter);
src_iter = &(src_iter[dosagevec_byte_ct]);
if (phase_type != kR2PhaseTypeUnphased) {
dp->dosage_het = R_CAST(const Dosage*, src_iter);
src_iter = &(src_iter[dosagevec_byte_ct]);
}
dp->nm_bitvec = R_CAST(const uintptr_t*, src_iter);
const uintptr_t bitvec_byte_ct = BitCtToVecCt(sample_ct) * kBytesPerVec;
src_iter = &(src_iter[bitvec_byte_ct]);
if (phase_type == kR2PhaseTypePresent) {
dp->dense_dphase_delta = R_CAST(const SDosage*, src_iter);
src_iter = &(src_iter[dosagevec_byte_ct]);
}
memcpy(&(dp->nmaj_dosage), src_iter, sizeof(int64_t));
const unsigned char* trail_iter = &(src_iter[sizeof(int64_t)]);
if (phase_type == kR2PhaseTypeUnphased) {
memcpy(&(dp->nmaj_dosage_ssq), trail_iter, sizeof(int64_t));
trail_iter = &(trail_iter[sizeof(int64_t)]);
}
memcpy(&(dp->nm_ct), trail_iter, sizeof(int32_t));
if (!is_x) {
return;
}
trail_iter = &(trail_iter[sizeof(int32_t)]);
memcpy(&(dp->x_male_nm_ct), trail_iter, sizeof(int32_t));
trail_iter = &(trail_iter[sizeof(int32_t)]);
memcpy(&(dp->x_male_nmaj_dosage), trail_iter, sizeof(int64_t));
if (phase_type == kR2PhaseTypeUnphased) {
trail_iter = &(trail_iter[sizeof(int64_t)]);
memcpy(&(dp->x_male_nmaj_dosage_ssq), trail_iter, sizeof(int64_t));
}
}
void FillR2V(const unsigned char* src_iter, uint32_t sample_ct, R2PhaseType phase_type, uint32_t is_x, uint32_t load_dosage, R2Variant* r2vp) {
if (!load_dosage) {
FillR2Nondosage(src_iter, sample_ct, phase_type, is_x, &(r2vp->nd));
} else {
FillR2Dosage(src_iter, sample_ct, phase_type, is_x, &(r2vp->d));
}
}
void ClumpHighmemUnpack(uintptr_t tidx, uint32_t parity, ClumpCtx* ctx) {
// Unpack (variant, aidx)s to unpacked_variants.
const uintptr_t oaidx_end = ctx->a[parity].oaidx_starts[tidx + 1];
uintptr_t oaidx = ctx->a[parity].oaidx_starts[tidx];
if (oaidx == oaidx_end) {
return;
}
const uintptr_t* variant_last_alidxs = ctx->variant_last_alidxs;
const uint32_t* variant_last_alidxs_cumulative_popcounts = ctx->variant_last_alidxs_cumulative_popcounts;
const uintptr_t* observed_alleles = ctx->observed_alleles;
const uintptr_t* observed_alleles_cumulative_popcounts_w = ctx->observed_alleles_cumulative_popcounts_w;
const uintptr_t* allele_idx_offsets = ctx->allele_idx_offsets;
const uintptr_t pgv_byte_stride = ctx->pgv_byte_stride;
PgenVariant pgv = ctx->pgv_base;
ClumpPgenVariantIncr(pgv_byte_stride * tidx, &pgv);
PgenReader* pgrp = ctx->pgr_ptrs[tidx];
const uintptr_t unpacked_byte_stride = ctx->unpacked_byte_stride;
unsigned char* write_iter;
{
const uintptr_t igroup_oaidx_start = ctx->igroup_oaidx_start;
write_iter = &(ctx->unpacked_variants[(oaidx - igroup_oaidx_start) * unpacked_byte_stride]);
}
const uintptr_t* founder_info = ctx->founder_info;
const uint32_t* founder_info_cumulative_popcounts = ctx->founder_info_cumulative_popcounts;
const uint32_t founder_male_ct = ctx->founder_male_ct;
const uint32_t is_x = ctx->is_x;
const uintptr_t* founder_male_collapsed = is_x? ctx->founder_male_collapsed : nullptr;
const Dosage* male_dosage_invmask = is_x? ctx->male_dosage_invmask : nullptr;
const uintptr_t* founder_female_collapsed = ctx->founder_female_collapsed;
const uintptr_t* founder_female_collapsed_interleaved = ctx->founder_female_collapsed_interleaved;
const uint32_t founder_ct = ctx->founder_ct;
const uint32_t founder_ctv2 = NypCtToVecCt(founder_ct);
const uint32_t is_y = ctx->is_y;
PgrSampleSubsetIndex pssi;
PgrSetSampleSubsetIndex(founder_info_cumulative_popcounts, pgrp, &pssi);
const R2PhaseType phase_type = S_CAST(R2PhaseType, ctx->phase_type);
const uint32_t load_dosage = ctx->load_dosage;
const uintptr_t allele_idx_start = IdxToUidxW(observed_alleles, observed_alleles_cumulative_popcounts_w, ctx->allele_widx_start, ctx->allele_widx_end, oaidx);
const uint32_t max_simple_difflist_len = founder_ct / 64;
uintptr_t* raregeno = nullptr;
uint32_t* difflist_sample_ids = nullptr;
if (phase_type == kR2PhaseTypeUnphased) {
raregeno = ctx->raregeno_bufs[tidx];
difflist_sample_ids = ctx->difflist_sample_id_bufs[tidx];
}
uintptr_t allele_idx_base;
uintptr_t cur_bits;
BitIter1Start(observed_alleles, allele_idx_start, &allele_idx_base, &cur_bits);
uintptr_t variant_uidx;
PglErr reterr;
for (; oaidx != oaidx_end; ++oaidx, write_iter = &(write_iter[unpacked_byte_stride])) {
const uintptr_t allele_idx = BitIter1(observed_alleles, &allele_idx_base, &cur_bits);
AlleleCode aidx;
if (!allele_idx_offsets) {
variant_uidx = allele_idx / 2;
aidx = allele_idx % 2;
} else {
variant_uidx = RawToSubsettedPos(variant_last_alidxs, variant_last_alidxs_cumulative_popcounts, allele_idx);
aidx = allele_idx - allele_idx_offsets[variant_uidx];
}
if (load_dosage) {
if (phase_type == kR2PhaseTypePresent) {
reterr = PgrGetInv1Dp(founder_info, pssi, founder_ct, variant_uidx, aidx, pgrp, &pgv);
} else {
reterr = PgrGetInv1D(founder_info, pssi, founder_ct, variant_uidx, aidx, pgrp, pgv.genovec, pgv.dosage_present, pgv.dosage_main, &pgv.dosage_ct);
}
if (unlikely(reterr)) {
goto ClumpHighmemUnpack_err;
}
if (is_y) {
InterleavedSetMissingCleardosage(founder_female_collapsed, founder_female_collapsed_interleaved, founder_ctv2, pgv.genovec, &pgv.dosage_ct, pgv.dosage_present, pgv.dosage_main);
}
LdUnpackDosage(&pgv, founder_male_collapsed, male_dosage_invmask, founder_ct, phase_type, write_iter);
} else {
if ((phase_type == kR2PhaseTypeUnphased) && (!is_y)) {
uint32_t difflist_common_geno;
uint32_t difflist_len;
reterr = PgrGetInv1DifflistOrGenovec(founder_info, pssi, founder_ct, max_simple_difflist_len, variant_uidx, aidx, pgrp, pgv.genovec, &difflist_common_geno, raregeno, difflist_sample_ids, &difflist_len);
if (unlikely(reterr)) {
goto ClumpHighmemUnpack_err;
}
if (difflist_common_geno != UINT32_MAX) {
if (difflist_len <= max_simple_difflist_len) {
LdUnpackNondosageSparse(raregeno, difflist_sample_ids, founder_male_collapsed, founder_ct, founder_male_ct, difflist_common_geno, difflist_len, write_iter);
continue;
}
PgrDifflistToGenovecUnsafe(raregeno, difflist_sample_ids, difflist_common_geno, founder_ct, difflist_len, pgv.genovec);
}
} else {
if (phase_type == kR2PhaseTypePresent) {
reterr = PgrGetInv1P(founder_info, pssi, founder_ct, variant_uidx, aidx, pgrp, pgv.genovec, pgv.phasepresent, pgv.phaseinfo, &pgv.phasepresent_ct);
} else {
reterr = PgrGetInv1(founder_info, pssi, founder_ct, variant_uidx, aidx, pgrp, pgv.genovec);
}
if (unlikely(reterr)) {
goto ClumpHighmemUnpack_err;
}
if (is_y) {
InterleavedSetMissing(founder_female_collapsed_interleaved, founder_ctv2, pgv.genovec);
}
}
LdUnpackNondosageDense(&pgv, founder_male_collapsed, founder_ct, phase_type, write_iter);
}
}
return;
ClumpHighmemUnpack_err:
;
const uint64_t new_err_info = (S_CAST(uint64_t, variant_uidx) << 32) | S_CAST(uint32_t, reterr);
UpdateU64IfSmaller(new_err_info, &ctx->err_info);
}
// assumes sample_ct < 2^30.
static inline uint32_t GenoBitvecUnphasedDotprod(const uintptr_t* one_bitvec0, const uintptr_t* two_bitvec0, const uintptr_t* one_bitvec1, const uintptr_t* two_bitvec1, uint32_t word_ct) {
uint32_t half_hom_part;
uint32_t hethet_ct;
GenoBitvecPhasedDotprod(one_bitvec0, two_bitvec0, one_bitvec1, two_bitvec1, word_ct, &half_hom_part, &hethet_ct);
return 2 * half_hom_part + hethet_ct;
}
static inline uint32_t GenoBitvecUnphasedDotprodSubset(const uintptr_t* subset_mask, const uintptr_t* one_bitvec0, const uintptr_t* two_bitvec0, const uintptr_t* one_bitvec1, const uintptr_t* two_bitvec1, uint32_t word_ct) {
uint32_t half_hom_part;
uint32_t hethet_ct;
GenoBitvecPhasedDotprodSubset(subset_mask, one_bitvec0, two_bitvec0, one_bitvec1, two_bitvec1, word_ct, &half_hom_part, &hethet_ct);
return 2 * half_hom_part + hethet_ct;
}
uint32_t ComputeR2NondosageUnphased1SparseStats(const R2NondosageVariant* densevp0, const R2NondosageVariant* sparsevp1, uint32_t* nmaj_ct0_ptr, uint32_t* nmaj_ct1_ptr, uint32_t* ssq0_ptr, uint32_t* ssq1_ptr, uint32_t* dotprod_ptr) {
const uint32_t difflist_common_geno = sparsevp1->p.s.difflist_common_geno;
const uint32_t difflist_len = sparsevp1->p.s.difflist_len;
const uint32_t* difflist_sample_ids = sparsevp1->p.s.difflist_sample_ids;
uint32_t nmaj_ct0 = 0;
uint32_t nmaj_ct1 = 0;
uint32_t ssq0 = 0;
uint32_t ssq1 = 0;
uint32_t dotprod = 0;
uint32_t valid_obs_ct = 0;
if (difflist_common_geno != 3) {
nmaj_ct0 = densevp0->nmaj_ct;
ssq0 = densevp0->ssq;
dotprod = difflist_common_geno * nmaj_ct0;
valid_obs_ct = densevp0->nm_ct;
nmaj_ct1 = difflist_common_geno * valid_obs_ct;
ssq1 = difflist_common_geno * nmaj_ct1;
}
if (difflist_len) {
// genovec would be more convenient than this representation here, but that
// shouldn't be a big deal.
const uintptr_t* nm_bitvec0 = densevp0->p.d.nm_bitvec;
const uintptr_t* one_bitvec0 = densevp0->p.d.one_bitvec;
const uintptr_t* two_bitvec0 = densevp0->p.d.two_bitvec;
const uintptr_t* raregeno = sparsevp1->p.s.raregeno;
const uint32_t word_ct_m1 = (difflist_len - 1) / kBitsPerWordD2;
uint32_t joint_counts[16]; // low bits = dense geno, high bits = sparse
ZeroU32Arr(16, joint_counts);
uint32_t loop_len = kBitsPerWordD2;
for (uint32_t widx = 0; ; ++widx) {
if (widx >= word_ct_m1) {
if (widx > word_ct_m1) {
break;
}
loop_len = ModNz(difflist_len, kBitsPerWordD2);
}
const uint32_t* cur_difflist_sample_ids = &(difflist_sample_ids[widx * kBitsPerWordD2]);
uintptr_t raregeno_word = raregeno[widx];
for (uint32_t uii = 0; uii != loop_len; ++uii) {
const uintptr_t cur_sparse_geno = raregeno_word & 3;
const uint32_t sample_idx = cur_difflist_sample_ids[uii];
const uint32_t sample_widx = sample_idx / kBitsPerWord;
const uint32_t sample_idx_lowbits = sample_idx % kBitsPerWord;
const uintptr_t nm_bit = (nm_bitvec0[sample_widx] >> sample_idx_lowbits) & 1;
const uintptr_t one_bit = (one_bitvec0[sample_widx] >> sample_idx_lowbits) & 1;
// "& 3" takes care of this mask
const uintptr_t two_bit_unmasked = two_bitvec0[sample_widx] >> sample_idx_lowbits;
const uintptr_t cur_dense_geno = (nm_bit + one_bit + two_bit_unmasked * 2 - 1) & 3;
joint_counts[cur_dense_geno + cur_sparse_geno * 4] += 1;
raregeno_word = raregeno_word >> 2;
}
}
if (difflist_common_geno != 3) {
nmaj_ct0 -= joint_counts[13] + 2 * joint_counts[14];
ssq0 -= joint_counts[13] + 4 * joint_counts[14];
const uint32_t sparse_missing_dense_nm_ct = joint_counts[12] + joint_counts[13] + joint_counts[14];
valid_obs_ct -= sparse_missing_dense_nm_ct;
} else {
const uint32_t dense_one_ct = joint_counts[1] + joint_counts[5] + joint_counts[9];
const uint32_t dense_two_ct = joint_counts[2] + joint_counts[6] + joint_counts[10];
nmaj_ct0 = dense_one_ct + 2 * dense_two_ct;
ssq0 = dense_one_ct + 4 * dense_two_ct;
const uint32_t dense_missing_sparse_nm_ct = joint_counts[3] + joint_counts[7] + joint_counts[11];
valid_obs_ct = difflist_len - dense_missing_sparse_nm_ct;
}
const uint32_t sparse_one_ct = joint_counts[4] + joint_counts[5] + joint_counts[6];
if (difflist_common_geno != 2) {
const uint32_t sparse_two_ct = joint_counts[8] + joint_counts[9] + joint_counts[10];
nmaj_ct1 = sparse_one_ct + 2 * sparse_two_ct;
ssq1 = sparse_one_ct + 4 * sparse_two_ct;
dotprod = joint_counts[5] + 2 * (joint_counts[6] + joint_counts[9]) + 4 * joint_counts[10];
} else {
const uint32_t sparse_zmiss_ct = joint_counts[0] + joint_counts[1] + joint_counts[2] + joint_counts[12] + joint_counts[13] + joint_counts[14];
nmaj_ct1 -= sparse_one_ct + 2 * sparse_zmiss_ct;
ssq1 -= 3 * sparse_one_ct + 4 * sparse_zmiss_ct;
dotprod -= joint_counts[5] + 2 * (joint_counts[1] + joint_counts[6] + joint_counts[13]) + 4 * (joint_counts[2] + joint_counts[14]);
}
}
*nmaj_ct0_ptr = nmaj_ct0;
*nmaj_ct1_ptr = nmaj_ct1;
*ssq0_ptr = ssq0;
*ssq1_ptr = ssq1;
*dotprod_ptr = dotprod;
return valid_obs_ct;
}
uint32_t ComputeR2NondosageUnphased2SparseStats(const R2NondosageVariant* ndp0, const R2NondosageVariant* ndp1, uint32_t* nmaj_ct0_ptr, uint32_t* nmaj_ct1_ptr, uint32_t* ssq0_ptr, uint32_t* ssq1_ptr, uint32_t* dotprod_ptr) {
const R2NondosageVariant* longvp;
const R2NondosageVariant* shortvp;
uint32_t* nmaj_ctlong_ptr;
uint32_t* nmaj_ctshort_ptr;
uint32_t* ssqlong_ptr;
uint32_t* ssqshort_ptr;
if (ndp0->p.s.difflist_len <= ndp1->p.s.difflist_len) {
longvp = ndp1;
shortvp = ndp0;
nmaj_ctlong_ptr = nmaj_ct1_ptr;
nmaj_ctshort_ptr = nmaj_ct0_ptr;
ssqlong_ptr = ssq1_ptr;
ssqshort_ptr = ssq0_ptr;
} else {
longvp = ndp0;
shortvp = ndp1;
nmaj_ctlong_ptr = nmaj_ct0_ptr;
nmaj_ctshort_ptr = nmaj_ct1_ptr;
ssqlong_ptr = ssq0_ptr;
ssqshort_ptr = ssq1_ptr;
}
const uint32_t difflist_common_geno_short = shortvp->p.s.difflist_common_geno;
uint32_t nmaj_ctlong = 0;
uint32_t nmaj_ctshort = 0;
uint32_t ssqlong = 0;
uint32_t ssqshort = 0;
uint32_t dotprod = 0;
uint32_t valid_obs_ct = 0;
if (difflist_common_geno_short != 3) {
nmaj_ctlong = longvp->nmaj_ct;
ssqlong = longvp->ssq;
dotprod = difflist_common_geno_short * nmaj_ctlong;
valid_obs_ct = longvp->nm_ct;
nmaj_ctshort = difflist_common_geno_short * valid_obs_ct;
ssqshort = difflist_common_geno_short * nmaj_ctshort;
}
const uint32_t difflist_len_short = shortvp->p.s.difflist_len;
if (difflist_len_short) {
// tested genovec in place of {difflist_include,
// difflist_include_cumulative_popcounts}; that benchmarked worse
const uintptr_t* difflist_include_long = longvp->p.s.difflist_include;
const uint32_t* difflist_include_long_cumulative_popcounts = longvp->p.s.difflist_include_cumulative_popcounts;
const uint32_t* difflist_sample_ids_short = shortvp->p.s.difflist_sample_ids;
const uintptr_t* raregeno_long = longvp->p.s.raregeno;
const uintptr_t* raregeno_short = shortvp->p.s.raregeno;
const uint32_t difflist_common_geno_long = longvp->p.s.difflist_common_geno;
uint32_t joint_counts[16]; // low bits = long, high bits = short
ZeroU32Arr(16, joint_counts);
const uint32_t word_ct_m1 = (difflist_len_short - 1) / kBitsPerWordD2;
uint32_t loop_len = kBitsPerWordD2;
for (uint32_t widx = 0; ; ++widx) {
if (widx >= word_ct_m1) {
if (widx > word_ct_m1) {
break;
}
loop_len = ModNz(difflist_len_short, kBitsPerWordD2);
}
const uint32_t* cur_difflist_sample_ids = &(difflist_sample_ids_short[widx * kBitsPerWordD2]);
uintptr_t raregeno_word = raregeno_short[widx];
for (uint32_t uii = 0; uii != loop_len; ++uii) {
const uint32_t sample_idx = cur_difflist_sample_ids[uii];
const uintptr_t cur_geno_short = raregeno_word & 3;
uintptr_t cur_geno_long = difflist_common_geno_long;
if (IsSet(difflist_include_long, sample_idx)) {
const uint32_t difflist_idx_long = RawToSubsettedPos(difflist_include_long, difflist_include_long_cumulative_popcounts, sample_idx);
cur_geno_long = GetNyparrEntry(raregeno_long, difflist_idx_long);
}
joint_counts[cur_geno_long + 4 * cur_geno_short] += 1;
raregeno_word = raregeno_word >> 2;
}
}
if (difflist_common_geno_short != 3) {
nmaj_ctlong -= joint_counts[13] + 2 * joint_counts[14];
ssqlong -= joint_counts[13] + 4 * joint_counts[14];
const uint32_t short_missing_long_nm_ct = joint_counts[12] + joint_counts[13] + joint_counts[14];
valid_obs_ct -= short_missing_long_nm_ct;
} else {
const uint32_t long_one_ct = joint_counts[1] + joint_counts[5] + joint_counts[9];
const uint32_t long_two_ct = joint_counts[2] + joint_counts[6] + joint_counts[10];
nmaj_ctlong = long_one_ct + 2 * long_two_ct;
ssqlong = long_one_ct + 4 * long_two_ct;
const uint32_t long_missing_short_nm_ct = joint_counts[3] + joint_counts[7] + joint_counts[11];
valid_obs_ct = difflist_len_short - long_missing_short_nm_ct;
}
const uint32_t short_one_ct = joint_counts[4] + joint_counts[5] + joint_counts[6];
if (difflist_common_geno_short != 2) {
const uint32_t short_two_ct = joint_counts[8] + joint_counts[9] + joint_counts[10];
nmaj_ctshort = short_one_ct + 2 * short_two_ct;
ssqshort = short_one_ct + 4 * short_two_ct;
dotprod = joint_counts[5] + 2 * (joint_counts[6] + joint_counts[9]) + 4 * joint_counts[10];
} else {
const uint32_t short_zmiss_ct = joint_counts[0] + joint_counts[1] + joint_counts[2] + joint_counts[12] + joint_counts[13] + joint_counts[14];
nmaj_ctshort -= short_one_ct + 2 * short_zmiss_ct;
ssqshort -= 3 * short_one_ct + 4 * short_zmiss_ct;
dotprod -= joint_counts[5] + 2 * (joint_counts[1] + joint_counts[6] + joint_counts[13]) + 4 * (joint_counts[2] + joint_counts[14]);
}
}
*nmaj_ctlong_ptr = nmaj_ctlong;
*nmaj_ctshort_ptr = nmaj_ctshort;
*ssqlong_ptr = ssqlong;
*ssqshort_ptr = ssqshort;
*dotprod_ptr = dotprod;
return valid_obs_ct;
}
// Main return value is valid_obs_ct. On valid_obs_ct=0, other return values
// may not be filled. (Same is true for the next three functions.)
uint32_t ComputeR2NondosageUnphasedStats(const R2NondosageVariant* ndp0, const R2NondosageVariant* ndp1, uint32_t sample_ct, uint32_t* nmaj_ct0_ptr, uint32_t* nmaj_ct1_ptr, uint32_t* ssq0_ptr, uint32_t* ssq1_ptr, uint32_t* dotprod_ptr) {
if (ndp0->is_sparse) {
if (ndp1->is_sparse) {
return ComputeR2NondosageUnphased2SparseStats(ndp0, ndp1, nmaj_ct0_ptr, nmaj_ct1_ptr, ssq0_ptr, ssq1_ptr, dotprod_ptr);
} else {
return ComputeR2NondosageUnphased1SparseStats(ndp1, ndp0, nmaj_ct1_ptr, nmaj_ct0_ptr, ssq1_ptr, ssq0_ptr, dotprod_ptr);
}
}
if (ndp1->is_sparse) {
return ComputeR2NondosageUnphased1SparseStats(ndp0, ndp1, nmaj_ct0_ptr, nmaj_ct1_ptr, ssq0_ptr, ssq1_ptr, dotprod_ptr);
}
const uint32_t sample_ctl = BitCtToWordCt(sample_ct);
const uintptr_t* nm_bitvec0 = ndp0->p.d.nm_bitvec;
const uintptr_t* nm_bitvec1 = ndp1->p.d.nm_bitvec;
const uint32_t nm_ct0 = ndp0->nm_ct;
const uint32_t nm_ct1 = ndp1->nm_ct;
uint32_t valid_obs_ct;
if ((nm_ct0 != sample_ct) && (nm_ct1 != sample_ct)) {
valid_obs_ct = PopcountWordsIntersect(nm_bitvec0, nm_bitvec1, sample_ctl);
if (!valid_obs_ct) {
return 0;
}
} else {
valid_obs_ct = MINV(nm_ct0, nm_ct1);
}
const uintptr_t* one_bitvec0 = ndp0->p.d.one_bitvec;
const uintptr_t* two_bitvec0 = ndp0->p.d.two_bitvec;
if (nm_ct0 == valid_obs_ct) {
*nmaj_ct0_ptr = ndp0->nmaj_ct;
*ssq0_ptr = ndp0->ssq;
} else {
const uint32_t nmaj_ct0 = GenoBitvecSumSubset(nm_bitvec1, one_bitvec0, two_bitvec0, sample_ctl);
*nmaj_ct0_ptr = nmaj_ct0;
// 0, 1, 4 instead of 0, 1, 2
*ssq0_ptr = nmaj_ct0 + 2 * PopcountWordsIntersect(nm_bitvec1, two_bitvec0, sample_ctl);
}
const uintptr_t* one_bitvec1 = ndp1->p.d.one_bitvec;
const uintptr_t* two_bitvec1 = ndp1->p.d.two_bitvec;
if (nm_ct1 == valid_obs_ct) {
*nmaj_ct1_ptr = ndp1->nmaj_ct;
*ssq1_ptr = ndp1->ssq;
} else {
const uint32_t nmaj_ct1 = GenoBitvecSumSubset(nm_bitvec0, one_bitvec1, two_bitvec1, sample_ctl);
*nmaj_ct1_ptr = nmaj_ct1;
*ssq1_ptr = nmaj_ct1 + 2 * PopcountWordsIntersect(nm_bitvec0, two_bitvec1, sample_ctl);
}
*dotprod_ptr = GenoBitvecUnphasedDotprod(one_bitvec0, two_bitvec0, one_bitvec1, two_bitvec1, sample_ctl);
return valid_obs_ct;
}
uint32_t ComputeR2NondosagePhasedStats(const R2NondosageVariant* ndp0, const R2NondosageVariant* ndp1, uint32_t sample_ct, R2PhaseType phase_type, double* nmajsums_d, double* known_dotprod_d_ptr, double* unknown_hethet_d_ptr) {
// See HardcallPhasedR2Stats(). Probable todo: make function names more
// systematic.
const uint32_t sample_ctl = BitCtToWordCt(sample_ct);
const uintptr_t* nm_bitvec0 = ndp0->p.d.nm_bitvec;
const uintptr_t* nm_bitvec1 = ndp1->p.d.nm_bitvec;
const uint32_t nm_ct0 = ndp0->nm_ct;
const uint32_t nm_ct1 = ndp1->nm_ct;
uint32_t valid_obs_ct;
if ((nm_ct0 != sample_ct) && (nm_ct1 != sample_ct)) {
valid_obs_ct = PopcountWordsIntersect(nm_bitvec0, nm_bitvec1, sample_ctl);
if (!valid_obs_ct) {
return 0;
}
} else {
valid_obs_ct = MINV(nm_ct0, nm_ct1);
}
const uintptr_t* one_bitvec0 = ndp0->p.d.one_bitvec;
const uintptr_t* two_bitvec0 = ndp0->p.d.two_bitvec;
uint32_t nmaj_ct0 = ndp0->nmaj_ct;
if (nm_ct0 != valid_obs_ct) {
nmaj_ct0 = GenoBitvecSumSubset(nm_bitvec1, one_bitvec0, two_bitvec0, sample_ctl);
}
const uintptr_t* one_bitvec1 = ndp1->p.d.one_bitvec;
const uintptr_t* two_bitvec1 = ndp1->p.d.two_bitvec;
uint32_t nmaj_ct1 = ndp1->nmaj_ct;
if (nm_ct1 != valid_obs_ct) {
nmaj_ct1 = GenoBitvecSumSubset(nm_bitvec0, one_bitvec1, two_bitvec1, sample_ctl);
}
uint32_t known_dotprod;
uint32_t unknown_hethet_ct;
GenoBitvecPhasedDotprod(one_bitvec0, two_bitvec0, one_bitvec1, two_bitvec1, sample_ctl, &known_dotprod, &unknown_hethet_ct);
if ((phase_type == kR2PhaseTypePresent) && (unknown_hethet_ct != 0)) {
// don't bother with no-phase-here optimization for now
HardcallPhasedR2Refine(ndp0->p.d.phasepresent, ndp0->p.d.phaseinfo, ndp1->p.d.phasepresent, ndp1->p.d.phaseinfo, sample_ctl, &known_dotprod, &unknown_hethet_ct);
}
nmajsums_d[0] = u31tod(nmaj_ct0);
nmajsums_d[1] = u31tod(nmaj_ct1);
// bugfix (26 Oct 2023): unknown_hethet treatment shouldn't actually change
// in haploid case
*known_dotprod_d_ptr = S_CAST(double, known_dotprod);
*unknown_hethet_d_ptr = u31tod(unknown_hethet_ct);
return valid_obs_ct;
}
uint32_t ComputeR2DosageUnphasedStats(const R2DosageVariant* dp0, const R2DosageVariant* dp1, uint32_t sample_ct, uint64_t* nmaj_dosages, uint64_t* dosageprod_ptr, uint64_t* ssq0_ptr, uint64_t* ssq1_ptr) {
const Dosage* dosage_vec0 = dp0->dosage_vec;
const Dosage* dosage_vec1 = dp1->dosage_vec;
const uintptr_t* nm_bitvec0 = dp0->nm_bitvec;
const uintptr_t* nm_bitvec1 = dp1->nm_bitvec;
const uint32_t nm_ct0 = dp0->nm_ct;
const uint32_t nm_ct1 = dp1->nm_ct;
nmaj_dosages[0] = dp0->nmaj_dosage;
nmaj_dosages[1] = dp1->nmaj_dosage;
const uint32_t valid_obs_ct = DosageR2Freqs(dosage_vec0, nm_bitvec0, dosage_vec1, nm_bitvec1, sample_ct, nm_ct0, nm_ct1, nmaj_dosages);
if (!valid_obs_ct) {
return 0;
}
const uint32_t sample_dosagev_ct = DivUp(sample_ct, kDosagePerVec);
*dosageprod_ptr = DosageUnsignedDotprod(dosage_vec0, dosage_vec1, sample_dosagev_ct);
if (nm_ct0 == valid_obs_ct) {
*ssq0_ptr = dp0->nmaj_dosage_ssq;
} else {
// bugfix (24 Oct 2023): this needs to mask out opposite missing values
*ssq0_ptr = DosageUnsignedDotprodSubset(dosage_vec1, dosage_vec0, dosage_vec0, sample_dosagev_ct);
}
if (nm_ct1 == valid_obs_ct) {
*ssq1_ptr = dp1->nmaj_dosage_ssq;
} else {
*ssq1_ptr = DosageUnsignedDotprodSubset(dosage_vec0, dosage_vec1, dosage_vec1, sample_dosagev_ct);
}
return valid_obs_ct;
}
uint32_t ComputeR2DosagePhasedStats(const R2DosageVariant* dp0, const R2DosageVariant* dp1, uint32_t sample_ct, R2PhaseType phase_type, double* nmajsums_d, double* known_dotprod_d_ptr, double* unknown_hethet_d_ptr) {
const Dosage* dosage_vec0 = dp0->dosage_vec;
const Dosage* dosage_vec1 = dp1->dosage_vec;
const uintptr_t* nm_bitvec0 = dp0->nm_bitvec;
const uintptr_t* nm_bitvec1 = dp1->nm_bitvec;
const uint32_t nm_ct0 = dp0->nm_ct;
const uint32_t nm_ct1 = dp1->nm_ct;
uint64_t nmaj_dosages[2];
nmaj_dosages[0] = dp0->nmaj_dosage;
nmaj_dosages[1] = dp1->nmaj_dosage;
const uint32_t valid_obs_ct = DosageR2Freqs(dosage_vec0, nm_bitvec0, dosage_vec1, nm_bitvec1, sample_ct, nm_ct0, nm_ct1, nmaj_dosages);
if (!valid_obs_ct) {
return 0;
}
const uint32_t sample_dosagev_ct = DivUp(sample_ct, kDosagePerVec);
uint64_t known_dotprod_dosage;
uint64_t uhethet_dosage;
if (phase_type != kR2PhaseTypePresent) {
const Dosage* dosage_het0 = dp0->dosage_het;
const Dosage* dosage_het1 = dp1->dosage_het;
DosageUnphasedDotprodComponents(dosage_vec0, dosage_vec1, dosage_het0, dosage_het1, sample_dosagev_ct, &known_dotprod_dosage, &uhethet_dosage);
} else {
const SDosage* dphase_delta0 = dp0->dense_dphase_delta;
const SDosage* dphase_delta1 = dp1->dense_dphase_delta;
DosagePhasedDotprodComponents(dosage_vec0, dosage_vec1, dphase_delta0, dphase_delta1, sample_dosagev_ct, &known_dotprod_dosage, &uhethet_dosage);
}
nmajsums_d[0] = u63tod(nmaj_dosages[0]) * kRecipDosageMid;
nmajsums_d[1] = u63tod(nmaj_dosages[1]) * kRecipDosageMid;
*known_dotprod_d_ptr = u63tod(known_dotprod_dosage) * kRecipDosageMax;
*unknown_hethet_d_ptr = u63tod(uhethet_dosage) * kRecipDosageMax;
return valid_obs_ct;
}
// d_ptr and/or dprime_ptr can be nullptr. Neither are filled in unphased
// case.
double ComputeR2(const R2Variant* r2vp0, const R2Variant* r2vp1, uint32_t sample_ct, R2PhaseType phase_type, uint32_t load_dosage, double* d_ptr, double* dprime_ptr, uint32_t* is_neg_ptr) {
double nmajsums_d[2];
double known_dotprod_d;
double unknown_hethet_d;
uint32_t valid_obs_ct;
if (!load_dosage) {
const R2NondosageVariant* ndp0 = &(r2vp0->nd);
const R2NondosageVariant* ndp1 = &(r2vp1->nd);
if (phase_type == kR2PhaseTypeUnphased) {
uint32_t nmaj_ct0;
uint32_t nmaj_ct1;
uint32_t ssq0;
uint32_t ssq1;
uint32_t dotprod;
valid_obs_ct = ComputeR2NondosageUnphasedStats(ndp0, ndp1, sample_ct, &nmaj_ct0, &nmaj_ct1, &ssq0, &ssq1, &dotprod);
if (!valid_obs_ct) {
return -DBL_MAX;
}
// Previously implemented in e.g. IndepPairwiseThread.
const int64_t variance0_i64 = ssq0 * S_CAST(int64_t, valid_obs_ct) - S_CAST(int64_t, nmaj_ct0) * nmaj_ct0;
const int64_t variance1_i64 = ssq1 * S_CAST(int64_t, valid_obs_ct) - S_CAST(int64_t, nmaj_ct1) * nmaj_ct1;
const double variance_prod = S_CAST(double, variance0_i64) * S_CAST(double, variance1_i64);
if (variance_prod == 0.0) {
return -DBL_MAX;
}
const double cov01 = S_CAST(double, dotprod * S_CAST(int64_t, valid_obs_ct) - S_CAST(int64_t, nmaj_ct0) * nmaj_ct1);
*is_neg_ptr = (cov01 < 0.0);
return cov01 * cov01 / variance_prod;
}
valid_obs_ct = ComputeR2NondosagePhasedStats(ndp0, ndp1, sample_ct, phase_type, nmajsums_d, &known_dotprod_d, &unknown_hethet_d);
} else {
const R2DosageVariant* dp0 = &(r2vp0->d);
const R2DosageVariant* dp1 = &(r2vp1->d);
if (phase_type == kR2PhaseTypeUnphased) {
uint64_t nmaj_dosages[2];
uint64_t dosageprod;
uint64_t ssq0;
uint64_t ssq1;
valid_obs_ct = ComputeR2DosageUnphasedStats(dp0, dp1, sample_ct, nmaj_dosages, &dosageprod, &ssq0, &ssq1);
if (!valid_obs_ct) {
return -DBL_MAX;
}
const double variance0 = u127prod_diff_d(ssq0, valid_obs_ct, nmaj_dosages[0], nmaj_dosages[0]);
const double variance1 = u127prod_diff_d(ssq1, valid_obs_ct, nmaj_dosages[1], nmaj_dosages[1]);
const double variance_prod = variance0 * variance1;
if (variance_prod == 0.0) {
return -DBL_MAX;
}
const double cov01 = i127prod_diff_d(dosageprod, valid_obs_ct, nmaj_dosages[0], nmaj_dosages[1]);
*is_neg_ptr = (cov01 < 0.0);
return cov01 * cov01 / variance_prod;
}
valid_obs_ct = ComputeR2DosagePhasedStats(dp0, dp1, sample_ct, phase_type, nmajsums_d, &known_dotprod_d, &unknown_hethet_d);
}
if (!valid_obs_ct) {
return -DBL_MAX;
}
const double twice_tot_recip = 0.5 / u31tod(valid_obs_ct);
if ((d_ptr == nullptr) && (dprime_ptr == nullptr)) {
double r2;
const LDErr ld_err = PhasedLD(nmajsums_d, known_dotprod_d, unknown_hethet_d, twice_tot_recip, 0, nullptr, &r2, is_neg_ptr);
return (ld_err == kLDErrNone)? r2 : -DBL_MAX;
}
double results[3];
const LDErr ld_err = PhasedLD(nmajsums_d, known_dotprod_d, unknown_hethet_d, twice_tot_recip, 1, nullptr, results, is_neg_ptr);
if (ld_err != kLDErrNone) {
if (d_ptr) {
*d_ptr = 0.0 / 0.0;
}
if (dprime_ptr) {
*dprime_ptr = 0.0 / 0.0;
}
return -DBL_MAX;
}
if (d_ptr) {
*d_ptr = results[1];
}
if (dprime_ptr) {
*dprime_ptr = results[2];
}
return results[0];
}
uint32_t ComputeR2NondosageUnphased1SparseSubsetStats(const R2NondosageVariant* densevp0, const R2NondosageVariant* sparsevp1, const uintptr_t* sample_include, uint32_t subsetted_nm_ct0, uint32_t* nmaj_ct0_ptr, uint32_t* nmaj_ct1_ptr, uint32_t* ssq0_ptr, uint32_t* ssq1_ptr, uint32_t* dotprod_ptr) {
const uint32_t difflist_common_geno = sparsevp1->p.s.difflist_common_geno;
const uint32_t difflist_len = sparsevp1->p.s.difflist_len;
const uint32_t* difflist_sample_ids = sparsevp1->p.s.difflist_sample_ids;
uint32_t nmaj_ct0 = 0;
uint32_t nmaj_ct1 = 0;
uint32_t ssq0 = 0;
uint32_t ssq1 = 0;
uint32_t dotprod = 0;
uint32_t valid_obs_ct = 0;
if (difflist_common_geno != 3) {
nmaj_ct0 = *nmaj_ct0_ptr;
ssq0 = *ssq0_ptr;
dotprod = difflist_common_geno * nmaj_ct0;
valid_obs_ct = subsetted_nm_ct0;
nmaj_ct1 = difflist_common_geno * valid_obs_ct;
ssq1 = difflist_common_geno * nmaj_ct1;
}
if (difflist_len) {
const uintptr_t* nm_bitvec0 = densevp0->p.d.nm_bitvec;
const uintptr_t* one_bitvec0 = densevp0->p.d.one_bitvec;
const uintptr_t* two_bitvec0 = densevp0->p.d.two_bitvec;
const uintptr_t* raregeno = sparsevp1->p.s.raregeno;
const uint32_t word_ct_m1 = (difflist_len - 1) / kBitsPerWordD2;
uint32_t joint_counts[16]; // low bits = dense geno, high bits = sparse
ZeroU32Arr(16, joint_counts);
uint32_t loop_len = kBitsPerWordD2;
for (uint32_t widx = 0; ; ++widx) {
if (widx >= word_ct_m1) {
if (widx > word_ct_m1) {
break;
}
loop_len = ModNz(difflist_len, kBitsPerWordD2);
}
const uint32_t* cur_difflist_sample_ids = &(difflist_sample_ids[widx * kBitsPerWordD2]);
uintptr_t raregeno_word = raregeno[widx];
for (uint32_t uii = 0; uii != loop_len; ++uii) {
const uint32_t sample_idx = cur_difflist_sample_ids[uii];
const uint32_t sample_widx = sample_idx / kBitsPerWord;
const uint32_t sample_idx_lowbits = sample_idx % kBitsPerWord;
if ((sample_include[sample_widx] >> sample_idx_lowbits) & 1) {
const uintptr_t cur_sparse_geno = raregeno_word & 3;
const uintptr_t nm_bit = (nm_bitvec0[sample_widx] >> sample_idx_lowbits) & 1;
const uintptr_t one_bit = (one_bitvec0[sample_widx] >> sample_idx_lowbits) & 1;
// "& 3" takes care of this mask
const uintptr_t two_bit_unmasked = two_bitvec0[sample_widx] >> sample_idx_lowbits;
const uintptr_t cur_dense_geno = (nm_bit + one_bit + two_bit_unmasked * 2 - 1) & 3;
joint_counts[cur_dense_geno + cur_sparse_geno * 4] += 1;
}
raregeno_word = raregeno_word >> 2;
}
}
if (difflist_common_geno != 3) {
nmaj_ct0 -= joint_counts[13] + 2 * joint_counts[14];
ssq0 -= joint_counts[13] + 4 * joint_counts[14];
const uint32_t sparse_missing_dense_nm_ct = joint_counts[12] + joint_counts[13] + joint_counts[14];
valid_obs_ct -= sparse_missing_dense_nm_ct;
} else {
const uint32_t dense_one_ct = joint_counts[1] + joint_counts[5] + joint_counts[9];
const uint32_t dense_two_ct = joint_counts[2] + joint_counts[6] + joint_counts[10];
nmaj_ct0 = dense_one_ct + 2 * dense_two_ct;
ssq0 = dense_one_ct + 4 * dense_two_ct;
const uint32_t dense_zero_ct = joint_counts[0] + joint_counts[4] + joint_counts[8];
valid_obs_ct = dense_zero_ct + dense_one_ct + dense_two_ct;
}
const uint32_t sparse_one_ct = joint_counts[4] + joint_counts[5] + joint_counts[6];
if (difflist_common_geno != 2) {
const uint32_t sparse_two_ct = joint_counts[8] + joint_counts[9] + joint_counts[10];
nmaj_ct1 = sparse_one_ct + 2 * sparse_two_ct;
ssq1 = sparse_one_ct + 4 * sparse_two_ct;
dotprod = joint_counts[5] + 2 * (joint_counts[6] + joint_counts[9]) + 4 * joint_counts[10];
} else {
const uint32_t sparse_zmiss_ct = joint_counts[0] + joint_counts[1] + joint_counts[2] + joint_counts[12] + joint_counts[13] + joint_counts[14];
nmaj_ct1 -= sparse_one_ct + 2 * sparse_zmiss_ct;
ssq1 -= 3 * sparse_one_ct + 4 * sparse_zmiss_ct;
dotprod -= joint_counts[5] + 2 * (joint_counts[1] + joint_counts[6] + joint_counts[13]) + 4 * (joint_counts[2] + joint_counts[14]);
}
}
*nmaj_ct0_ptr = nmaj_ct0;
*nmaj_ct1_ptr = nmaj_ct1;
*ssq0_ptr = ssq0;
*ssq1_ptr = ssq1;
*dotprod_ptr = dotprod;
return valid_obs_ct;
}
uint32_t ComputeR2NondosageUnphased2SparseSubsetStats(const R2NondosageVariant* ndp0, const R2NondosageVariant* ndp1, const uintptr_t* sample_include, uint32_t subsetted_nm_ct0, uint32_t subsetted_nm_ct1, uint32_t* nmaj_ct0_ptr, uint32_t* nmaj_ct1_ptr, uint32_t* ssq0_ptr, uint32_t* ssq1_ptr, uint32_t* dotprod_ptr) {
const R2NondosageVariant* longvp;
const R2NondosageVariant* shortvp;
uint32_t* nmaj_ctlong_ptr;
uint32_t* nmaj_ctshort_ptr;
uint32_t* ssqlong_ptr;
uint32_t* ssqshort_ptr;
uint32_t long_nm_ct;
if (ndp0->p.s.difflist_len <= ndp1->p.s.difflist_len) {
longvp = ndp1;
shortvp = ndp0;
nmaj_ctlong_ptr = nmaj_ct1_ptr;
nmaj_ctshort_ptr = nmaj_ct0_ptr;
ssqlong_ptr = ssq1_ptr;
ssqshort_ptr = ssq0_ptr;
long_nm_ct = subsetted_nm_ct1;
} else {
longvp = ndp0;
shortvp = ndp1;
nmaj_ctlong_ptr = nmaj_ct0_ptr;
nmaj_ctshort_ptr = nmaj_ct1_ptr;
ssqlong_ptr = ssq0_ptr;
ssqshort_ptr = ssq1_ptr;
long_nm_ct = subsetted_nm_ct0;
}
const uint32_t difflist_common_geno_short = shortvp->p.s.difflist_common_geno;
uint32_t nmaj_ctlong = 0;
uint32_t nmaj_ctshort = 0;
uint32_t ssqlong = 0;
uint32_t ssqshort = 0;
uint32_t dotprod = 0;
uint32_t valid_obs_ct = 0;
if (difflist_common_geno_short != 3) {
nmaj_ctlong = *nmaj_ctlong_ptr;
ssqlong = *ssqlong_ptr;
dotprod = difflist_common_geno_short * nmaj_ctlong;
valid_obs_ct = long_nm_ct;
nmaj_ctshort = difflist_common_geno_short * valid_obs_ct;
ssqshort = difflist_common_geno_short * nmaj_ctshort;
}
const uint32_t difflist_len_short = shortvp->p.s.difflist_len;
if (difflist_len_short) {
const uintptr_t* difflist_include_long = longvp->p.s.difflist_include;
const uint32_t* difflist_include_long_cumulative_popcounts = longvp->p.s.difflist_include_cumulative_popcounts;
const uint32_t* difflist_sample_ids_short = shortvp->p.s.difflist_sample_ids;
const uintptr_t* raregeno_long = longvp->p.s.raregeno;
const uintptr_t* raregeno_short = shortvp->p.s.raregeno;
const uint32_t difflist_common_geno_long = longvp->p.s.difflist_common_geno;
uint32_t joint_counts[16]; // low bits = long, high bits = short
ZeroU32Arr(16, joint_counts);
const uint32_t word_ct_m1 = (difflist_len_short - 1) / kBitsPerWordD2;
uint32_t loop_len = kBitsPerWordD2;
for (uint32_t widx = 0; ; ++widx) {
if (widx >= word_ct_m1) {
if (widx > word_ct_m1) {
break;
}
loop_len = ModNz(difflist_len_short, kBitsPerWordD2);
}
const uint32_t* cur_difflist_sample_ids = &(difflist_sample_ids_short[widx * kBitsPerWordD2]);
uintptr_t raregeno_word = raregeno_short[widx];
for (uint32_t uii = 0; uii != loop_len; ++uii) {
const uint32_t sample_idx = cur_difflist_sample_ids[uii];
if (IsSet(sample_include, sample_idx)) {
const uintptr_t cur_geno_short = raregeno_word & 3;
uintptr_t cur_geno_long = difflist_common_geno_long;
if (IsSet(difflist_include_long, sample_idx)) {
const uint32_t difflist_idx_long = RawToSubsettedPos(difflist_include_long, difflist_include_long_cumulative_popcounts, sample_idx);
cur_geno_long = GetNyparrEntry(raregeno_long, difflist_idx_long);
}
joint_counts[cur_geno_long + 4 * cur_geno_short] += 1;
}
raregeno_word = raregeno_word >> 2;
}
}
if (difflist_common_geno_short != 3) {
nmaj_ctlong -= joint_counts[13] + 2 * joint_counts[14];
ssqlong -= joint_counts[13] + 4 * joint_counts[14];
const uint32_t short_missing_long_nm_ct = joint_counts[12] + joint_counts[13] + joint_counts[14];
valid_obs_ct -= short_missing_long_nm_ct;
} else {
const uint32_t long_one_ct = joint_counts[1] + joint_counts[5] + joint_counts[9];
const uint32_t long_two_ct = joint_counts[2] + joint_counts[6] + joint_counts[10];
nmaj_ctlong = long_one_ct + 2 * long_two_ct;
ssqlong = long_one_ct + 4 * long_two_ct;
const uint32_t long_zero_ct = joint_counts[0] + joint_counts[4] + joint_counts[8];
valid_obs_ct = long_zero_ct + long_one_ct + long_two_ct;
}
const uint32_t short_one_ct = joint_counts[4] + joint_counts[5] + joint_counts[6];
if (difflist_common_geno_short != 2) {
const uint32_t short_two_ct = joint_counts[8] + joint_counts[9] + joint_counts[10];
nmaj_ctshort = short_one_ct + 2 * short_two_ct;
ssqshort = short_one_ct + 4 * short_two_ct;
dotprod = joint_counts[5] + 2 * (joint_counts[6] + joint_counts[9]) + 4 * joint_counts[10];
} else {
const uint32_t short_zmiss_ct = joint_counts[0] + joint_counts[1] + joint_counts[2] + joint_counts[12] + joint_counts[13] + joint_counts[14];
nmaj_ctshort -= short_one_ct + 2 * short_zmiss_ct;
ssqshort -= 3 * short_one_ct + 4 * short_zmiss_ct;
dotprod -= joint_counts[5] + 2 * (joint_counts[1] + joint_counts[6] + joint_counts[13]) + 4 * (joint_counts[2] + joint_counts[14]);
}
}
*nmaj_ctlong_ptr = nmaj_ctlong;
*nmaj_ctshort_ptr = nmaj_ctshort;
*ssqlong_ptr = ssqlong;
*ssqshort_ptr = ssqshort;
*dotprod_ptr = dotprod;
return valid_obs_ct;
}
// nmaj_ct0, nmaj_ct1, ssq0, and ssq1 assumed to be initialized to precomputed
// subsetted values.
uint32_t ComputeR2NondosageUnphasedSubsetStats(const R2NondosageVariant* ndp0, const R2NondosageVariant* ndp1, const uintptr_t* sample_include, uint32_t raw_sample_ct, uint32_t sample_ct, uint32_t subsetted_nm_ct0, uint32_t subsetted_nm_ct1, uint32_t* nmaj_ct0_ptr, uint32_t* nmaj_ct1_ptr, uint32_t* ssq0_ptr, uint32_t* ssq1_ptr, uint32_t* dotprod_ptr, uintptr_t* cur_nm_buf) {
if (ndp0->is_sparse) {
if (ndp1->is_sparse) {
return ComputeR2NondosageUnphased2SparseSubsetStats(ndp0, ndp1, sample_include, subsetted_nm_ct0, subsetted_nm_ct1, nmaj_ct0_ptr, nmaj_ct1_ptr, ssq0_ptr, ssq1_ptr, dotprod_ptr);
} else {
return ComputeR2NondosageUnphased1SparseSubsetStats(ndp1, ndp0, sample_include, subsetted_nm_ct1, nmaj_ct1_ptr, nmaj_ct0_ptr, ssq1_ptr, ssq0_ptr, dotprod_ptr);
}
}
if (ndp1->is_sparse) {
return ComputeR2NondosageUnphased1SparseSubsetStats(ndp0, ndp1, sample_include, subsetted_nm_ct0, nmaj_ct0_ptr, nmaj_ct1_ptr, ssq0_ptr, ssq1_ptr, dotprod_ptr);
}
const uint32_t raw_sample_ctl = BitCtToWordCt(raw_sample_ct);
const uintptr_t* nm_bitvec0 = ndp0->p.d.nm_bitvec;
const uintptr_t* nm_bitvec1 = ndp1->p.d.nm_bitvec;
const uintptr_t* cur_nm;
uint32_t valid_obs_ct;
if (subsetted_nm_ct0 == sample_ct) {
valid_obs_ct = subsetted_nm_ct1;
if (subsetted_nm_ct1 == sample_ct) {
cur_nm = sample_include;
} else {
BitvecAndCopy(nm_bitvec1, sample_include, raw_sample_ctl, cur_nm_buf);
cur_nm = cur_nm_buf;
}
} else {
valid_obs_ct = subsetted_nm_ct0;
BitvecAndCopy(nm_bitvec0, sample_include, raw_sample_ctl, cur_nm_buf);
if (subsetted_nm_ct1 != sample_ct) {
BitvecAnd(nm_bitvec1, raw_sample_ctl, cur_nm_buf);
valid_obs_ct = PopcountWords(cur_nm_buf, raw_sample_ctl);
if (!valid_obs_ct) {
// bugfix (29 Oct 2023)
*nmaj_ct0_ptr = 0;
*nmaj_ct1_ptr = 0;
*ssq0_ptr = 0;
*ssq1_ptr = 0;
*dotprod_ptr = 0;
return 0;
}
}
cur_nm = cur_nm_buf;
}
const uintptr_t* one_bitvec0 = ndp0->p.d.one_bitvec;
const uintptr_t* two_bitvec0 = ndp0->p.d.two_bitvec;
if (subsetted_nm_ct0 != valid_obs_ct) {
const uint32_t nmaj_ct0 = GenoBitvecSumSubset(cur_nm, one_bitvec0, two_bitvec0, raw_sample_ctl);
*nmaj_ct0_ptr = nmaj_ct0;
// 0, 1, 4 instead of 0, 1, 2
*ssq0_ptr = nmaj_ct0 + 2 * PopcountWordsIntersect(cur_nm, two_bitvec0, raw_sample_ctl);
}
const uintptr_t* one_bitvec1 = ndp1->p.d.one_bitvec;
const uintptr_t* two_bitvec1 = ndp1->p.d.two_bitvec;
if (subsetted_nm_ct1 != valid_obs_ct) {
const uint32_t nmaj_ct1 = GenoBitvecSumSubset(cur_nm, one_bitvec1, two_bitvec1, raw_sample_ctl);
*nmaj_ct1_ptr = nmaj_ct1;
*ssq1_ptr = nmaj_ct1 + 2 * PopcountWordsIntersect(cur_nm, two_bitvec1, raw_sample_ctl);
}
*dotprod_ptr = GenoBitvecUnphasedDotprodSubset(cur_nm, one_bitvec0, two_bitvec0, one_bitvec1, two_bitvec1, raw_sample_ctl);
return valid_obs_ct;
}
uint32_t ComputeR2NondosagePhasedSubsetStats(const R2NondosageVariant* ndp0, const R2NondosageVariant* ndp1, const uintptr_t* sample_include, uint32_t raw_sample_ct, uint32_t sample_ct, uint32_t subsetted_nm_ct0, uint32_t subsetted_nm_ct1, uint32_t subsetted_nmaj_ct0, uint32_t subsetted_nmaj_ct1, R2PhaseType phase_type, double* nmajsums_d, double* known_dotprod_d_ptr, double* unknown_hethet_d_ptr, uintptr_t* cur_nm_buf) {
const uint32_t raw_sample_ctl = BitCtToWordCt(raw_sample_ct);
const uintptr_t* nm_bitvec0 = ndp0->p.d.nm_bitvec;
const uintptr_t* nm_bitvec1 = ndp1->p.d.nm_bitvec;
const uintptr_t* cur_nm;
uint32_t valid_obs_ct;
if (subsetted_nm_ct0 == sample_ct) {
valid_obs_ct = subsetted_nm_ct1;
if (subsetted_nm_ct1 == sample_ct) {
cur_nm = sample_include;
} else {
BitvecAndCopy(nm_bitvec1, sample_include, raw_sample_ctl, cur_nm_buf);
cur_nm = cur_nm_buf;
}
} else {
valid_obs_ct = subsetted_nm_ct0;
BitvecAndCopy(nm_bitvec0, sample_include, raw_sample_ctl, cur_nm_buf);
if (subsetted_nm_ct1 != sample_ct) {
BitvecAnd(nm_bitvec1, raw_sample_ctl, cur_nm_buf);
valid_obs_ct = PopcountWords(cur_nm_buf, raw_sample_ctl);
if (!valid_obs_ct) {
// bugfix (29 Oct 2023)
nmajsums_d[0] = 0.0;
nmajsums_d[1] = 0.0;
*known_dotprod_d_ptr = 0;
*unknown_hethet_d_ptr = 0;
return 0;
}
}
cur_nm = cur_nm_buf;
}
const uintptr_t* one_bitvec0 = ndp0->p.d.one_bitvec;
const uintptr_t* two_bitvec0 = ndp0->p.d.two_bitvec;
uint32_t nmaj_ct0 = subsetted_nmaj_ct0;
if (subsetted_nm_ct0 != valid_obs_ct) {
nmaj_ct0 = GenoBitvecSumSubset(cur_nm, one_bitvec0, two_bitvec0, raw_sample_ctl);
}
const uintptr_t* one_bitvec1 = ndp1->p.d.one_bitvec;
const uintptr_t* two_bitvec1 = ndp1->p.d.two_bitvec;
uint32_t nmaj_ct1 = subsetted_nmaj_ct1;
if (subsetted_nm_ct1 != valid_obs_ct) {
nmaj_ct1 = GenoBitvecSumSubset(cur_nm, one_bitvec1, two_bitvec1, raw_sample_ctl);
}
uint32_t known_dotprod;
uint32_t unknown_hethet_ct;
GenoBitvecPhasedDotprodSubset(cur_nm, one_bitvec0, two_bitvec0, one_bitvec1, two_bitvec1, raw_sample_ctl, &known_dotprod, &unknown_hethet_ct);
if ((phase_type == kR2PhaseTypePresent) && (unknown_hethet_ct != 0)) {
// don't bother with no-phase-here optimization for now
HardcallPhasedR2RefineSubset(cur_nm, ndp0->p.d.phasepresent, ndp0->p.d.phaseinfo, ndp1->p.d.phasepresent, ndp1->p.d.phaseinfo, raw_sample_ctl, &known_dotprod, &unknown_hethet_ct);
}
nmajsums_d[0] = u31tod(nmaj_ct0);
nmajsums_d[1] = u31tod(nmaj_ct1);
*known_dotprod_d_ptr = S_CAST(double, known_dotprod);
*unknown_hethet_d_ptr = u31tod(unknown_hethet_ct);
return valid_obs_ct;
}
// nmaj_dosages, ssq0, and ssq1 assumed to be initialized to subset values
uint32_t ComputeR2DosageUnphasedSubsetStats(const R2DosageVariant* dp0, const R2DosageVariant* dp1, const uintptr_t* sample_include, const Dosage* dosage_subset_invmask, uint32_t raw_sample_ct, uint32_t sample_ct, uint32_t subsetted_nm_ct0, uint32_t subsetted_nm_ct1, uint64_t* nmaj_dosages, uint64_t* ssq0_ptr, uint64_t* ssq1_ptr, uint64_t* dosageprod_ptr, uintptr_t* cur_nm_buf, Dosage* invmask_buf) {
const Dosage* dosage_vec0 = dp0->dosage_vec;
const Dosage* dosage_vec1 = dp1->dosage_vec;
const uintptr_t* nm_bitvec0 = dp0->nm_bitvec;
const uintptr_t* nm_bitvec1 = dp1->nm_bitvec;
const uint32_t valid_obs_ct = DosageR2FreqsSubset(dosage_vec0, nm_bitvec0, dosage_vec1, nm_bitvec1, sample_include, raw_sample_ct, sample_ct, subsetted_nm_ct0, subsetted_nm_ct1, nmaj_dosages, cur_nm_buf, invmask_buf);
if (!valid_obs_ct) {
// bugfix (29 Oct 2023)
*dosageprod_ptr = 0.0;
*ssq0_ptr = 0.0;
*ssq1_ptr = 0.0;
return 0;
}
const Dosage* subset_invmask = (valid_obs_ct == sample_ct)? dosage_subset_invmask : invmask_buf;
const uint32_t raw_sample_dosagev_ct = DivUp(raw_sample_ct, kDosagePerVec);
*dosageprod_ptr = DosageUnsignedDotprodSubset(subset_invmask, dosage_vec0, dosage_vec1, raw_sample_dosagev_ct);
if (subsetted_nm_ct0 != valid_obs_ct) {
*ssq0_ptr = DosageUnsignedDotprodSubset(subset_invmask, dosage_vec0, dosage_vec0, raw_sample_dosagev_ct);
}
if (subsetted_nm_ct1 != valid_obs_ct) {
*ssq1_ptr = DosageUnsignedDotprodSubset(subset_invmask, dosage_vec1, dosage_vec1, raw_sample_dosagev_ct);
}
return valid_obs_ct;
}
// Caller is now responsible for setting nmajsums_d[k] =
// u63tod(nmaj_dosages[k]) * kRecipDosageMid afterward.
// bugfix (29 Oct 2023): caller still shouldn't be responsible for initializing
// known_dotprod_d and unknown_hethet_d, so we need to zero them out on the
// early-return.
uint32_t ComputeR2DosagePhasedSubsetStats(const R2DosageVariant* dp0, const R2DosageVariant* dp1, const uintptr_t* sample_include, const Dosage* dosage_subset_invmask, uint32_t raw_sample_ct, uint32_t sample_ct, uint32_t subsetted_nm_ct0, uint32_t subsetted_nm_ct1, R2PhaseType phase_type, uint64_t* nmaj_dosages, double* known_dotprod_d_ptr, double* unknown_hethet_d_ptr, uintptr_t* cur_nm_buf, Dosage* invmask_buf) {
const Dosage* dosage_vec0 = dp0->dosage_vec;
const Dosage* dosage_vec1 = dp1->dosage_vec;
const uintptr_t* nm_bitvec0 = dp0->nm_bitvec;
const uintptr_t* nm_bitvec1 = dp1->nm_bitvec;
const uint32_t valid_obs_ct = DosageR2FreqsSubset(dosage_vec0, nm_bitvec0, dosage_vec1, nm_bitvec1, sample_include, raw_sample_ct, sample_ct, subsetted_nm_ct0, subsetted_nm_ct1, nmaj_dosages, cur_nm_buf, invmask_buf);
if (!valid_obs_ct) {
*known_dotprod_d_ptr = 0;
*unknown_hethet_d_ptr = 0;
return 0;
}
const uint32_t raw_sample_dosagev_ct = DivUp(raw_sample_ct, kDosagePerVec);
const Dosage* subset_invmask = (valid_obs_ct == sample_ct)? dosage_subset_invmask : invmask_buf;
uint64_t known_dotprod_dosage;
uint64_t uhethet_dosage;
if (phase_type != kR2PhaseTypePresent) {
const Dosage* dosage_het0 = dp0->dosage_het;
const Dosage* dosage_het1 = dp1->dosage_het;
DosageUnphasedDotprodComponentsSubset(subset_invmask, dosage_vec0, dosage_vec1, dosage_het0, dosage_het1, raw_sample_dosagev_ct, &known_dotprod_dosage, &uhethet_dosage);
} else {
const SDosage* dphase_delta0 = dp0->dense_dphase_delta;
const SDosage* dphase_delta1 = dp1->dense_dphase_delta;
DosagePhasedDotprodComponentsSubset(subset_invmask, dosage_vec0, dosage_vec1, dphase_delta0, dphase_delta1, raw_sample_dosagev_ct, &known_dotprod_dosage, &uhethet_dosage);
}
*known_dotprod_d_ptr = u63tod(known_dotprod_dosage) * kRecipDosageMax;
*unknown_hethet_d_ptr = u63tod(uhethet_dosage) * kRecipDosageMax;
return valid_obs_ct;
}
// There initially was a separate code path for the non-inter-chr case, where
// the male and nonmale genotypes were pre-separated. It was useful as a
// somewhat-independent implementation to test ComputeXR2() against. But it's
// now deleted, despite being faster, since chrX-specific code is a defect
// attractor and does not cover a large fraction of typical computational
// loads.
double ComputeXR2(const R2Variant* r2vp0, const R2Variant* r2vp1, const uintptr_t* founder_male_collapsed, const uintptr_t* founder_nonmale_collapsed, const Dosage* male_dosage_invmask, const Dosage* nonmale_dosage_invmask, uint32_t sample_ct, uint32_t male_ct, R2PhaseType phase_type, uint32_t load_dosage, uint32_t both_x, double* d_ptr, double* dprime_ptr, uint32_t* is_neg_ptr, uintptr_t* cur_nm_buf, Dosage* invmask_buf) {
const double male_downwt = both_x? 0.5 : (1.0 - 0.5 * kSqrt2);
double male_nmajsums_d[2];
double male_known_dotprod_d;
double male_unknown_hethet_d;
uint32_t male_obs_ct;
double nonmale_nmajsums_d[2];
double nonmale_known_dotprod_d;
double nonmale_unknown_hethet_d;
uint32_t nonmale_obs_ct;
if (!load_dosage) {
const R2NondosageVariant* ndp0 = &(r2vp0->nd);
const R2NondosageVariant* ndp1 = &(r2vp1->nd);
if (phase_type == kR2PhaseTypeUnphased) {
uint32_t nmaj_ct0;
uint32_t nmaj_ct1;
uint32_t ssq0;
uint32_t ssq1;
uint32_t dotprod;
const uint32_t valid_obs_ct = ComputeR2NondosageUnphasedStats(ndp0, ndp1, sample_ct, &nmaj_ct0, &nmaj_ct1, &ssq0, &ssq1, &dotprod);
if (!valid_obs_ct) {
return -DBL_MAX;
}
/*
printf("nmaj_ct0: %u\n", nmaj_ct0);
printf("nmaj_ct1: %u\n", nmaj_ct1);
printf("ssq0: %u\n", ssq0);
printf("ssq1: %u\n", ssq1);
printf("dotprod: %u\n", dotprod);
printf("valid_obs_ct: %u\n", valid_obs_ct);
*/
uint32_t male_nmaj_ct0 = ndp0->x_male_nmaj_ct;
uint32_t male_nmaj_ct1 = ndp1->x_male_nmaj_ct;
uint32_t male_ssq0 = ndp0->x_male_ssq;
uint32_t male_ssq1 = ndp1->x_male_ssq;
uint32_t male_dotprod;
// printf("male_ssq1 before: %u\n", male_ssq1);
male_obs_ct = ComputeR2NondosageUnphasedSubsetStats(ndp0, ndp1, founder_male_collapsed, sample_ct, male_ct, ndp0->x_male_nm_ct, ndp1->x_male_nm_ct, &male_nmaj_ct0, &male_nmaj_ct1, &male_ssq0, &male_ssq1, &male_dotprod, cur_nm_buf);
/*
printf("male_nmaj_ct0: %u\n", male_nmaj_ct0);
printf("male_nmaj_ct1: %u\n", male_nmaj_ct1);
printf("male_ssq0: %u\n", male_ssq0);
printf("male_ssq1: %u\n", male_ssq1);
printf("male_dotprod: %u\n", male_dotprod);
printf("male_obs_ct: %u\n", male_obs_ct);
*/
const double weighted_obs_ct = u31tod(valid_obs_ct) - male_downwt * u31tod(male_obs_ct);
const double weighted_nmaj_ct0 = u31tod(nmaj_ct0) - male_downwt * u31tod(male_nmaj_ct0);
const double weighted_nmaj_ct1 = u31tod(nmaj_ct1) - male_downwt * u31tod(male_nmaj_ct1);
const double weighted_ssq0 = u63tod(ssq0) - male_downwt * u63tod(male_ssq0);
const double weighted_ssq1 = u63tod(ssq1) - male_downwt * u63tod(male_ssq1);
const double weighted_dotprod = u63tod(dotprod) - male_downwt * u63tod(male_dotprod);
const double variance0 = weighted_ssq0 * weighted_obs_ct - weighted_nmaj_ct0 * weighted_nmaj_ct0;
const double variance1 = weighted_ssq1 * weighted_obs_ct - weighted_nmaj_ct1 * weighted_nmaj_ct1;
if ((variance0 <= 0.0) || (variance1 <= 0.0)) {
return -DBL_MAX;
}
const double variance_prod = variance0 * variance1;
const double cov01 = weighted_dotprod * weighted_obs_ct - weighted_nmaj_ct0 * weighted_nmaj_ct1;
*is_neg_ptr = (cov01 < 0.0);
return MINV(1.0, cov01 * cov01 / variance_prod);
}
const uint32_t x_male_nm_ct0 = ndp0->x_male_nm_ct;
const uint32_t x_male_nm_ct1 = ndp1->x_male_nm_ct;
const uint32_t x_male_nmaj_ct0 = ndp0->x_male_nmaj_ct;
const uint32_t x_male_nmaj_ct1 = ndp1->x_male_nmaj_ct;
male_obs_ct = ComputeR2NondosagePhasedSubsetStats(ndp0, ndp1, founder_male_collapsed, sample_ct, male_ct, x_male_nm_ct0, x_male_nm_ct1, x_male_nmaj_ct0, x_male_nmaj_ct1, R2PhaseOmit(phase_type), male_nmajsums_d, &male_known_dotprod_d, &male_unknown_hethet_d, cur_nm_buf);
nonmale_obs_ct = ComputeR2NondosagePhasedSubsetStats(ndp0, ndp1, founder_nonmale_collapsed, sample_ct, sample_ct - male_ct, ndp0->nm_ct - x_male_nm_ct0, ndp1->nm_ct - x_male_nm_ct1, ndp0->nmaj_ct - x_male_nmaj_ct0, ndp1->nmaj_ct - x_male_nmaj_ct1, phase_type, nonmale_nmajsums_d, &nonmale_known_dotprod_d, &nonmale_unknown_hethet_d, cur_nm_buf);
} else {
const R2DosageVariant* dp0 = &(r2vp0->d);
const R2DosageVariant* dp1 = &(r2vp1->d);
uint64_t sex_nmaj_dosages[2];
sex_nmaj_dosages[0] = dp0->x_male_nmaj_dosage;
sex_nmaj_dosages[1] = dp1->x_male_nmaj_dosage;
if (phase_type == kR2PhaseTypeUnphased) {
uint64_t nmaj_dosages[2];
uint64_t dosageprod;
uint64_t ssq0;
uint64_t ssq1;
const uint32_t valid_obs_ct = ComputeR2DosageUnphasedStats(dp0, dp1, sample_ct, nmaj_dosages, &dosageprod, &ssq0, &ssq1);
if (!valid_obs_ct) {
return -DBL_MAX;
}
uint64_t male_ssq0 = dp0->x_male_nmaj_dosage_ssq;
uint64_t male_ssq1 = dp1->x_male_nmaj_dosage_ssq;
uint64_t male_dosageprod;
male_obs_ct = ComputeR2DosageUnphasedSubsetStats(dp0, dp1, founder_male_collapsed, male_dosage_invmask, sample_ct, male_ct, dp0->x_male_nm_ct, dp1->x_male_nm_ct, sex_nmaj_dosages, &male_ssq0, &male_ssq1, &male_dosageprod, cur_nm_buf, invmask_buf);
const double weighted_obs_ct = u31tod(valid_obs_ct) - male_downwt * u31tod(male_obs_ct);
const double weighted_nmaj0 = u63tod(nmaj_dosages[0]) - male_downwt * u63tod(sex_nmaj_dosages[0]);
const double weighted_nmaj1 = u63tod(nmaj_dosages[1]) - male_downwt * u63tod(sex_nmaj_dosages[1]);
const double weighted_dosageprod = u63tod(dosageprod) - male_downwt * u63tod(male_dosageprod);
const double weighted_ssq0 = u63tod(ssq0) - male_downwt * u63tod(male_ssq0);
const double weighted_ssq1 = u63tod(ssq1) - male_downwt * u63tod(male_ssq1);
const double variance0 = weighted_ssq0 * weighted_obs_ct - weighted_nmaj0 * weighted_nmaj0;
const double variance1 = weighted_ssq1 * weighted_obs_ct - weighted_nmaj1 * weighted_nmaj1;
if ((variance0 <= 0.0) || (variance1 <= 0.0)) {
return -DBL_MAX;
}
const double variance_prod = variance0 * variance1;
if (variance_prod == 0.0) {
return -DBL_MAX;
}
const double cov01 = weighted_dosageprod * weighted_obs_ct - weighted_nmaj0 * weighted_nmaj1;
*is_neg_ptr = (cov01 < 0.0);
return MINV(1.0, cov01 * cov01 / variance_prod);
}
const uint32_t x_male_nm_ct0 = dp0->x_male_nm_ct;
const uint32_t x_male_nm_ct1 = dp1->x_male_nm_ct;
male_obs_ct = ComputeR2DosagePhasedSubsetStats(dp0, dp1, founder_male_collapsed, male_dosage_invmask, sample_ct, male_ct, x_male_nm_ct0, x_male_nm_ct1, R2PhaseOmit(phase_type), sex_nmaj_dosages, &male_known_dotprod_d, &male_unknown_hethet_d, cur_nm_buf, invmask_buf);
male_nmajsums_d[0] = u63tod(sex_nmaj_dosages[0]) * kRecipDosageMid;
male_nmajsums_d[1] = u63tod(sex_nmaj_dosages[1]) * kRecipDosageMid;
sex_nmaj_dosages[0] = dp0->nmaj_dosage - dp0->x_male_nmaj_dosage;
sex_nmaj_dosages[1] = dp1->nmaj_dosage - dp1->x_male_nmaj_dosage;
nonmale_obs_ct = ComputeR2DosagePhasedSubsetStats(dp0, dp1, founder_nonmale_collapsed, nonmale_dosage_invmask, sample_ct, sample_ct - male_ct, dp0->nm_ct - x_male_nm_ct0, dp1->nm_ct - x_male_nm_ct1, phase_type, sex_nmaj_dosages, &nonmale_known_dotprod_d, &nonmale_unknown_hethet_d, cur_nm_buf, invmask_buf);
nonmale_nmajsums_d[0] = u63tod(sex_nmaj_dosages[0]) * kRecipDosageMid;
nonmale_nmajsums_d[1] = u63tod(sex_nmaj_dosages[1]) * kRecipDosageMid;
}
if (male_obs_ct + nonmale_obs_ct == 0) {
return -DBL_MAX;
}
const double male_wt = 1.0 - male_downwt;
double nmajsums_d[2];
nmajsums_d[0] = nonmale_nmajsums_d[0] + male_wt * male_nmajsums_d[0];
nmajsums_d[1] = nonmale_nmajsums_d[1] + male_wt * male_nmajsums_d[1];
const double known_dotprod_d = nonmale_known_dotprod_d + male_wt * male_known_dotprod_d;
const double unknown_hethet_d = nonmale_unknown_hethet_d + male_wt * male_unknown_hethet_d;
const double valid_obs_d = u31tod(nonmale_obs_ct) + male_wt * u31tod(male_obs_ct);
const double twice_tot_recip = 0.5 / valid_obs_d;
if ((d_ptr == nullptr) && (dprime_ptr == nullptr)) {
double r2;
const LDErr ld_err = PhasedLD(nmajsums_d, known_dotprod_d, unknown_hethet_d, twice_tot_recip, 0, nullptr, &r2, is_neg_ptr);
return (ld_err == kLDErrNone)? r2 : -DBL_MAX;
}
double results[3];
const LDErr ld_err = PhasedLD(nmajsums_d, known_dotprod_d, unknown_hethet_d, twice_tot_recip, 1, nullptr, results, is_neg_ptr);
if (ld_err != kLDErrNone) {
if (d_ptr) {
*d_ptr = 0.0 / 0.0;
}
if (dprime_ptr) {
*dprime_ptr = 0.0 / 0.0;
}
return -DBL_MAX;
}
if (d_ptr) {
*d_ptr = results[1];
}
if (dprime_ptr) {
*dprime_ptr = results[2];
}
return results[0];
}
void ClumpHighmemR2(uintptr_t tidx, uint32_t thread_ct_p1, uint32_t parity, ClumpCtx* ctx) {
// Compute r^2 of non-index (variant, aidx)s against the current index
// variant, with everything already unpacked.
const uint64_t cur_nonindex_ct = ctx->cur_nonindex_ct;
const uintptr_t nonindex_start = (cur_nonindex_ct * tidx) / thread_ct_p1;
const uintptr_t nonindex_end = (cur_nonindex_ct * (tidx + 1)) / thread_ct_p1;
uintptr_t nonindex_rem = nonindex_end - nonindex_start;
uintptr_t* write_iter = ctx->ld_idx_found[tidx];
if (!nonindex_rem) {
*write_iter = ~k0LU;
return;
}
const uintptr_t igroup_oaidx_start = ctx->igroup_oaidx_start;
const uintptr_t unpacked_byte_stride = ctx->unpacked_byte_stride;
const uintptr_t* observed_alleles = ctx->observed_alleles;
const uintptr_t* observed_alleles_cumulative_popcounts_w = ctx->observed_alleles_cumulative_popcounts_w;
const unsigned char* unpacked_variants = ctx->unpacked_variants;
const uintptr_t* candidate_oabitvec = ctx->candidate_oabitvec;
uintptr_t allele_widx_start = ctx->allele_widx_start;
const uintptr_t allele_widx_end = ctx->allele_widx_end;
const uintptr_t oaidx_start = ctx->a[parity].oaidx_starts[tidx];
const uint32_t founder_ct = ctx->founder_ct;
const uint32_t founder_male_ct = ctx->founder_male_ct;
const uint32_t allow_overlap = ctx->allow_overlap;
const uint32_t is_x = ctx->is_x;
const uintptr_t* founder_male_collapsed = nullptr;
const uintptr_t* founder_nonmale_collapsed = nullptr;
const Dosage* male_dosage_invmask = nullptr;
const Dosage* nonmale_dosage_invmask = nullptr;
uintptr_t* chrx_nm_buf = nullptr;
Dosage* chrx_invmask_buf = nullptr;
if (is_x) {
founder_male_collapsed = ctx->founder_male_collapsed;
male_dosage_invmask = ctx->male_dosage_invmask;
founder_nonmale_collapsed = ctx->founder_nonmale_collapsed;
nonmale_dosage_invmask = ctx->nonmale_dosage_invmask;
chrx_nm_buf = ctx->chrx_workspaces[tidx];
const uint32_t founder_ctaw = BitCtToAlignedWordCt(founder_ct);
chrx_invmask_buf = R_CAST(Dosage*, &(chrx_nm_buf[founder_ctaw]));
}
const R2PhaseType phase_type = S_CAST(R2PhaseType, ctx->phase_type);
const uint32_t load_dosage = ctx->load_dosage;
const double r2_thresh = ctx->r2_thresh;
const unsigned char* unpacked_index_variant = &(unpacked_variants[ctx->index_oaidx_offset * unpacked_byte_stride]);
R2Variant index_r2v;
FillR2V(unpacked_index_variant, founder_ct, phase_type, is_x, load_dosage, &index_r2v);
uintptr_t oaidx_base;
uintptr_t cur_oaidx_bits;
BitIter1Start(candidate_oabitvec, oaidx_start, &oaidx_base, &cur_oaidx_bits);
for (; nonindex_rem; --nonindex_rem) {
const uintptr_t oaidx = BitIter1(candidate_oabitvec, &oaidx_base, &cur_oaidx_bits);
const uintptr_t oaidx_offset = oaidx - igroup_oaidx_start;
const unsigned char* unpacked_cur_variant = &(unpacked_variants[oaidx_offset * unpacked_byte_stride]);
R2Variant cur_r2v;
FillR2V(unpacked_cur_variant, founder_ct, phase_type, is_x, load_dosage, &cur_r2v);
double cur_r2;
if (!is_x) {
uint32_t is_neg;
cur_r2 = ComputeR2(&index_r2v, &cur_r2v, founder_ct, phase_type, load_dosage, nullptr, nullptr, &is_neg);
} else {
uint32_t is_neg;
cur_r2 = ComputeXR2(&index_r2v, &cur_r2v, founder_male_collapsed, founder_nonmale_collapsed, male_dosage_invmask, nonmale_dosage_invmask, founder_ct, founder_male_ct, phase_type, load_dosage, 1, nullptr, nullptr, &is_neg, chrx_nm_buf, chrx_invmask_buf);
}
if (cur_r2 > r2_thresh) {
if (!allow_overlap) {
*write_iter = oaidx;
} else {
const uintptr_t allele_idx = ExpsearchIdxToUidxW(observed_alleles, observed_alleles_cumulative_popcounts_w, allele_widx_end, oaidx, &allele_widx_start);
*write_iter = allele_idx;
}
++write_iter;
}
}
*write_iter = ~k0LU;
}
void ClumpLowmemR2(uintptr_t tidx, uint32_t thread_ct_p1, uint32_t parity, ClumpCtx* ctx) {
// Unpack a few non-index PgenVariants that were read by the main thread,
// then compute r^2 between them and the index-(variant, aidx).
const uint64_t cur_nonindex_ct = ctx->cur_nonindex_ct;
// yeah, this variable name sucks
uintptr_t nonindex_idx = (cur_nonindex_ct * tidx) / thread_ct_p1;
const uintptr_t nonindex_end = (cur_nonindex_ct * (tidx + 1)) / thread_ct_p1;
uintptr_t* write_iter = ctx->ld_idx_found[tidx];
if (nonindex_idx == nonindex_end) {
*write_iter = ~k0LU;
return;
}
const uintptr_t* observed_alleles = ctx->observed_alleles;
const uintptr_t* observed_alleles_cumulative_popcounts_w = ctx->observed_alleles_cumulative_popcounts_w;
const uintptr_t pgv_byte_stride = ctx->pgv_byte_stride;
PgenVariant pgv = ctx->pgv_base;
ClumpPgenVariantIncr(pgv_byte_stride * nonindex_idx, &pgv);
const uintptr_t* candidate_oabitvec = ctx->candidate_oabitvec;
uintptr_t allele_widx_start = ctx->allele_widx_start;
const uintptr_t allele_widx_end = ctx->allele_widx_end;
const uintptr_t oaidx_start = ctx->a[parity].oaidx_starts[tidx];
uint32_t founder_ct = ctx->founder_ct;
const uint32_t founder_male_ct = ctx->founder_male_ct;
const uint32_t allow_overlap = ctx->allow_overlap;
const uint32_t is_x = ctx->is_x;
const uintptr_t* founder_male_collapsed = nullptr;
const uintptr_t* founder_nonmale_collapsed = nullptr;
const Dosage* male_dosage_invmask = nullptr;
const Dosage* nonmale_dosage_invmask = nullptr;
uintptr_t* chrx_nm_buf = nullptr;
Dosage* chrx_invmask_buf = nullptr;
if (is_x) {
founder_male_collapsed = ctx->founder_male_collapsed;
founder_nonmale_collapsed = ctx->founder_nonmale_collapsed;
male_dosage_invmask = ctx->male_dosage_invmask;
nonmale_dosage_invmask = ctx->nonmale_dosage_invmask;
chrx_nm_buf = ctx->chrx_workspaces[tidx];
const uint32_t founder_ctaw = BitCtToAlignedWordCt(founder_ct);
chrx_invmask_buf = R_CAST(Dosage*, &(chrx_nm_buf[founder_ctaw]));
}
const R2PhaseType phase_type = S_CAST(R2PhaseType, ctx->phase_type);
const uint32_t load_dosage = ctx->load_dosage;
const double r2_thresh = ctx->r2_thresh;
unsigned char* unpacked_index_variant = ctx->unpacked_variants;
R2Variant index_r2v;
FillR2V(unpacked_index_variant, founder_ct, phase_type, is_x, load_dosage, &index_r2v);
const uint32_t* phasepresent_cts = ctx->phasepresent_cts;
const uint32_t* dosage_cts = ctx->dosage_cts;
const uint32_t* dphase_cts = ctx->dphase_cts;
const uintptr_t unpacked_byte_stride = ctx->unpacked_byte_stride;
unsigned char* unpacked_cur_variant = &(unpacked_index_variant[(tidx + 1) * unpacked_byte_stride]);
uintptr_t oaidx_base;
uintptr_t cur_oaidx_bits;
BitIter1Start(candidate_oabitvec, oaidx_start, &oaidx_base, &cur_oaidx_bits);
for (; nonindex_idx != nonindex_end; ++nonindex_idx, ClumpPgenVariantIncr(pgv_byte_stride, &pgv)) {
if (phasepresent_cts) {
pgv.phasepresent_ct = phasepresent_cts[nonindex_idx];
}
if (dosage_cts) {
pgv.dosage_ct = dosage_cts[nonindex_idx];
if (dphase_cts) {
pgv.dphase_ct = dphase_cts[nonindex_idx];
}
}
const uintptr_t oaidx = BitIter1(candidate_oabitvec, &oaidx_base, &cur_oaidx_bits);
if (load_dosage) {
LdUnpackDosage(&pgv, founder_male_collapsed, male_dosage_invmask, founder_ct, phase_type, unpacked_cur_variant);
} else {
LdUnpackNondosageDense(&pgv, founder_male_collapsed, founder_ct, phase_type, unpacked_cur_variant);
}
R2Variant cur_r2v;
FillR2V(unpacked_cur_variant, founder_ct, phase_type, is_x, load_dosage, &cur_r2v);
double cur_r2;
if (!is_x) {
uint32_t is_neg;
cur_r2 = ComputeR2(&index_r2v, &cur_r2v, founder_ct, phase_type, load_dosage, nullptr, nullptr, &is_neg);
} else {
uint32_t is_neg;
cur_r2 = ComputeXR2(&index_r2v, &cur_r2v, founder_male_collapsed, founder_nonmale_collapsed, male_dosage_invmask, nonmale_dosage_invmask, founder_ct, founder_male_ct, phase_type, load_dosage, 1, nullptr, nullptr, &is_neg, chrx_nm_buf, chrx_invmask_buf);
}
if (cur_r2 > r2_thresh) {
if (!allow_overlap) {
*write_iter = oaidx;
} else {
const uintptr_t allele_idx = ExpsearchIdxToUidxW(observed_alleles, observed_alleles_cumulative_popcounts_w, allele_widx_end, oaidx, &allele_widx_start);
*write_iter = allele_idx;
}
++write_iter;
}
}
*write_iter = ~k0LU;
}
THREAD_FUNC_DECL ClumpThread(void* raw_arg) {
ThreadGroupFuncArg* arg = S_CAST(ThreadGroupFuncArg*, raw_arg);
const uintptr_t tidx = arg->tidx;
const uint32_t calc_thread_ct_p1 = 1 + GetThreadCt(arg->sharedp);
ClumpCtx* ctx = S_CAST(ClumpCtx*, arg->sharedp->context);
uint32_t parity = 0;
do {
const ClumpJobType job_type = ctx->job_type;
if (job_type == kClumpJobHighmemUnpack) {
ClumpHighmemUnpack(tidx, parity, ctx);
} else if (job_type == kClumpJobHighmemR2) {
ClumpHighmemR2(tidx, calc_thread_ct_p1, parity, ctx);
} else if (job_type == kClumpJobLowmemR2) {
ClumpLowmemR2(tidx, calc_thread_ct_p1, parity, ctx);
}
parity = 1 - parity;
} while (!THREAD_BLOCK_FINISH(arg));
THREAD_RETURN;
}
BoolErr ClumpSpillResults(const uintptr_t* observed_alleles, const uintptr_t* observed_alleles_cumulative_popcounts_w, uintptr_t* const* ld_idx_found, uint32_t cur_thread_ct, uintptr_t* prev_save_allele_idxp, uintptr_t* clump_sizep, uintptr_t* icandidate_oabitvec, FILE* clump_overlap_tmp) {
uintptr_t prev_save_allele_idx = *prev_save_allele_idxp;
uintptr_t clump_size = *clump_sizep;
unsigned char buf[16];
for (uint32_t tidx = 0; tidx != cur_thread_ct; ++tidx) {
const uintptr_t* read_iter = ld_idx_found[tidx];
for (; ; ++read_iter) {
const uintptr_t save_allele_idx = *read_iter;
if (save_allele_idx == ~k0LU) {
break;
}
const uintptr_t oaidx = RawToSubsettedPosW(observed_alleles, observed_alleles_cumulative_popcounts_w, save_allele_idx);
ClearBit(oaidx, icandidate_oabitvec);
unsigned char* write_iter = Vint64Append(save_allele_idx - prev_save_allele_idx, buf);
if (unlikely(!fwrite_unlocked(buf, 1, write_iter - buf, clump_overlap_tmp))) {
return 1;
}
prev_save_allele_idx = save_allele_idx;
++clump_size;
}
}
*prev_save_allele_idxp = prev_save_allele_idx;
*clump_sizep = clump_size;
return 0;
}
// 0.0001, 0.001, 0.01, 0.05 with appropriate epsilons
static const double kClumpDefaultLnBinBounds[4] = {
-9.210340371976706,
-6.907755278982529,
-4.605170185988353,
-2.995732273554161
};
static_assert(kClumpMaxBinBounds * (kMaxLnGSlen + 1) + 256 <= kMaxLongLine, "ClumpReports() needs to be updated.");
PglErr ClumpReports(const uintptr_t* orig_variant_include, const ChrInfo* cip, const uint32_t* variant_bps, const char* const* variant_ids, const uintptr_t* allele_idx_offsets, const char* const* allele_storage, const uintptr_t* founder_info, const uintptr_t* sex_nm, const uintptr_t* sex_male, const ClumpInfo* clump_ip, uint32_t raw_variant_ct, uint32_t orig_variant_ct, uint32_t raw_sample_ct, uint32_t founder_ct, uint32_t nosex_ct, uint32_t max_variant_id_slen, uint32_t max_allele_slen, double output_min_ln, uint32_t max_thread_ct, uintptr_t pgr_alloc_cacheline_ct, PgenFileInfo* pgfip, PgenReader* simple_pgrp, char* outname, char* outname_end) {
unsigned char* bigstack_mark = g_bigstack_base;
unsigned char* bigstack_end_mark = g_bigstack_end;
char* fname_iter = clump_ip->fnames_flattened;
uintptr_t line_idx = 0;
FILE* clump_overlap_tmp = nullptr;
char* cswritep = nullptr;
PglErr reterr = kPglRetSuccess;
ClumpCtx ctx;
TextStream txs;
CompressStreamState css;
ThreadGroup tg;
PreinitTextStream(&txs);
PreinitCstream(&css);
PreinitThreads(&tg);
{
if (unlikely(founder_ct < 2)) {
logerrputs("Error: --clump requires at least two founders. (--make-founders may come in handy\nhere.)\n");
goto ClumpReports_ret_INCONSISTENT_INPUT;
} else if (founder_ct > 0x3fffffff) {
logerrputs("Error: --clump does not support >= 2^30 founders.\n");
goto ClumpReports_ret_NOT_YET_SUPPORTED;
}
uint32_t skipped_variant_ct;
const uintptr_t* variant_include = StripUnplacedK(orig_variant_include, cip, raw_variant_ct, &skipped_variant_ct);
if (unlikely(variant_include == nullptr)) {
goto ClumpReports_ret_NOMEM;
}
const uint32_t variant_ct = orig_variant_ct - skipped_variant_ct;
if (skipped_variant_ct) {
logprintf("--clump: Ignoring %u chromosome 0 variant%s.\n", skipped_variant_ct, (skipped_variant_ct == 1)? "" : "s");
}
const uint32_t raw_variant_ctl = BitCtToWordCt(raw_variant_ct);
const uintptr_t raw_allele_ct = allele_idx_offsets? allele_idx_offsets[raw_variant_ct] : (2 * raw_variant_ct);
const uintptr_t raw_allele_ctl = BitCtToWordCt(raw_allele_ct);
const uintptr_t* variant_last_alidxs;
const uint32_t* variant_last_alidxs_cumulative_popcounts;
reterr = AllocAndFillVariantLastAlidxs(allele_idx_offsets, raw_variant_ct, max_thread_ct, &variant_last_alidxs, &variant_last_alidxs_cumulative_popcounts);
if (unlikely(reterr)) {
goto ClumpReports_ret_1;
}
uintptr_t* observed_variants;
uintptr_t* observed_alleles;
uintptr_t* observed_alleles_cumulative_popcounts_w;
double* best_ln_pvals;
// bugfix (29 Oct 2023): there are RawToSubsettedPosW(observed_alleles,
// observed_alleles_cumulative_popcounts_w, x) calls with x =
// raw_allele_ct. In this case, we may need one more entry.
if (unlikely(bigstack_calloc_w(raw_variant_ctl, &observed_variants) ||
bigstack_calloc_w(raw_allele_ctl, &observed_alleles) ||
bigstack_alloc_w(1 + (raw_allele_ct / kBitsPerWord), &observed_alleles_cumulative_popcounts_w) ||
bigstack_end_calloc_d(raw_allele_ct, &best_ln_pvals))) {
goto ClumpReports_ret_NOMEM;
}
unsigned char* bigstack_mark2 = g_bigstack_base;
unsigned char* bigstack_end_mark2 = g_bigstack_end;
uint32_t file_ct = 0;
do {
char* fname_end = strnul(fname_iter);
++file_ct;
fname_iter = &(fname_end[1]);
} while (*fname_iter);
assert(file_ct < 0x40000000);
const ClumpFlags flags = clump_ip->flags;
const uint32_t force_a1 = (flags / kfClumpForceA1) & 1;
uint32_t* best_fidx_x2s = nullptr;
if (((file_ct > 1) && (flags & (kfClumpColMaybeF | kfClumpColF | kfClumpColSp2))) || force_a1) {
if (unlikely(bigstack_alloc_u32(raw_allele_ct, &best_fidx_x2s))) {
goto ClumpReports_ret_NOMEM;
}
}
const double* ln_bin_boundaries = nullptr;
uint32_t bin_bound_ct = 0;
if (flags & kfClumpColBins) {
bin_bound_ct = clump_ip->bin_bound_ct;
if (!bin_bound_ct) {
ln_bin_boundaries = kClumpDefaultLnBinBounds;
bin_bound_ct = 4;
} else {
ln_bin_boundaries = clump_ip->ln_bin_boundaries;
}
}
const char* range_fname = clump_ip->range_fname;
const uint32_t sp2_col = flags & kfClumpColSp2;
const uint32_t ranges_col = !!range_fname;
const uint32_t bounds_col = (flags & kfClumpColBounds) || ((flags & kfClumpColMaybeBounds) && ranges_col);
const double ln_p1 = clump_ip->ln_p1;
const double ln_p2 = (sp2_col || bounds_col || ranges_col)? clump_ip->ln_p2 : -DBL_MAX;
double load_ln_pthresh = MAXV(ln_p1, ln_p2);
if (bin_bound_ct && (load_ln_pthresh < ln_bin_boundaries[bin_bound_ct - 1])) {
load_ln_pthresh = ln_bin_boundaries[bin_bound_ct - 1];
}
ClumpEntry** clump_entries = nullptr;
uintptr_t* nonsig_arr = nullptr;
uint32_t allow_overlap = (flags / kfClumpAllowOverlap) & 1;
if ((flags & (kfClumpColTotal | kfClumpColBins | kfClumpColSp2)) || bounds_col || range_fname) {
if (unlikely(BIGSTACK_ALLOC_X(ClumpEntry*, raw_allele_ct + 1, &clump_entries))) {
goto ClumpReports_ret_NOMEM;
}
ZeroPtrArr(raw_allele_ct, clump_entries);
const uint32_t nonsig_needed = ((flags & (kfClumpColTotal | kfClumpColBins)) != 0) && (load_ln_pthresh < 0.0);
if (nonsig_needed) {
if (unlikely(bigstack_calloc_w(raw_allele_ct, &nonsig_arr))) {
goto ClumpReports_ret_NOMEM;
}
}
} else if (allow_overlap) {
allow_overlap = 0;
logputs("Note: --clump-allow-overlap has no effect when --clump 'total', 'bins', and\n'sp2' column-sets are all absent.\n");
}
uint32_t* variant_id_htable;
uint32_t variant_id_htable_size;
reterr = AllocAndPopulateIdHtableMt(variant_include, variant_ids, variant_ct, bigstack_left() / 2, max_thread_ct, &variant_id_htable, nullptr, &variant_id_htable_size, nullptr);
if (unlikely(reterr)) {
goto ClumpReports_ret_1;
}
const uint32_t search_a1 = force_a1 || (allele_idx_offsets && (!(flags & kfClumpNoA1)));
const uint32_t search_test = !(flags & kfClumpNoTest);
const char* col_search_order[4];
col_search_order[0] = clump_ip->id_field? clump_ip->id_field : "ID\0SNP\0";
col_search_order[1] = search_a1? (clump_ip->a1_field? clump_ip->a1_field : "A1\0") : "";
col_search_order[2] = search_test? (clump_ip->test_field? clump_ip->test_field : "TEST\0") : "";
const uint32_t input_log10 = flags & kfClumpInputLog10;
col_search_order[3] = clump_ip->p_field? clump_ip->p_field : (input_log10? "LOG10_P\0NEG_LOG10_P\0P\0" : "P\0");
const char* test_name_flattened = clump_ip->test_name? clump_ip->test_name : "ADD\0";
const uint32_t save_all_fidxs = ((file_ct > 1) || force_a1) && sp2_col;
LlStr* missing_variant_ids = nullptr;
LlStr* missing_variant_allele_pairs = nullptr;
uintptr_t missing_variant_id_ct = 0;
uintptr_t missing_variant_id_max_slen = 0;
uintptr_t missing_variant_allele_pair_ct = 0;
uintptr_t missing_variant_allele_pair_max_slen = 0;
// A1 allele normally doesn't matter for biallelic variants, so we default
// to treating it as always-REF (may as well avoid a few +1s in the code).
unsigned char* tmp_alloc_base = nullptr;
unsigned char* tmp_alloc_end = bigstack_end_mark2;
const uint32_t two_minus_force_a1 = 2 - force_a1;
uint32_t cur_allele_ct = 2;
uint32_t biallelic_forced_a1_alt = 0;
for (uint32_t file_idx1 = file_ct; file_idx1; --file_idx1) {
if (file_idx1 == 1) {
fname_iter = clump_ip->fnames_flattened;
} else {
fname_iter = &(fname_iter[-3]);
while (*fname_iter) {
--fname_iter;
}
++fname_iter;
}
if (file_idx1 == file_ct) {
reterr = SizeAndInitTextStream(fname_iter, bigstack_left() / 8, MAXV(1, max_thread_ct - 1), &txs);
tmp_alloc_base = g_bigstack_base;
} else {
reterr = TextRetarget(fname_iter, &txs);
}
if (unlikely(reterr)) {
goto ClumpReports_ret_TSTREAM_FAIL;
}
line_idx = 0;
const char* header_start;
do {
++line_idx;
header_start = TextGet(&txs);
if (unlikely(!header_start)) {
reterr = TextStreamRawErrcode(&txs);
if (reterr == kPglRetEof) {
snprintf(g_logbuf, kLogbufSize, "Error: %s is empty.\n", fname_iter);
goto ClumpReports_ret_MALFORMED_INPUT_WW;
}
goto ClumpReports_ret_TSTREAM_FAIL;
}
} while (strequal_k_unsafe(header_start, "##"));
if (*header_start == '#') {
++header_start;
}
// [0] = ID
// [1] = A1
// [2] = TEST
// [3] = P
uint32_t col_skips[4];
uint32_t col_types[4];
uint32_t relevant_col_ct;
uint32_t found_type_bitset;
reterr = SearchHeaderLine(header_start, col_search_order, "--clump", 4, &relevant_col_ct, &found_type_bitset, col_skips, col_types);
if (unlikely(reterr)) {
goto ClumpReports_ret_1;
}
if (unlikely((found_type_bitset & 0x9) != 0x9)) {
logerrputs("Error: --clump requires ID and P columns.\n");
goto ClumpReports_ret_INCONSISTENT_INPUT;
}
if (unlikely(force_a1 && (!(found_type_bitset & 0x2)))) {
snprintf(g_logbuf, kLogbufSize, "Error: --clump-force-a1 was specified, but there is no A1 column in %s.\n", fname_iter);
goto ClumpReports_ret_INCONSISTENT_INPUT_WW;
}
while (1) {
++line_idx;
const char* line_start = TextGet(&txs);
if (!line_start) {
if (likely(!TextStreamErrcode2(&txs, &reterr))) {
break;
}
goto ClumpReports_ret_TSTREAM_FAIL;
}
const char* token_ptrs[4];
uint32_t token_slens[4];
if (unlikely(!TokenLexK0(line_start, col_types, col_skips, relevant_col_ct, token_ptrs, token_slens))) {
goto ClumpReports_ret_MISSING_TOKENS;
}
if (found_type_bitset & 0x4) {
if (!InMultistr(test_name_flattened, token_ptrs[2], token_slens[2])) {
continue;
}
}
const char* pval_str = token_ptrs[3];
double ln_pval;
if (!input_log10) {
if (!ScantokLn(pval_str, &ln_pval)) {
uint32_t cur_slen;
ClumpReports_alphabetic_pval:
cur_slen = token_slens[3];
if (IsNanStr(pval_str, cur_slen)) {
continue;
}
if (likely(strequal_k(pval_str, "INF", cur_slen) ||
(input_log10 && strequal_k(pval_str, "inf", cur_slen)))) {
// PLINK 1.x underflow
ln_pval = kLnNormalMin;
} else {
goto ClumpReports_ret_INVALID_PVAL;
}
}
} else {
double neglog10_pval;
if (!ScantokDouble(pval_str, &neglog10_pval)) {
goto ClumpReports_alphabetic_pval;
}
ln_pval = neglog10_pval * (-kLn10);
if (unlikely(ln_pval > 0.0)) {
goto ClumpReports_ret_INVALID_PVAL;
}
}
const char* variant_id = token_ptrs[0];
const uint32_t variant_id_slen = token_slens[0];
const uint32_t variant_uidx = VariantIdDupflagHtableFind(token_ptrs[0], variant_ids, variant_id_htable, variant_id_slen, variant_id_htable_size, max_variant_id_slen);
if (variant_uidx & 0x80000000U) {
if (unlikely(variant_uidx != UINT32_MAX)) {
snprintf(g_logbuf, kLogbufSize, "Error: --clump variant ID '%s' appears multiple times in main dataset.\n", variant_ids[variant_uidx & 0x7fffffff]);
goto ClumpReports_ret_INCONSISTENT_INPUT_WW;
}
if (ln_pval <= ln_p1) {
if (unlikely(PtrWSubCk(tmp_alloc_base, sizeof(LlStr) + RoundUpPow2(variant_id_slen + 1, sizeof(intptr_t)), &tmp_alloc_end))) {
goto ClumpReports_ret_NOMEM;
}
LlStr* new_entry = R_CAST(LlStr*, tmp_alloc_end);
new_entry->next = missing_variant_ids;
memcpyx(new_entry->str, variant_id, variant_id_slen, '\0');
missing_variant_ids = new_entry;
++missing_variant_id_ct;
if (variant_id_slen > missing_variant_id_max_slen) {
missing_variant_id_max_slen = variant_id_slen;
}
}
continue;
}
uintptr_t allele_idx_offset_base = variant_uidx * 2;
if (allele_idx_offsets) {
allele_idx_offset_base = allele_idx_offsets[variant_uidx];
cur_allele_ct = allele_idx_offsets[variant_uidx + 1] - allele_idx_offset_base;
}
uint32_t aidx = 0;
if (cur_allele_ct > two_minus_force_a1) {
if (unlikely(!(found_type_bitset & 0x2))) {
snprintf(g_logbuf, kLogbufSize, "Error: Variant ID on line %" PRIuPTR " of %s is multiallelic, but there is no A1 column.\n", line_idx, fname_iter);
goto ClumpReports_ret_INCONSISTENT_INPUT_WW;
}
const char* const* cur_alleles = &(allele_storage[allele_idx_offset_base]);
const char* allele_code = token_ptrs[1];
const uint32_t allele_slen = token_slens[1];
for (; aidx != cur_allele_ct; ++aidx) {
if (strequal_unsafe(cur_alleles[aidx], allele_code, allele_slen)) {
break;
}
}
if (aidx == cur_allele_ct) {
if (ln_pval <= ln_p1) {
const uint32_t variant_allele_pair_slen = variant_id_slen + allele_slen + 1;
if (unlikely(PtrWSubCk(tmp_alloc_base, sizeof(LlStr) + RoundUpPow2(variant_allele_pair_slen + 1, sizeof(intptr_t)), &tmp_alloc_end))) {
goto ClumpReports_ret_NOMEM;
}
LlStr* new_entry = R_CAST(LlStr*, tmp_alloc_end);
new_entry->next = missing_variant_allele_pairs;
char* write_iter = memcpyax(new_entry->str, variant_id, variant_id_slen, '\t');
memcpyx(write_iter, allele_code, allele_slen, '\0');
missing_variant_allele_pairs = new_entry;
++missing_variant_allele_pair_ct;
if (variant_allele_pair_slen > missing_variant_allele_pair_max_slen) {
missing_variant_allele_pair_max_slen = variant_allele_pair_slen;
}
}
continue;
}
if (cur_allele_ct == 2) {
biallelic_forced_a1_alt = aidx;
aidx = 0;
}
}
const uintptr_t allele_idx = allele_idx_offset_base + aidx;
if (ln_pval > load_ln_pthresh) {
if (unlikely(ln_pval > 0.0)) {
snprintf(g_logbuf, kLogbufSize, "Error: p-value > 1 on line %" PRIuPTR " of %s.\n", line_idx, fname_iter);
goto ClumpReports_ret_MALFORMED_INPUT_WW;
}
if (nonsig_arr && ((!bin_bound_ct) || (ln_pval > ln_bin_boundaries[bin_bound_ct - 1]))) {
nonsig_arr[allele_idx] += 1;
// Still need to determine which index-variant this belongs to.
SetBit(allele_idx, observed_alleles);
SetBit(variant_uidx, observed_variants);
}
continue;
}
const uint32_t file_idx1_x2 = (file_idx1 << 1) + biallelic_forced_a1_alt;
// >= rather than >, to break ties in favor of file_idx1 == 1
if (best_ln_pvals[allele_idx] >= ln_pval) {
best_ln_pvals[allele_idx] = ln_pval;
if (best_fidx_x2s) {
best_fidx_x2s[allele_idx] = file_idx1_x2;
}
}
SetBit(allele_idx, observed_alleles);
SetBit(variant_uidx, observed_variants); // could defer this?
if (clump_entries) {
if (unlikely(PtrWSubCk(tmp_alloc_base, RoundUpPow2(sizeof(ClumpEntry), sizeof(intptr_t)), &tmp_alloc_end))) {
goto ClumpReports_ret_NOMEM;
}
uint32_t pval_bin_x2 = (ln_pval > ln_p2);
if (bin_bound_ct) {
pval_bin_x2 |= LowerBoundNonemptyD(ln_bin_boundaries, bin_bound_ct, ln_pval) << 1;
}
ClumpEntry* new_entry = R_CAST(ClumpEntry*, tmp_alloc_end);
new_entry->next = clump_entries[allele_idx];
new_entry->pval_bin_x2 = pval_bin_x2;
new_entry->file_idx1_x2 = file_idx1_x2;
clump_entries[allele_idx] = new_entry;
}
}
}
if (unlikely(CleanupTextStream2(fname_iter, &txs, &reterr))) {
goto ClumpReports_ret_1;
}
BigstackEndSet(tmp_alloc_end);
FillCumulativePopcountsW(observed_alleles, raw_allele_ctl, observed_alleles_cumulative_popcounts_w);
const uintptr_t observed_allele_ct = observed_alleles_cumulative_popcounts_w[raw_allele_ctl - 1] + PopcountWord(observed_alleles[raw_allele_ctl - 1]);
if ((raw_allele_ct % kBitsPerWord) == 0) {
observed_alleles_cumulative_popcounts_w[raw_allele_ctl] = observed_allele_ct;
}
const uint32_t output_zst = (flags / kfClumpZs) & 1;
// Now we have efficient (variant_uidx, aidx) -> oaidx lookup.
// Free some memory by compacting the information in best_ln_pvals, etc. to
// exclude unused (variant_uidx, aidx) slots.
BigstackReset(bigstack_mark2);
unsigned char** clump_entry_varints = nullptr;
{
if (best_fidx_x2s) {
const uint32_t* best_fidx_x2s_dying = best_fidx_x2s;
best_fidx_x2s = S_CAST(uint32_t*, bigstack_alloc_raw_rd(observed_allele_ct * sizeof(int32_t)));
uintptr_t allele_idx_base = 0;
uintptr_t cur_bits = observed_alleles[0];
for (uintptr_t oaidx = 0; oaidx != observed_allele_ct; ++oaidx) {
const uintptr_t allele_idx = BitIter1(observed_alleles, &allele_idx_base, &cur_bits);
best_fidx_x2s[oaidx] = best_fidx_x2s_dying[allele_idx];
}
}
if (clump_entries) {
ClumpEntry** clump_entries_dying = clump_entries;
clump_entries = S_CAST(ClumpEntry**, bigstack_alloc_raw_rd((observed_allele_ct + 1) * sizeof(intptr_t)));
uintptr_t allele_idx_base = 0;
uintptr_t cur_bits = observed_alleles[0];
for (uintptr_t oaidx = 0; oaidx != observed_allele_ct; ++oaidx) {
const uintptr_t allele_idx = BitIter1(observed_alleles, &allele_idx_base, &cur_bits);
clump_entries[oaidx] = clump_entries_dying[allele_idx];
}
if (nonsig_arr) {
const uintptr_t* nonsig_arr_dying = nonsig_arr;
nonsig_arr = S_CAST(uintptr_t*, bigstack_alloc_raw_rd(observed_allele_ct * sizeof(intptr_t)));
allele_idx_base = 0;
cur_bits = observed_alleles[0];
for (uintptr_t oaidx = 0; oaidx != observed_allele_ct; ++oaidx) {
const uintptr_t allele_idx = BitIter1(observed_alleles, &allele_idx_base, &cur_bits);
nonsig_arr[oaidx] = nonsig_arr_dying[allele_idx];
}
}
}
if (missing_variant_ids) {
// natural-sort, deduplicate, and write
bigstack_mark2 = g_bigstack_base;
const char** strptr_arr;
if (unlikely(bigstack_alloc_kcp(missing_variant_id_ct, &strptr_arr))) {
goto ClumpReports_ret_NOMEM;
}
for (uintptr_t ulii = 0; ulii != missing_variant_id_ct; ++ulii) {
strptr_arr[ulii] = missing_variant_ids->str;
missing_variant_ids = missing_variant_ids->next;
}
assert(missing_variant_ids == nullptr);
OutnameZstSet(".clumps.missing_id", output_zst, outname_end);
uintptr_t nwrite;
reterr = NsortDedupAndWrite(outname, missing_variant_id_ct, missing_variant_id_max_slen, output_zst, max_thread_ct, strptr_arr, &nwrite);
if (unlikely(reterr)) {
goto ClumpReports_ret_1;
}
logerrprintfww("Warning: %" PRIuPTR " top variant ID%s in --clump file%s missing from main dataset. ID%s written to %s .\n", nwrite, (nwrite == 1)? "" : "s", (file_ct == 1)? "" : "s", (nwrite == 1)? "" : "s", outname);
BigstackReset(bigstack_mark2);
}
if (missing_variant_allele_pairs) {
bigstack_mark2 = g_bigstack_base;
const char** strptr_arr;
if (unlikely(bigstack_alloc_kcp(missing_variant_allele_pair_ct, &strptr_arr))) {
goto ClumpReports_ret_NOMEM;
}
for (uintptr_t ulii = 0; ulii != missing_variant_allele_pair_ct; ++ulii) {
strptr_arr[ulii] = missing_variant_allele_pairs->str;
missing_variant_allele_pairs = missing_variant_allele_pairs->next;
}
assert(missing_variant_allele_pairs == nullptr);
OutnameZstSet(".clumps.missing_allele", output_zst, outname_end);
uintptr_t nwrite;
reterr = NsortDedupAndWrite(outname, missing_variant_allele_pair_ct, missing_variant_allele_pair_max_slen, output_zst, max_thread_ct, strptr_arr, &nwrite);
if (unlikely(reterr)) {
goto ClumpReports_ret_1;
}
logerrprintfww("Warning: %" PRIuPTR " top (variant ID, A1 allele) pair%s in --clump file%s missing from main dataset due to allele rather than variant ID. (Variant ID, A1 allele) pair%s written to %s .\n", nwrite, (nwrite == 1)? "" : "s", (file_ct == 1)? "" : "s", (nwrite == 1)? "" : "s", outname);
BigstackReset(bigstack_mark2);
}
if (clump_entries) {
// Now save pval_bin_x2 values, as well as fidxs if necessary, as
// varints.
unsigned char* varint_write_iter = g_bigstack_base;
for (uintptr_t oaidx = 0; oaidx != observed_allele_ct; ++oaidx) {
ClumpEntry* ll_iter = clump_entries[oaidx];
// assign to clump_entries instead of clump_entry_varints, so we
// don't break strict-aliasing rule
clump_entries[oaidx] = R_CAST(ClumpEntry*, varint_write_iter);
while (ll_iter) {
varint_write_iter = Vint32Append(ll_iter->pval_bin_x2, varint_write_iter);
if (save_all_fidxs) {
varint_write_iter = Vint32Append(ll_iter->file_idx1_x2, varint_write_iter);
}
if (unlikely(varint_write_iter > tmp_alloc_end)) {
goto ClumpReports_ret_NOMEM;
}
ll_iter = ll_iter->next;
}
}
clump_entry_varints = R_CAST(unsigned char**, clump_entries);
clump_entry_varints[observed_allele_ct] = varint_write_iter;
if (unlikely(BigstackBaseSetChecked(varint_write_iter))) {
goto ClumpReports_ret_NOMEM;
}
// defensive
clump_entries = nullptr;
}
}
// We're done processing all the linked lists allocated next to
// g_bigstack_end.
BigstackEndReset(bigstack_end_mark2);
// Create sorted list of index-variant candidates, then free best_ln_pvals.
uintptr_t* icandidate_vbitvec_fill;
uintptr_t* icandidate_abitvec_fill;
ClumpPval* index_candidates;
if (unlikely(bigstack_calloc_w(raw_variant_ctl, &icandidate_vbitvec_fill) ||
bigstack_calloc_w(raw_allele_ctl, &icandidate_abitvec_fill) ||
BIGSTACK_ALLOC_X(ClumpPval, observed_allele_ct, &index_candidates))) {
goto ClumpReports_ret_NOMEM;
}
uint32_t index_candidate_ct;
{
uintptr_t index_candidate_ct_w = 0;
for (uint32_t variant_uidx = 0; ; ++variant_uidx) {
variant_uidx = AdvBoundedTo1Bit(observed_variants, variant_uidx, raw_variant_ct);
if (variant_uidx == raw_variant_ct) {
break;
}
uintptr_t allele_idx_offset_base = variant_uidx * 2;
if (allele_idx_offsets) {
allele_idx_offset_base = allele_idx_offsets[variant_uidx];
cur_allele_ct = allele_idx_offsets[variant_uidx + 1] - allele_idx_offset_base;
}
const uintptr_t allele_idx_stop = allele_idx_offset_base + cur_allele_ct;
for (uintptr_t allele_idx = allele_idx_offset_base; allele_idx != allele_idx_stop; ++allele_idx) {
if (!IsSet(observed_alleles, allele_idx)) {
continue;
}
const double cur_ln_pval = best_ln_pvals[allele_idx];
if (cur_ln_pval <= ln_p1) {
index_candidates[index_candidate_ct_w].ln_pval = cur_ln_pval;
index_candidates[index_candidate_ct_w].allele_idx = allele_idx;
++index_candidate_ct_w;
SetBit(variant_uidx, icandidate_vbitvec_fill);
SetBit(allele_idx, icandidate_abitvec_fill);
}
}
}
if (!index_candidate_ct_w) {
logerrputs("Warning: No significant --clump results. Skipping.\n");
goto ClumpReports_ret_1;
}
#ifdef __LP64__
if (unlikely(index_candidate_ct_w >= 0xffffffffU)) {
logerrputs("Error: --clump does not support >= 2^32 - 1 index-variant candidates.\n");
goto ClumpReports_ret_NOT_YET_SUPPORTED;
}
#endif
index_candidate_ct = index_candidate_ct_w;
BigstackShrinkTop(index_candidates, sizeof(ClumpPval) * index_candidate_ct);
// About to make a bunch of cacheline-aligned allocations at end of
// bigstack.
// (This is awkward, should be a single function call...)
BigstackEndReset(bigstack_end_mark);
bigstack_end_clalign();
STD_SORT_PAR_UNSEQ(index_candidate_ct, ClumpPvalCmp, index_candidates);
}
const uintptr_t* icandidate_vbitvec = icandidate_vbitvec_fill;
const uintptr_t* icandidate_abitvec = icandidate_abitvec_fill;
// Main algorithm:
// - Identify independent "islands", induced by the --clump-kb setting.
// - Process one island (or island-group, if the island is inefficiently
// small) at a time.
// - Usually, all we need to determine is: for each remaining (variant
// ID, aidx) pair, what clump was it assigned to? (clump-index is
// defined by index_candidates[] position. Some clump-indexes are
// skipped.)
// - If --clump-allow-overlap is in effect, this doesn't work since
// non-index variants can belong to multiple clumps. We spill a
// temporary file to disk tracking, for each clump, which (variant ID,
// aidx) pairs are a member. This file could be very big, so we use
// varints and delta encoding to reduce waste.
// (In principle, seekable zstd should be useful here as well, but I
// won't investigate that unless/until I decide to use seekable zstd in
// other applications.)
// - After we're done processing all islands, we have the information
// needed to write the final p-value sorted report.
// Create an icandidate_idx -> index_candidates lookup table, to support
// island-based processing.
// "_destructive" because the main loop modifies this array in-place.
uint32_t* icandidate_idx_to_rank0_destructive;
{
uint32_t* icandidate_popcounts;
if (unlikely(bigstack_alloc_u32(index_candidate_ct, &icandidate_idx_to_rank0_destructive) ||
bigstack_alloc_u32(raw_allele_ctl, &icandidate_popcounts))) {
goto ClumpReports_ret_NOMEM;
}
FillCumulativePopcounts(icandidate_abitvec, raw_allele_ctl, icandidate_popcounts);
for (uint32_t rank0 = 0; rank0 != index_candidate_ct; ++rank0) {
const uintptr_t allele_idx = index_candidates[rank0].allele_idx;
const uint32_t icandidate_idx = RawToSubsettedPos(icandidate_abitvec, icandidate_popcounts, allele_idx);
icandidate_idx_to_rank0_destructive[icandidate_idx] = rank0;
}
BigstackReset(icandidate_popcounts);
}
uint32_t* oallele_idx_to_clump_idx = nullptr;
uint64_t* clump_idx_to_overlap_fpos_and_len = nullptr;
if (!allow_overlap) {
if (unlikely(bigstack_alloc_u32(observed_allele_ct, &oallele_idx_to_clump_idx))) {
goto ClumpReports_ret_NOMEM;
}
SetAllU32Arr(observed_allele_ct, oallele_idx_to_clump_idx);
} else {
snprintf(outname_end, kMaxOutfnameExtBlen, ".clumps.tmp");
if (unlikely(fopen_checked(outname, FOPEN_WB, &clump_overlap_tmp))) {
goto ClumpReports_ret_OPEN_FAIL;
}
// make starting fpos > 0, so we know fpos == 0 marks no clump
if (unlikely(putc_unlocked(0, clump_overlap_tmp) == EOF)) {
goto ClumpReports_ret_WRITE_FAIL;
}
if (unlikely(bigstack_calloc_u64(index_candidate_ct * (2 * k1LU), &clump_idx_to_overlap_fpos_and_len))) {
goto ClumpReports_ret_NOMEM;
}
}
// We switch between two parallelization strategies, depending on
// available memory.
// 1. In the best case, we can load the entire set of (variant ID, aidx)
// pairs on at least one island into memory, and encode them in an
// LD-computation-friendly form. In that case, we parallelize that
// operation first, and then iterate through the on-island index
// candidates.
// 2. Otherwise, the main thread reads and unpacks the index (variant,
// aidx), then reads an affordable number of other variants at a time
// for the worker threads to unpack / r^2-compute with.
//
// We choose the worker thread count to ensure at least strategy #2 works.
const uintptr_t observed_allele_ctl = BitCtToWordCt(observed_allele_ct);
const uint32_t raw_sample_ctl = BitCtToWordCt(raw_sample_ct);
const uint32_t founder_ctv = BitCtToVecCt(founder_ct);
const uint32_t founder_ctv2 = NypCtToVecCt(founder_ct);
const uint32_t founder_ctaw = founder_ctv * kWordsPerVec;
const uint32_t founder_ctl = BitCtToWordCt(founder_ct);
const uint32_t founder_male_ct = PopcountWordsIntersect(founder_info, sex_male, raw_sample_ctl);
const uint32_t founder_nonmale_ct = founder_ct - founder_male_ct;
uint32_t founder_nosex_ct = 0;
if (nosex_ct) {
founder_nosex_ct = founder_ct - PopcountWordsIntersect(founder_info, sex_nm, raw_sample_ctl);
}
uintptr_t* candidate_oabitvec;
uint32_t* founder_info_cumulative_popcounts;
if (unlikely(bigstack_alloc_w(observed_allele_ctl, &candidate_oabitvec) ||
bigstack_alloc_u32(raw_sample_ctl, &founder_info_cumulative_popcounts))) {
goto ClumpReports_ret_NOMEM;
}
SetAllBits(observed_allele_ct, candidate_oabitvec);
uintptr_t* icandidate_oabitvec = candidate_oabitvec;
if (allow_overlap) {
if (unlikely(bigstack_alloc_w(observed_allele_ctl, &icandidate_oabitvec))) {
goto ClumpReports_ret_NOMEM;
}
SetAllBits(observed_allele_ct, icandidate_oabitvec);
}
FillCumulativePopcounts(founder_info, raw_sample_ctl, founder_info_cumulative_popcounts);
uint32_t x_code;
if (XymtExists(cip, kChrOffsetX, &x_code)) {
const uint32_t chr_fo_idx = cip->chr_idx_to_foidx[x_code];
const uint32_t x_start = cip->chr_fo_vidx_start[chr_fo_idx];
const uint32_t x_end = cip->chr_fo_vidx_start[chr_fo_idx + 1];
if (AllBitsAreZero(icandidate_vbitvec, x_start, x_end)) {
x_code = UINT32_MAXM1;
}
}
// If founder_nonmale_ct == 0 or founder_male_ct == 0, main loop sets
// is_x to 0 and is_haploid appropriately.
const uint32_t x_exists = (x_code < UINT32_MAXM1) && founder_nonmale_ct && founder_male_ct;
uint32_t y_code;
if (XymtExists(cip, kChrOffsetY, &y_code)) {
const uint32_t chr_fo_idx = cip->chr_idx_to_foidx[y_code];
const uint32_t y_start = cip->chr_fo_vidx_start[chr_fo_idx];
const uint32_t y_end = cip->chr_fo_vidx_start[chr_fo_idx + 1];
if (AllBitsAreZero(icandidate_vbitvec, y_start, y_end)) {
y_code = UINT32_MAXM1;
} else if (unlikely(founder_male_ct + founder_nosex_ct == 0)) {
// Rather not worry about this case.
logerrputs("Error: --clump: chrY index variant(s) are present, but all founders in the main\ndataset are females.\n");
goto ClumpReports_ret_INCONSISTENT_INPUT;
}
}
// If founder_nonfemale_ct == founder_ct, we can just treat as is_y=0,
// is_haploid=1.
const uint32_t y_exists = (y_code < UINT32_MAXM1) && (founder_male_ct + founder_nosex_ct != founder_ct);
const uintptr_t bitvec_byte_ct = BitCtToVecCt(founder_ct) * kBytesPerVec;
uintptr_t* founder_male_collapsed = nullptr;
Dosage* male_dosage_invmask = nullptr;
uintptr_t* founder_nonmale_collapsed = nullptr;
Dosage* nonmale_dosage_invmask = nullptr;
if (x_exists) {
const uint32_t founder_ctad = RoundUpPow2(founder_ct, kDosagePerVec);
if (unlikely(bigstack_alloc_w(founder_ctl, &founder_male_collapsed) ||
bigstack_alloc_dosage(founder_ctad, &male_dosage_invmask) ||
bigstack_alloc_w(founder_ctaw, &founder_nonmale_collapsed) ||
bigstack_alloc_dosage(founder_ctad, &nonmale_dosage_invmask))) {
goto ClumpReports_ret_NOMEM;
}
CopyBitarrSubset(sex_male, founder_info, founder_ct, founder_male_collapsed);
BitvecInvertCopy(founder_male_collapsed, founder_ctl, founder_nonmale_collapsed);
ZeroTrailingBits(founder_ct, founder_nonmale_collapsed);
// potentially needed for correct founder_female_collapsed_interleaved
// initialization
ZeroTrailingWords(founder_ctl, founder_nonmale_collapsed);
Expand1bitTo16(founder_male_collapsed, founder_ctad, 0xffff, male_dosage_invmask);
Expand1bitTo16(founder_nonmale_collapsed, founder_ctad, 0xffff, nonmale_dosage_invmask);
}
uintptr_t* founder_female_collapsed = nullptr;
uintptr_t* founder_female_collapsed_interleaved = nullptr;
if (y_exists) {
if (founder_nonmale_collapsed && (!nosex_ct)) {
founder_female_collapsed = founder_nonmale_collapsed;
} else {
uintptr_t* founder_female_tmp;
if (unlikely(bigstack_alloc_w(founder_ctaw, &founder_female_collapsed) ||
bigstack_alloc_w(raw_sample_ctl, &founder_female_tmp))) {
goto ClumpReports_ret_NOMEM;
}
BitvecInvmaskCopy(sex_nm, sex_male, raw_sample_ctl, founder_female_tmp);
CopyBitarrSubset(founder_female_tmp, founder_info, founder_ct, founder_female_collapsed);
ZeroTrailingWords(founder_ctl, founder_female_collapsed);
BigstackReset(founder_female_tmp);
}
if (unlikely(bigstack_alloc_w(founder_ctaw, &founder_female_collapsed_interleaved))) {
goto ClumpReports_ret_NOMEM;
}
FillInterleavedMaskVec(founder_female_collapsed, founder_ctv, founder_female_collapsed_interleaved);
}
const uint32_t check_dosage = (pgfip->gflags / kfPgenGlobalDosagePresent) & 1;
uintptr_t dosagevec_byte_ct = 0;
if (check_dosage) {
dosagevec_byte_ct = DivUp(founder_ct, kDosagePerVec) * kBytesPerVec;
}
uint32_t calc_thread_ct = MAXV(1, max_thread_ct - 1);
// no big deal if these are slightly overallocated
if (unlikely(BIGSTACK_ALLOC_X(PgenReader*, calc_thread_ct, &ctx.pgr_ptrs) ||
bigstack_alloc_w(calc_thread_ct + 2, &(ctx.a[0].oaidx_starts)) ||
bigstack_alloc_w(calc_thread_ct + 2, &(ctx.a[1].oaidx_starts)) ||
bigstack_alloc_wp(calc_thread_ct + 1, &(ctx.ld_idx_found)))) {
goto ClumpReports_ret_NOMEM;
}
ctx.raregeno_bufs = nullptr;
ctx.difflist_sample_id_bufs = nullptr;
ctx.chrx_workspaces = nullptr;
const uint32_t phased_r2 = !(flags & kfClumpUnphased);
if (!phased_r2) {
if (unlikely(bigstack_alloc_wp(calc_thread_ct, &ctx.raregeno_bufs) ||
bigstack_alloc_u32p(calc_thread_ct, &ctx.difflist_sample_id_bufs))) {
goto ClumpReports_ret_NOMEM;
}
}
if (x_exists) {
if (unlikely(bigstack_alloc_wp(calc_thread_ct + 1, &ctx.chrx_workspaces))) {
goto ClumpReports_ret_NOMEM;
}
}
// Now determine real calc_thread_ct.
// This function's logic is sufficiently different from the usual
// PgfiMultiread use case that we fork PgenMtLoadInit()'s computation here
// instead of modifying that function.
const uint32_t all_haploid = IsSet(cip->haploid_mask, 0);
const uint32_t check_phase = phased_r2 && (!all_haploid) && (pgfip->gflags & (kfPgenGlobalHardcallPhasePresent | kfPgenGlobalDosagePhasePresent));
PgenGlobalFlags effective_gflags = pgfip->gflags & (kfPgenGlobalHardcallPhasePresent | kfPgenGlobalDosagePresent | kfPgenGlobalDosagePhasePresent);
if (!check_phase) {
effective_gflags &= kfPgenGlobalDosagePresent;
}
if (unlikely(BigstackAllocPgv(founder_ct, 0, effective_gflags, &ctx.pgv_base))) {
goto ClumpReports_ret_NOMEM;
}
const uintptr_t pgv_byte_stride = g_bigstack_base - R_CAST(unsigned char*, ctx.pgv_base.genovec);
uintptr_t unpacked_byte_stride;
if (check_dosage) {
const uintptr_t dosage_trail_byte_ct = LdDosageTrailAlignedByteCt(S_CAST(R2PhaseType, phased_r2), x_exists);
unpacked_byte_stride = dosagevec_byte_ct * (1 + phased_r2 + check_phase) + bitvec_byte_ct + dosage_trail_byte_ct;
} else {
unpacked_byte_stride = RoundUpPow2(16, kBytesPerVec) + bitvec_byte_ct * (3 + 2 * check_phase);
#ifndef USE_AVX2
const uint32_t max_simple_difflist_len = founder_ct / 64;
const uintptr_t sparse_req = RoundUpPow2((6 + max_simple_difflist_len) * sizeof(int32_t), kBytesPerVec) + NypCtToVecCt(max_simple_difflist_len) * kBytesPerVec + RoundUpPow2(founder_ctl * (kBytesPerWord + sizeof(int32_t)), kBytesPerVec);
if (sparse_req > unpacked_byte_stride) {
unpacked_byte_stride = sparse_req;
}
#endif
const uintptr_t nondosage_trail_byte_ct = LdNondosageTrailAlignedByteCt(S_CAST(R2PhaseType, phased_r2), x_exists);
unpacked_byte_stride += nondosage_trail_byte_ct;
}
const uintptr_t unpacked_byte_stride_cachealign = RoundUpPow2(unpacked_byte_stride, kCacheline);
const uintptr_t pgr_struct_alloc = RoundUpPow2(sizeof(PgenReader), kCacheline);
// Haven't counted PgenReader instance, two unpacked_variants slots, or
// ld_idx_found slots required by main thread yet.
// FillGaussianDArr() uses a minimum per-thread job size of ~4 MiB of
// memory writes. I'm guessing that is also a reasonable unpacked_variants
// shard size to aim for.
const uint32_t min_pgv_per_thread = 1 + 4194303 / pgv_byte_stride;
uintptr_t sparse_alloc = 0;
uint32_t raregeno_word_ct = 0;
uintptr_t chrx_alloc = 0;
if (x_exists) {
const uint32_t larger_half = MAXV(founder_male_ct, founder_nonmale_ct);
chrx_alloc = RoundUpPow2(BitCtToVecCt(larger_half) + larger_half * sizeof(Dosage), kCacheline);
}
{
const uintptr_t min_ld_idx_found_alloc = WordCtToCachelineCt(min_pgv_per_thread + 1) * kCacheline;
const uintptr_t min_u32_alloc = Int32CtToCachelineCt(min_pgv_per_thread) * kCacheline;
const uintptr_t phasepresent_alloc = check_phase * min_u32_alloc;
const uintptr_t dosage_ct_alloc = check_dosage * min_u32_alloc;
const uintptr_t dphase_ct_alloc = dosage_ct_alloc * check_phase;
if (!phased_r2) {
const uint32_t max_returned_difflist_len = 2 * (raw_sample_ct / kPglMaxDifflistLenDivisor);
const uintptr_t raregeno_vec_ct = DivUp(max_returned_difflist_len, kNypsPerVec);
const uintptr_t difflist_sample_id_vec_ct = DivUp(max_returned_difflist_len, kInt32PerVec);
sparse_alloc = RoundUpPow2((raregeno_vec_ct + difflist_sample_id_vec_ct) * kBytesPerVec, kCacheline);
raregeno_word_ct = raregeno_vec_ct * kWordsPerVec;
}
uintptr_t bytes_avail = bigstack_left();
const uintptr_t more_base_alloc = pgr_struct_alloc + pgr_alloc_cacheline_ct * kCacheline + 2 * unpacked_byte_stride_cachealign + min_ld_idx_found_alloc + phasepresent_alloc + dosage_ct_alloc + dphase_ct_alloc + chrx_alloc;
if (unlikely(bytes_avail < more_base_alloc)) {
goto ClumpReports_ret_NOMEM;
}
bytes_avail -= more_base_alloc;
const uintptr_t per_thread_target_alloc = 2 * min_pgv_per_thread * pgv_byte_stride + unpacked_byte_stride_cachealign + pgr_struct_alloc + pgr_alloc_cacheline_ct * kCacheline + min_ld_idx_found_alloc + sparse_alloc + chrx_alloc;
if (bytes_avail < per_thread_target_alloc * calc_thread_ct) {
calc_thread_ct = bytes_avail / per_thread_target_alloc;
if (unlikely(!calc_thread_ct)) {
goto ClumpReports_ret_NOMEM;
}
}
}
// Ready to initialize the rest of ctx.
if (unlikely(SetThreadCt(calc_thread_ct, &tg))) {
goto ClumpReports_ret_NOMEM;
}
// Effective end of pgv-buffer allocation, in highmem case.
g_bigstack_base += calc_thread_ct * pgv_byte_stride;
// Make this non-null, because PgrInit() branches on that. However, exact
// value doesn't matter here.
pgfip->block_base = g_bigstack_base;
for (uint32_t tidx = 0; tidx <= calc_thread_ct; ++tidx) {
ctx.pgr_ptrs[tidx] = S_CAST(PgenReader*, bigstack_end_alloc_raw(pgr_struct_alloc));
unsigned char* pgr_alloc = S_CAST(unsigned char*, bigstack_end_alloc_raw(pgr_alloc_cacheline_ct * kCacheline));
// shouldn't be possible for this to fail
PgrInit(nullptr, 0, pgfip, ctx.pgr_ptrs[tidx], pgr_alloc);
if (!phased_r2) {
uintptr_t* raregeno_buf = S_CAST(uintptr_t*, bigstack_end_alloc_raw(sparse_alloc));
ctx.raregeno_bufs[tidx] = raregeno_buf;
ctx.difflist_sample_id_bufs[tidx] = R_CAST(uint32_t*, &(raregeno_buf[raregeno_word_ct]));
}
if (x_exists) {
ctx.chrx_workspaces[tidx] = S_CAST(uintptr_t*, bigstack_end_alloc_raw(chrx_alloc));
}
}
unsigned char* multiread_base[2];
multiread_base[0] = g_bigstack_base;
multiread_base[1] = nullptr;
// Decide on a maximum value upfront, rather than reconfiguring this for
// each island-group.
uintptr_t multiread_byte_target;
{
// Allow up to 1/8 of remaining workspace, going lower if there's always
// enough memory for a full Vblock (65536 variants).
const uint32_t observed_variant_ct = PopcountWords(observed_variants, raw_variant_ctl);
const uint64_t vblock_based_cacheline_ct_limit = PgfiMultireadGetCachelineReq(observed_variants, pgfip, observed_variant_ct, kPglVblockSize);
const uint64_t proportional_cacheline_ct_limit = bigstack_left() / (8 * kCacheline);
// Stick to lowmem mode if this rule can't even guarantee 1/500th of a
// Vblock.
if (vblock_based_cacheline_ct_limit <= 500 * proportional_cacheline_ct_limit) {
multiread_byte_target = kCacheline * MINV(vblock_based_cacheline_ct_limit, proportional_cacheline_ct_limit);
} else {
// (this value should guarantee lowmem mode is always selected)
multiread_byte_target = (~k0LU) >> 1;
}
}
ctx.observed_variants = observed_variants;
ctx.allele_idx_offsets = allele_idx_offsets;
ctx.variant_last_alidxs = variant_last_alidxs;
ctx.variant_last_alidxs_cumulative_popcounts = variant_last_alidxs_cumulative_popcounts;
ctx.observed_alleles = observed_alleles;
ctx.observed_alleles_cumulative_popcounts_w = observed_alleles_cumulative_popcounts_w;
ctx.founder_info = founder_info;
ctx.founder_info_cumulative_popcounts = founder_info_cumulative_popcounts;
ctx.founder_male_collapsed = founder_male_collapsed;
ctx.male_dosage_invmask = male_dosage_invmask;
ctx.founder_nonmale_collapsed = founder_nonmale_collapsed;
ctx.nonmale_dosage_invmask = nonmale_dosage_invmask;
ctx.founder_female_collapsed = founder_female_collapsed;
ctx.founder_female_collapsed_interleaved = founder_female_collapsed_interleaved;
ctx.founder_ct = founder_ct;
ctx.founder_male_ct = founder_male_ct;
ctx.pgv_byte_stride = pgv_byte_stride;
ctx.bitvec_byte_ct = bitvec_byte_ct;
ctx.dosagevec_byte_ct = dosagevec_byte_ct;
ctx.r2_thresh = clump_ip->r2;
ctx.allow_overlap = allow_overlap;
ctx.candidate_oabitvec = candidate_oabitvec;
ctx.err_info = (~0LLU) << 32;
unsigned char* lowmem_unpacked_variants = &(g_bigstack_end[(2 + calc_thread_ct) * (-S_CAST(intptr_t, unpacked_byte_stride_cachealign))]);
uint32_t* phasepresent_cts = nullptr;
uint32_t* dosage_cts = nullptr;
uint32_t* dphase_cts = nullptr;
uintptr_t* lowmem_ld_idx_found_base;
uintptr_t max_lowmem_nonindex_ct;
{
// In lowmem mode, split remaining memory between
// ctx.lowmem_pgv_base, phasepresent_cts, dosage_cts, dphase_cts, and
// ld_idx_found.
unsigned char* alloc_iter = R_CAST(unsigned char*, ctx.pgv_base.genovec);
const uintptr_t bytes_avail = lowmem_unpacked_variants - alloc_iter;
const uintptr_t u32_field_ct = check_phase + check_dosage + check_dosage * check_phase;
const uintptr_t per_variant_cost = pgv_byte_stride + sizeof(intptr_t) + sizeof(int32_t) * u32_field_ct;
max_lowmem_nonindex_ct = bytes_avail / per_variant_cost;
while (max_lowmem_nonindex_ct * pgv_byte_stride + RoundUpPow2(max_lowmem_nonindex_ct * sizeof(intptr_t), kCacheline) + u32_field_ct * RoundUpPow2(max_lowmem_nonindex_ct * sizeof(int32_t), kCacheline) > bytes_avail) {
// pgv_byte_stride is a positive multiple of kCacheline, and we lose
// less than 4 cachelines to adverse rounding, so this will exit
// quickly enough.
--max_lowmem_nonindex_ct;
}
const uintptr_t pgv_alloc = max_lowmem_nonindex_ct * pgv_byte_stride;
alloc_iter = &(alloc_iter[pgv_alloc]);
const uintptr_t u32_alloc = RoundUpPow2(max_lowmem_nonindex_ct * sizeof(int32_t), kCacheline);
if (check_phase) {
phasepresent_cts = R_CAST(uint32_t*, alloc_iter);
alloc_iter = &(alloc_iter[u32_alloc]);
}
if (check_dosage) {
dosage_cts = R_CAST(uint32_t*, alloc_iter);
alloc_iter = &(alloc_iter[u32_alloc]);
if (check_phase) {
dphase_cts = R_CAST(uint32_t*, alloc_iter);
alloc_iter = &(alloc_iter[u32_alloc]);
}
}
lowmem_ld_idx_found_base = R_CAST(uintptr_t*, alloc_iter);
}
ctx.phasepresent_cts = phasepresent_cts;
ctx.dosage_cts = dosage_cts;
ctx.dphase_cts = dphase_cts;
SetThreadFuncAndData(ClumpThread, &ctx, &tg);
// Main loop:
// 1. Identify boundaries of next island. (An island is a set of variants
// that is distant enough from the rest of the variants that it can be
// processed independently.)
// 2. Determine highest memory mode that still fits.
// 3. Holding the memory mode constant, check if additional small islands
// can be appended to the group.
// 4. Process the island-group.
PgrSampleSubsetIndex pssi;
PgrSetSampleSubsetIndex(founder_info_cumulative_popcounts, simple_pgrp, &pssi);
uintptr_t max_overlap_clump_size = 0; // does not count self
uint32_t clump_ct = 0;
const uintptr_t bytes_avail = bigstack_left();
const uint32_t bp_radius = clump_ip->bp_radius;
uint32_t parity = 0;
uint32_t next_vidx_end = 0;
uint32_t next_chr_fo_idx = 0;
uintptr_t next_allele_idx_first;
uintptr_t next_allele_idx_last;
uintptr_t next_oaidx_start;
uintptr_t next_oaidx_end;
uint32_t next_vidx_start = GetNextIslandIdxs(cip, variant_bps, allele_idx_offsets, icandidate_vbitvec, observed_variants, observed_alleles, observed_alleles_cumulative_popcounts_w, raw_variant_ct, bp_radius, &next_oaidx_start, &next_oaidx_end, &next_vidx_end, &next_chr_fo_idx, &next_allele_idx_first, &next_allele_idx_last);
uint32_t chr_fo_idx = UINT32_MAX;
uint32_t is_x = 0;
uint32_t is_y = 0;
uint32_t is_haploid = 0;
for (uint32_t icandidate_idx_start = 0; icandidate_idx_start < index_candidate_ct; ) {
uint32_t vidx_start = next_vidx_start;
uint32_t vidx_end = next_vidx_end;
if (chr_fo_idx != next_chr_fo_idx) {
chr_fo_idx = next_chr_fo_idx;
const uint32_t chr_idx = cip->chr_file_order[chr_fo_idx];
is_haploid = IsSet(cip->haploid_mask, chr_idx);
is_x = (chr_idx == x_code);
is_y = (chr_idx == y_code);
if (is_x) {
if (!founder_nonmale_ct) {
is_x = 0;
} else if (!founder_male_ct) {
is_x = 0;
is_haploid = 0;
}
}
}
const uintptr_t allele_idx_first = next_allele_idx_first;
uintptr_t allele_idx_last = next_allele_idx_last;
uintptr_t oaidx_start = next_oaidx_start;
uintptr_t oaidx_end = next_oaidx_end;
uintptr_t candidate_ct = oaidx_end - oaidx_start;
uint32_t relevant_phase_exists = 0;
uint32_t load_dosage = 0;
ScanPhaseDosage(observed_variants, pgfip, vidx_start, vidx_end, check_phase && ((!is_haploid) || is_x), check_dosage, &relevant_phase_exists, &load_dosage);
R2PhaseType phase_type = GetR2PhaseType(phased_r2, relevant_phase_exists);
ctx.is_x = is_x;
ctx.is_y = is_y;
ctx.igroup_oaidx_start = oaidx_start;
ctx.allele_widx_start = allele_idx_first / kBitsPerWord;
uint64_t unpacked_variant_byte_stride = UnpackedByteStride(&ctx, phase_type, x_exists, load_dosage);
next_vidx_end = vidx_end;
next_chr_fo_idx = chr_fo_idx;
next_vidx_start = GetNextIslandIdxs(cip, variant_bps, allele_idx_offsets, icandidate_vbitvec, observed_variants, observed_alleles, observed_alleles_cumulative_popcounts_w, raw_variant_ct, bp_radius, &next_oaidx_start, &next_oaidx_end, &next_vidx_end, &next_chr_fo_idx, &next_allele_idx_first, &next_allele_idx_last);
// Highmem requirement:
// candidate_ct * unpacked_variant_byte_stride for unpacked variants
// max(multiread_byte_target for PgfiMultiread,
// (candidate_ct + calc_thread_ct) * sizeof(intptr_t) for
// ld_idx_found)
const uintptr_t high_result_byte_req = RoundUpPow2((candidate_ct + calc_thread_ct) * sizeof(intptr_t), 2 * kCacheline);
uintptr_t cur_high_multiread_byte_target = MAXV(high_result_byte_req / 2, multiread_byte_target);
uint32_t icandidate_ct;
if (bytes_avail >= candidate_ct * unpacked_variant_byte_stride + 2 * cur_high_multiread_byte_target) {
// highmem loop
// Don't continue trying to extend if we've reached the end of the
// chromosome, or the current island-group already appears to be large
// enough for good worker-thread utilization.
while ((next_chr_fo_idx == chr_fo_idx) && (candidate_ct * unpacked_variant_byte_stride < (4194304 * k1LU) * calc_thread_ct)) {
uint32_t ext_relevant_phase_exists = relevant_phase_exists;
uint32_t ext_load_dosage = load_dosage;
ScanPhaseDosage(observed_variants, pgfip, next_vidx_start, next_vidx_end, check_phase && ((!is_haploid) || is_x), check_dosage, &ext_relevant_phase_exists, &ext_load_dosage);
const R2PhaseType ext_phase_type = GetR2PhaseType(phased_r2, ext_relevant_phase_exists);
const uintptr_t ext_candidate_ct = candidate_ct + next_oaidx_end - next_oaidx_start;
const uint64_t ext_unpacked_variant_byte_stride = UnpackedByteStride(&ctx, ext_phase_type, x_exists, ext_load_dosage);
const uintptr_t ext_high_multiread_byte_target = MAXV(RoundUpPow2((ext_candidate_ct + calc_thread_ct) * sizeof(intptr_t), 2 * kCacheline) / 2, multiread_byte_target);
if (bytes_avail < ext_candidate_ct * S_CAST(uint64_t, ext_unpacked_variant_byte_stride) + 2 * ext_high_multiread_byte_target) {
// Insufficient memory to extend.
break;
}
vidx_end = next_vidx_end;
allele_idx_last = next_allele_idx_last;
candidate_ct = ext_candidate_ct;
unpacked_variant_byte_stride = ext_unpacked_variant_byte_stride;
cur_high_multiread_byte_target = ext_high_multiread_byte_target;
phase_type = ext_phase_type;
load_dosage = ext_load_dosage;
next_vidx_start = GetNextIslandIdxs(cip, variant_bps, allele_idx_offsets, icandidate_vbitvec, observed_variants, observed_alleles, observed_alleles_cumulative_popcounts_w, raw_variant_ct, bp_radius, nullptr, &next_oaidx_end, &next_vidx_end, &next_chr_fo_idx, &next_allele_idx_first, &next_allele_idx_last);
}
multiread_base[1] = &(g_bigstack_base[cur_high_multiread_byte_target]);
unsigned char* unpacked_variants = &(multiread_base[1][cur_high_multiread_byte_target]);
pgfip->block_base = multiread_base[parity];
icandidate_ct = PopcountBitRange(icandidate_abitvec, allele_idx_first, allele_idx_last + 1);
ctx.unpacked_variants = unpacked_variants;
ctx.unpacked_byte_stride = unpacked_variant_byte_stride;
ctx.phase_type = phase_type;
ctx.load_dosage = load_dosage;
ctx.allele_widx_end = 1 + (allele_idx_last / kBitsPerWord);
ctx.job_type = kClumpJobHighmemUnpack;
uint32_t multiread_vidx_start = vidx_start;
const uint64_t fpos_end = GetPgfiFpos(pgfip, vidx_end);
while (1) {
// Similar to MultireadNonempty(), but we don't (i) expect to start
// on a block boundary or (ii) expect to continue all the way to
// the end of the file.
const uint64_t fpos_start = GetPgfiLdbaseFpos(pgfip, multiread_vidx_start);
uint32_t multiread_vidx_end = vidx_end;
if (fpos_end - fpos_start > cur_high_multiread_byte_target) {
if (!pgfip->var_fpos) {
multiread_vidx_end = multiread_vidx_start + cur_high_multiread_byte_target / pgfip->const_vrec_width;
} else {
multiread_vidx_end = LastLeqU64(pgfip->var_fpos, multiread_vidx_start, raw_variant_ct, fpos_start + cur_high_multiread_byte_target);
}
multiread_vidx_end = 1 + FindLast1BitBefore(observed_variants, multiread_vidx_end);
}
const uint32_t load_variant_ct = PopcountBitRange(observed_variants, multiread_vidx_start, multiread_vidx_end);
reterr = PgfiMultiread(observed_variants, multiread_vidx_start, multiread_vidx_end, load_variant_ct, pgfip);
if (unlikely(reterr)) {
goto ClumpReports_ret_PGR_FAIL;
}
uintptr_t multiread_allele_idx_start;
uintptr_t multiread_allele_idx_end;
if (allele_idx_offsets) {
multiread_allele_idx_start = allele_idx_offsets[multiread_vidx_start];
multiread_allele_idx_end = allele_idx_offsets[multiread_vidx_end];
} else {
multiread_allele_idx_start = 2 * multiread_vidx_start;
multiread_allele_idx_end = 2 * multiread_vidx_end;
}
const uintptr_t multiread_oaidx_start = RawToSubsettedPosW(observed_alleles, observed_alleles_cumulative_popcounts_w, multiread_allele_idx_start);
const uintptr_t multiread_oaidx_end = RawToSubsettedPosW(observed_alleles, observed_alleles_cumulative_popcounts_w, multiread_allele_idx_end);
FillWStarts(calc_thread_ct, multiread_oaidx_start, multiread_oaidx_end - multiread_oaidx_start, ctx.a[parity].oaidx_starts);
ctx.a[parity].oaidx_starts[calc_thread_ct] = multiread_oaidx_end;
if (multiread_vidx_start != vidx_start) {
JoinThreads(&tg);
reterr = S_CAST(PglErr, ctx.err_info);
if (unlikely(reterr)) {
PgenErrPrintNV(reterr, ctx.err_info >> 32);
goto ClumpReports_ret_1;
}
}
PgrCopyBaseAndOffset(pgfip, calc_thread_ct, ctx.pgr_ptrs);
if (unlikely(SpawnThreads(&tg))) {
goto ClumpReports_ret_THREAD_CREATE_FAIL;
}
parity = 1 - parity;
if (multiread_vidx_end == vidx_end) {
break;
}
multiread_vidx_start = AdvTo1Bit(observed_variants, multiread_vidx_end);
pgfip->block_base = multiread_base[parity];
}
STD_SORT(icandidate_ct, u32cmp, &(icandidate_idx_to_rank0_destructive[icandidate_idx_start]));
JoinThreads(&tg);
reterr = S_CAST(PglErr, ctx.err_info);
if (unlikely(reterr)) {
PgenErrPrintNV(reterr, ctx.err_info >> 32);
goto ClumpReports_ret_1;
}
// Now iterate through index variants.
ctx.job_type = kClumpJobHighmemR2;
for (uint32_t icandidate_idx = 0; icandidate_idx != icandidate_ct; ++icandidate_idx) {
if ((icandidate_idx_start + icandidate_idx) % 1000 == 0) {
printf("\r--clump: %u/%u index candidate%s processed.", icandidate_idx_start + icandidate_idx, index_candidate_ct, (index_candidate_ct == 1)? "" : "s");
fflush(stdout);
}
const uint32_t rank0 = icandidate_idx_to_rank0_destructive[icandidate_idx_start + icandidate_idx];
const uintptr_t allele_idx = index_candidates[rank0].allele_idx;
const uintptr_t index_oaidx = RawToSubsettedPosW(observed_alleles, observed_alleles_cumulative_popcounts_w, allele_idx);
if (!IsSet(icandidate_oabitvec, index_oaidx)) {
// Already included in another clump.
continue;
}
++clump_ct;
uint32_t variant_uidx;
if (!variant_last_alidxs) {
variant_uidx = allele_idx / 2;
} else {
variant_uidx = RawToSubsettedPos(variant_last_alidxs, variant_last_alidxs_cumulative_popcounts, allele_idx);
}
uint32_t window_start_vidx = vidx_start;
uint32_t window_end_vidx = vidx_end;
GetBpWindow(observed_variants, variant_bps, variant_uidx, bp_radius, &window_start_vidx, &window_end_vidx);
uintptr_t window_allele_idx_start;
uintptr_t window_allele_idx_end;
if (!allele_idx_offsets) {
window_allele_idx_start = window_start_vidx * 2;
window_allele_idx_end = window_end_vidx * 2;
} else {
window_allele_idx_start = allele_idx_offsets[window_start_vidx];
window_allele_idx_end = allele_idx_offsets[window_end_vidx];
}
uintptr_t window_oaidx_start = RawToSubsettedPosW(observed_alleles, observed_alleles_cumulative_popcounts_w, window_allele_idx_start);
window_oaidx_start = AdvTo1Bit(candidate_oabitvec, window_oaidx_start);
uintptr_t window_oaidx_end = RawToSubsettedPosW(observed_alleles, observed_alleles_cumulative_popcounts_w, window_allele_idx_end);
window_oaidx_end = 1 + FindLast1BitBefore(candidate_oabitvec, window_oaidx_end);
// Wait till this point to clear the bit, to simplify
// window_oaidx_start and window_oaidx_end initialization.
ClearBit(index_oaidx, candidate_oabitvec);
if (oallele_idx_to_clump_idx) {
oallele_idx_to_clump_idx[index_oaidx] = rank0;
} else {
const uint64_t fpos = ftello(clump_overlap_tmp);
clump_idx_to_overlap_fpos_and_len[rank0 * 2] = fpos;
}
uintptr_t nonindex_ct = PopcountBitRange(candidate_oabitvec, window_oaidx_start, window_oaidx_end);
if (!nonindex_ct) {
// No remaining non-index variants to clump with this.
continue;
}
// If there's exactly one non-index variant to check, there's no
// point in waking up the worker threads.
// Possible todo: if allow_overlap is false, each worker thread could
// operate independently. Ideally, the number of worker threads
// assigned to a single index variant is limited by the job size.
// (However, in the allow_overlap true case, maybe just tune this
// threshold and leave everything else the same.)
const uint32_t cur_thread_ct = (nonindex_ct == 1)? 1 : (calc_thread_ct + 1);
FillWSubsetStarts(candidate_oabitvec, cur_thread_ct, window_oaidx_start, nonindex_ct, ctx.a[parity].oaidx_starts);
ctx.index_oaidx_offset = index_oaidx - oaidx_start;
uintptr_t* ld_idx_found_base = R_CAST(uintptr_t*, multiread_base[0]);
ctx.cur_nonindex_ct = nonindex_ct;
ctx.ld_idx_found[0] = ld_idx_found_base;
for (uint32_t tidx = 1; tidx != cur_thread_ct; ++tidx) {
const uintptr_t offset = (tidx * S_CAST(uint64_t, nonindex_ct)) / (cur_thread_ct);
// These are (~k0LU)-terminated sequences of oaidxs (usual case) or
// allele_idxs (--clump-allow-overlap case). Leave enough room for
// all possible indexes to be included, plus the terminator.
ctx.ld_idx_found[tidx] = &(ld_idx_found_base[offset + tidx]);
}
if (cur_thread_ct > 1) {
SpawnThreads(&tg);
}
ClumpHighmemR2(cur_thread_ct - 1, cur_thread_ct, parity, &ctx);
if (cur_thread_ct > 1) {
JoinThreads(&tg);
}
if (oallele_idx_to_clump_idx) {
for (uint32_t tidx = 0; tidx != cur_thread_ct; ++tidx) {
const uintptr_t* read_iter = ctx.ld_idx_found[tidx];
for (; ; ++read_iter) {
const uintptr_t oaidx = *read_iter;
if (oaidx == ~k0LU) {
break;
}
ClearBit(oaidx, candidate_oabitvec);
oallele_idx_to_clump_idx[oaidx] = rank0;
}
}
} else {
uintptr_t prev_save_allele_idx = 0;
uintptr_t clump_size = 0;
if (unlikely(ClumpSpillResults(observed_alleles, observed_alleles_cumulative_popcounts_w, ctx.ld_idx_found, cur_thread_ct, &prev_save_allele_idx, &clump_size, icandidate_oabitvec, clump_overlap_tmp))) {
goto ClumpReports_ret_WRITE_FAIL;
}
if (clump_size > max_overlap_clump_size) {
max_overlap_clump_size = clump_size;
}
clump_idx_to_overlap_fpos_and_len[rank0 * 2 + 1] = ftello(clump_overlap_tmp) - clump_idx_to_overlap_fpos_and_len[rank0 * 2];
}
if (cur_thread_ct > 1) {
parity = 1 - parity;
}
}
} else {
icandidate_ct = PopcountBitRange(icandidate_abitvec, allele_idx_first, allele_idx_last + 1);
ctx.unpacked_variants = lowmem_unpacked_variants;
ctx.unpacked_byte_stride = unpacked_byte_stride_cachealign;
ctx.phase_type = phase_type;
ctx.load_dosage = load_dosage;
ctx.allele_widx_end = 1 + (allele_idx_last / kBitsPerWord);
ctx.job_type = kClumpJobLowmemR2;
STD_SORT(icandidate_ct, u32cmp, &(icandidate_idx_to_rank0_destructive[icandidate_idx_start]));
const uintptr_t* cur_founder_male_collapsed = is_x? founder_male_collapsed : nullptr;
const Dosage* cur_male_dosage_invmask = is_x? male_dosage_invmask : nullptr;
const uint32_t icandidate_idx_end = icandidate_idx_start + icandidate_ct;
for (uint32_t icandidate_idx = icandidate_idx_start; icandidate_idx != icandidate_idx_end; ++icandidate_idx) {
if (icandidate_idx % 1000 == 0) {
printf("\r--clump: %u/%u index candidate%s processed.", icandidate_idx, index_candidate_ct, (index_candidate_ct == 1)? "" : "s");
fflush(stdout);
}
const uint32_t rank0 = icandidate_idx_to_rank0_destructive[icandidate_idx];
const uintptr_t index_allele_idx = index_candidates[rank0].allele_idx;
const uintptr_t index_oaidx = RawToSubsettedPosW(observed_alleles, observed_alleles_cumulative_popcounts_w, index_allele_idx);
if (!IsSet(icandidate_oabitvec, index_oaidx)) {
// Already included in another clump.
continue;
}
++clump_ct;
uint32_t index_variant_uidx;
AlleleCode index_aidx;
if (!variant_last_alidxs) {
index_variant_uidx = index_allele_idx / 2;
index_aidx = index_allele_idx % 2;
} else {
index_variant_uidx = RawToSubsettedPos(variant_last_alidxs, variant_last_alidxs_cumulative_popcounts, index_allele_idx);
index_aidx = index_allele_idx - allele_idx_offsets[index_variant_uidx];
}
uint32_t window_start_vidx = vidx_start;
uint32_t window_end_vidx = vidx_end;
GetBpWindow(observed_variants, variant_bps, index_variant_uidx, bp_radius, &window_start_vidx, &window_end_vidx);
uintptr_t window_allele_idx_start;
uintptr_t window_allele_idx_end;
if (!allele_idx_offsets) {
window_allele_idx_start = window_start_vidx * 2;
window_allele_idx_end = window_end_vidx * 2;
} else {
window_allele_idx_start = allele_idx_offsets[window_start_vidx];
window_allele_idx_end = allele_idx_offsets[window_end_vidx];
}
uintptr_t window_oaidx_cur = RawToSubsettedPosW(observed_alleles, observed_alleles_cumulative_popcounts_w, window_allele_idx_start);
window_oaidx_cur = AdvTo1Bit(candidate_oabitvec, window_oaidx_cur);
uintptr_t window_oaidx_end = RawToSubsettedPosW(observed_alleles, observed_alleles_cumulative_popcounts_w, window_allele_idx_end);
window_oaidx_end = 1 + FindLast1BitBefore(candidate_oabitvec, window_oaidx_end);
// Wait till this point to clear the bit, to simplify
// window_oaidx_cur and window_oaidx_end initialization.
ClearBit(index_oaidx, candidate_oabitvec);
if (oallele_idx_to_clump_idx) {
oallele_idx_to_clump_idx[index_oaidx] = rank0;
} else {
const uint64_t fpos = ftello(clump_overlap_tmp);
clump_idx_to_overlap_fpos_and_len[rank0 * 2] = fpos;
}
uintptr_t rem_nonindex_ct = PopcountBitRange(candidate_oabitvec, window_oaidx_cur, window_oaidx_end);
if (!rem_nonindex_ct) {
// No remaining non-index variants to clump with this.
continue;
}
const uintptr_t allele_widx_end = DivUp(window_allele_idx_end, kBitsPerWord);
uintptr_t allele_widx_start = window_allele_idx_start / kBitsPerWord;
uintptr_t prev_save_allele_idx = 0;
uintptr_t clump_size = 0;
uint32_t index_variant_needed = 1;
do {
const uintptr_t cur_nonindex_ct = MINV(rem_nonindex_ct, max_lowmem_nonindex_ct);
const uint32_t cur_thread_ct = (cur_nonindex_ct == 1)? 1 : (calc_thread_ct + 1);
FillWSubsetStarts(candidate_oabitvec, cur_thread_ct, window_oaidx_cur, cur_nonindex_ct, ctx.a[parity].oaidx_starts);
uintptr_t next_window_oaidx_cur = window_oaidx_end;
if (cur_nonindex_ct < rem_nonindex_ct) {
const uintptr_t last_bit_ct = cur_nonindex_ct - (cur_nonindex_ct * S_CAST(uint64_t, cur_thread_ct - 1)) / cur_thread_ct;
next_window_oaidx_cur = FindNth1BitFrom(candidate_oabitvec, ctx.a[parity].oaidx_starts[cur_thread_ct - 1], last_bit_ct + 1);
}
// Load PgenVariants serially.
PgenVariant pgv = ctx.pgv_base;
uintptr_t oaidx_base;
uintptr_t cur_oaidx_bits;
BitIter1Start(candidate_oabitvec, window_oaidx_cur, &oaidx_base, &cur_oaidx_bits);
for (uintptr_t nonindex_idx = 0; nonindex_idx != cur_nonindex_ct; ) {
uintptr_t variant_uidx;
AlleleCode aidx;
if (index_variant_needed) {
variant_uidx = index_variant_uidx;
aidx = index_aidx;
} else {
const uintptr_t oaidx = BitIter1(candidate_oabitvec, &oaidx_base, &cur_oaidx_bits);
const uintptr_t allele_idx = ExpsearchIdxToUidxW(observed_alleles, observed_alleles_cumulative_popcounts_w, allele_widx_end, oaidx, &allele_widx_start);
if (!allele_idx_offsets) {
variant_uidx = allele_idx / 2;
aidx = allele_idx % 2;
} else {
variant_uidx = RawToSubsettedPos(variant_last_alidxs, variant_last_alidxs_cumulative_popcounts, allele_idx);
aidx = allele_idx - allele_idx_offsets[variant_uidx];
}
}
if (load_dosage) {
if (phase_type == kR2PhaseTypePresent) {
reterr = PgrGetInv1Dp(founder_info, pssi, founder_ct, variant_uidx, aidx, simple_pgrp, &pgv);
} else {
reterr = PgrGetInv1D(founder_info, pssi, founder_ct, variant_uidx, aidx, simple_pgrp, pgv.genovec, pgv.dosage_present, pgv.dosage_main, &pgv.dosage_ct);
}
if (is_y) {
InterleavedSetMissingCleardosage(founder_female_collapsed, founder_female_collapsed_interleaved, founder_ctv2, pgv.genovec, &pgv.dosage_ct, pgv.dosage_present, pgv.dosage_main);
}
} else {
if (phase_type == kR2PhaseTypePresent) {
reterr = PgrGetInv1P(founder_info, pssi, founder_ct, variant_uidx, aidx, simple_pgrp, pgv.genovec, pgv.phasepresent, pgv.phaseinfo, &pgv.phasepresent_ct);
} else {
reterr = PgrGetInv1(founder_info, pssi, founder_ct, variant_uidx, aidx, simple_pgrp, pgv.genovec);
}
if (is_y) {
InterleavedSetMissing(founder_female_collapsed_interleaved, founder_ctv2, pgv.genovec);
}
}
if (unlikely(reterr)) {
goto ClumpReports_ret_PGR_FAIL;
}
if (!index_variant_needed) {
ClumpPgenVariantIncr(pgv_byte_stride, &pgv);
if (phasepresent_cts) {
phasepresent_cts[nonindex_idx] = pgv.phasepresent_ct;
}
if (dosage_cts) {
dosage_cts[nonindex_idx] = pgv.dosage_ct;
}
if (dphase_cts) {
dphase_cts[nonindex_idx] = pgv.dphase_ct;
}
++nonindex_idx;
} else {
if (load_dosage) {
LdUnpackDosage(&pgv, cur_founder_male_collapsed, cur_male_dosage_invmask, founder_ct, phase_type, lowmem_unpacked_variants);
} else {
LdUnpackNondosageDense(&pgv, cur_founder_male_collapsed, founder_ct, phase_type, lowmem_unpacked_variants);
}
index_variant_needed = 0;
}
}
// Compute r^2s for PgenVariants against index variant in parallel.
ctx.cur_nonindex_ct = cur_nonindex_ct;
ctx.ld_idx_found[0] = lowmem_ld_idx_found_base;
for (uint32_t tidx = 1; tidx != cur_thread_ct; ++tidx) {
const uintptr_t offset = (tidx * S_CAST(uint64_t, cur_nonindex_ct)) / cur_thread_ct;
ctx.ld_idx_found[tidx] = &(lowmem_ld_idx_found_base[offset + tidx]);
}
if (cur_thread_ct > 1) {
if (unlikely(SpawnThreads(&tg))) {
goto ClumpReports_ret_THREAD_CREATE_FAIL;
}
}
ClumpLowmemR2(cur_thread_ct - 1, cur_thread_ct, parity, &ctx);
if (cur_thread_ct > 1) {
JoinThreads(&tg);
}
if (oallele_idx_to_clump_idx) {
for (uint32_t tidx = 0; tidx != cur_thread_ct; ++tidx) {
const uintptr_t* read_iter = ctx.ld_idx_found[tidx];
for (; ; ++read_iter) {
const uintptr_t oaidx = *read_iter;
if (oaidx == ~k0LU) {
break;
}
ClearBit(oaidx, candidate_oabitvec);
oallele_idx_to_clump_idx[oaidx] = rank0;
}
}
} else {
if (unlikely(ClumpSpillResults(observed_alleles, observed_alleles_cumulative_popcounts_w, ctx.ld_idx_found, cur_thread_ct, &prev_save_allele_idx, &clump_size, icandidate_oabitvec, clump_overlap_tmp))) {
goto ClumpReports_ret_WRITE_FAIL;
}
}
window_oaidx_cur = next_window_oaidx_cur;
rem_nonindex_ct -= cur_nonindex_ct;
if (cur_thread_ct > 1) {
parity = 1 - parity;
}
} while (rem_nonindex_ct);
if (clump_idx_to_overlap_fpos_and_len) {
if (clump_size > max_overlap_clump_size) {
max_overlap_clump_size = clump_size;
}
clump_idx_to_overlap_fpos_and_len[rank0 * 2 + 1] = ftello(clump_overlap_tmp) - clump_idx_to_overlap_fpos_and_len[rank0 * 2];
}
}
}
icandidate_idx_start += icandidate_ct;
}
ctx.job_type = kClumpJobNone;
DeclareLastThreadBlock(&tg);
if (unlikely(SpawnThreads(&tg))) {
goto ClumpReports_ret_THREAD_CREATE_FAIL;
}
JoinThreads(&tg);
fputs("\r", stdout);
logprintf("--clump: %u clump%s formed from %u index candidate%s.", clump_ct, (clump_ct == 1)? "" : "s", index_candidate_ct, (index_candidate_ct == 1)? "" : "s");
fputs(" ", stdout);
logputs("\n");
// Usual (i.e. not --clump-allow-overlap) postprocessing algorithm:
// 1. Count the number of (variant, aidx)s associated with each clump.
// 2. Allocate ordered_members[]; partial count-sums give each clump's
// starting position within ordered_members[].
// 3. Fill ordered_members.
BigstackDoubleReset(candidate_oabitvec, bigstack_end_mark);
uintptr_t* clump_ends = nullptr;
uintptr_t* ordered_members = nullptr;
unsigned char* overlap_raw_loadbuf = nullptr;
uintptr_t* overlap_allele_idxs = nullptr;
if (!allow_overlap) {
uintptr_t* clump_sizes;
if (unlikely(bigstack_calloc_w(index_candidate_ct, &clump_sizes))) {
goto ClumpReports_ret_NOMEM;
}
uintptr_t running_total = 0;
// could parallelize this, but doesn't realistically matter
for (uintptr_t oaidx = 0; oaidx != observed_allele_ct; ++oaidx) {
const uint32_t clump_idx = oallele_idx_to_clump_idx[oaidx];
if (clump_idx != UINT32_MAX) {
clump_sizes[clump_idx] += 1;
}
}
// convert clump_sizes to clump_write_offsets
for (uint32_t clump_idx = 0; clump_idx != index_candidate_ct; ++clump_idx) {
const uintptr_t cur_clump_size = clump_sizes[clump_idx];
clump_sizes[clump_idx] = running_total;
running_total += cur_clump_size;
}
uintptr_t* clump_write_offsets = clump_sizes;
if (unlikely(bigstack_alloc_w(running_total, &ordered_members))) {
goto ClumpReports_ret_NOMEM;
}
// Now fill ordered_members, convert oaidxs to allele_idxs, and convert
// clump_write_offsets to clump_ends as a side-effect.
uintptr_t allele_idx_base = 0;
uintptr_t cur_bits = observed_alleles[0];
for (uintptr_t oaidx = 0; oaidx != observed_allele_ct; ++oaidx) {
const uintptr_t allele_idx = BitIter1(observed_alleles, &allele_idx_base, &cur_bits);
const uint32_t clump_idx = oallele_idx_to_clump_idx[oaidx];
if (clump_idx != UINT32_MAX) {
const uintptr_t write_offset = clump_write_offsets[clump_idx];
ordered_members[write_offset] = allele_idx;
clump_write_offsets[clump_idx] += 1;
}
}
clump_ends = clump_write_offsets;
} else {
uint64_t max_vint_byte_ct = 0;
for (uint32_t clump_idx = 0; clump_idx != index_candidate_ct; ++clump_idx) {
const uint64_t vint_byte_ct = clump_idx_to_overlap_fpos_and_len[clump_idx * 2 + 1];
if (vint_byte_ct > max_vint_byte_ct) {
max_vint_byte_ct = vint_byte_ct;
}
}
if (unlikely(bigstack_alloc64_uc(max_vint_byte_ct, &overlap_raw_loadbuf) ||
bigstack_alloc_w(max_overlap_clump_size + 1, &overlap_allele_idxs))) {
goto ClumpReports_ret_NOMEM;
}
if (unlikely(fclose_null(&clump_overlap_tmp))) {
goto ClumpReports_ret_WRITE_FAIL;
}
if (unlikely(fopen_checked(outname, FOPEN_RB, &clump_overlap_tmp))) {
goto ClumpReports_ret_OPEN_FAIL;
}
}
char* range_group_names = nullptr;
uintptr_t* rg_chr_bounds = nullptr;
uint32_t** rg_setdefs = nullptr;
uintptr_t max_range_group_id_blen = 0;
if (range_fname) {
uintptr_t ignored_group_ct;
uintptr_t ignored_chr_max_group_ct;
reterr = LoadAndSortIntervalBed(range_fname, cip, nullptr, (flags / kfClumpRange0) & 1, clump_ip->range_border, 0, 0, max_thread_ct, &ignored_group_ct, &range_group_names, &max_range_group_id_blen, &rg_chr_bounds, &rg_setdefs, &ignored_chr_max_group_ct);
if (unlikely(reterr)) {
goto ClumpReports_ret_1;
}
}
const uint32_t overflow_buf_size = kCompressStreamBlock + MAXV(kMaxIdSlen + max_variant_id_slen + max_allele_slen, bin_bound_ct * (kMaxLnGSlen + 1)) + 256;
OutnameZstSet(".clumps", output_zst, outname_end);
reterr = InitCstreamAlloc(outname, 0, output_zst, max_thread_ct, overflow_buf_size, &css, &cswritep);
if (unlikely(reterr)) {
goto ClumpReports_ret_1;
}
const uint32_t chr_col = flags & kfClumpColChrom;
const uint32_t pos_col = flags & kfClumpColPos;
const uint32_t ref_col = flags & kfClumpColRef;
const uint32_t alt1_col = flags & kfClumpColAlt1;
const uint32_t alt_col = flags & kfClumpColAlt;
const uintptr_t* nonref_flags = pgfip->nonref_flags;
const uint32_t all_nonref = (pgfip->gflags & kfPgenGlobalAllNonref) && (!nonref_flags);
const uint32_t provref_col = ref_col && ProvrefCol(variant_include, nonref_flags, flags / kfClumpColMaybeprovref, raw_variant_ct, all_nonref);
const uint32_t a1_col = (flags & kfClumpColA1) || ((flags & kfClumpColMaybeA1) && MultiallelicVariantPresent(variant_include, allele_idx_offsets, variant_ct));
const uint32_t f_col = (flags & kfClumpColF) || ((flags & kfClumpColMaybeF) && (file_ct > 1));
const uint32_t f_in_sp2 = sp2_col && ((flags & kfClumpColF) || (file_ct > 1));
const uint32_t output_log10 = flags & kfClumpOutputLog10;
const uint32_t total_col = flags & kfClumpColTotal;
uintptr_t* cur_bin_counts = nullptr;
if (bin_bound_ct) {
if (unlikely(bigstack_alloc_w(bin_bound_ct + 1, &cur_bin_counts))) {
goto ClumpReports_ret_NOMEM;
}
}
*cswritep++ = '#';
if (chr_col) {
cswritep = strcpya_k(cswritep, "CHROM\t");
}
if (pos_col) {
cswritep = strcpya_k(cswritep, "POS\t");
}
cswritep = strcpya_k(cswritep, "ID\t");
if (ref_col) {
cswritep = strcpya_k(cswritep, "REF\t");
}
if (alt1_col) {
cswritep = strcpya_k(cswritep, "ALT1\t");
}
if (alt_col) {
cswritep = strcpya_k(cswritep, "ALT\t");
}
if (provref_col) {
cswritep = strcpya_k(cswritep, "PROVISIONAL_REF?\t");
}
if (a1_col) {
cswritep = strcpya_k(cswritep, "A1\t");
}
if (f_col) {
cswritep = strcpya_k(cswritep, "F\t");
}
if (output_log10) {
cswritep = strcpya_k(cswritep, "NEG_LOG10_");
}
*cswritep++ = 'P';
if (total_col) {
cswritep = strcpya_k(cswritep, "\tTOTAL");
}
if (bounds_col) {
cswritep = strcpya_k(cswritep, "\tCLUMP_FIRST_POS\tCLUMP_LAST_POS");
}
if (bin_bound_ct) {
cswritep = strcpya_k(cswritep, "\tNONSIG");
for (uint32_t bin_idx = bin_bound_ct; bin_idx; ) {
--bin_idx;
cswritep = strcpya_k(cswritep, "\tS");
cswritep = lntoa_g(ln_bin_boundaries[bin_idx], cswritep);
}
}
if (sp2_col) {
cswritep = strcpya_k(cswritep, "\tSP2");
}
if (ranges_col) {
cswritep = strcpya_k(cswritep, "\tRANGES");
}
AppendBinaryEoln(&cswritep);
if (unlikely(Cswrite(&css, &cswritep))) {
goto ClumpReports_ret_WRITE_FAIL;
}
uintptr_t* clump_allele_idxs = overlap_allele_idxs;
uintptr_t prev_clump_end = 0;
uint32_t chr_idx = 0;
uint32_t index_allele_ct = 2;
uint32_t index_file_idx1 = 1;
uint32_t file_idx1 = 1;
uint32_t first_bp = 0;
uint32_t last_bp = 0;
for (uint32_t clump_idx = 0; clump_idx != index_candidate_ct; ++clump_idx) {
const uintptr_t index_allele_idx = index_candidates[clump_idx].allele_idx;
uintptr_t clump_size_including_self;
if (!allow_overlap) {
const uintptr_t cur_clump_end = clump_ends[clump_idx];
if (cur_clump_end == prev_clump_end) {
continue;
}
clump_allele_idxs = &(ordered_members[prev_clump_end]);
clump_size_including_self = cur_clump_end - prev_clump_end;
prev_clump_end = cur_clump_end;
} else {
const uint64_t fpos = clump_idx_to_overlap_fpos_and_len[clump_idx * 2];
if (fpos == 0) {
continue;
}
const uint64_t vint_byte_ct = clump_idx_to_overlap_fpos_and_len[clump_idx * 2 + 1];
if (vint_byte_ct) {
if (unlikely(fseeko(clump_overlap_tmp, fpos, SEEK_SET) ||
fread_checked(overlap_raw_loadbuf, vint_byte_ct, clump_overlap_tmp))) {
goto ClumpReports_ret_READ_FAIL;
}
}
const unsigned char* read_iter = overlap_raw_loadbuf;
const unsigned char* read_end = &(read_iter[vint_byte_ct]);
uintptr_t* write_iter = clump_allele_idxs;
uintptr_t last_allele_idx = 0;
while (read_iter != read_end) {
const uintptr_t allele_idx_incr = GetVint64Unsafe(&read_iter);
last_allele_idx += allele_idx_incr;
if (last_allele_idx > index_allele_idx) {
break;
}
*write_iter++ = last_allele_idx;
}
*write_iter++ = index_allele_idx;
if (last_allele_idx > index_allele_idx) {
*write_iter++ = last_allele_idx;
}
while (read_iter != read_end) {
const uintptr_t allele_idx_incr = GetVint64Unsafe(&read_iter);
last_allele_idx += allele_idx_incr;
*write_iter++ = last_allele_idx;
}
clump_size_including_self = write_iter - clump_allele_idxs;
}
uintptr_t index_allele_idx_offset_base;
uint32_t index_variant_uidx;
if (!allele_idx_offsets) {
index_variant_uidx = index_allele_idx / 2;
index_allele_idx_offset_base = index_allele_idx & (~k1LU);
} else {
index_variant_uidx = RawToSubsettedPos(variant_last_alidxs, variant_last_alidxs_cumulative_popcounts, index_allele_idx);
index_allele_idx_offset_base = allele_idx_offsets[index_variant_uidx];
index_allele_ct = allele_idx_offsets[index_variant_uidx + 1] - index_allele_idx_offset_base;
}
if (chr_col || ranges_col) {
chr_idx = GetVariantChr(cip, index_variant_uidx);
if (chr_col) {
cswritep = chrtoa(cip, chr_idx, cswritep);
*cswritep++ = '\t';
}
}
if (pos_col) {
cswritep = u32toa_x(variant_bps[index_variant_uidx], '\t', cswritep);
}
cswritep = strcpyax(cswritep, variant_ids[index_variant_uidx], '\t');
if (ref_col) {
cswritep = strcpyax(cswritep, allele_storage[index_allele_idx_offset_base], '\t');
if (unlikely(Cswrite(&css, &cswritep))) {
goto ClumpReports_ret_WRITE_FAIL;
}
}
if (alt1_col) {
cswritep = strcpyax(cswritep, allele_storage[index_allele_idx_offset_base + 1], '\t');
if (unlikely(Cswrite(&css, &cswritep))) {
goto ClumpReports_ret_WRITE_FAIL;
}
}
if (alt_col) {
for (uint32_t aidx = 1; aidx != index_allele_ct; ++aidx) {
cswritep = strcpya(cswritep, allele_storage[index_allele_idx_offset_base + aidx]);
if (unlikely(Cswrite(&css, &cswritep))) {
goto ClumpReports_ret_WRITE_FAIL;
}
*cswritep++ = ',';
}
cswritep[-1] = '\t';
}
if (provref_col) {
*cswritep++ = (all_nonref || (nonref_flags && IsSet(nonref_flags, index_variant_uidx)))? 'Y' : 'N';
*cswritep++ = '\t';
}
const uintptr_t index_oaidx = RawToSubsettedPosW(observed_alleles, observed_alleles_cumulative_popcounts_w, index_allele_idx);
if (a1_col) {
if (index_allele_ct == 2) {
if (force_a1) {
const uint32_t aidx = best_fidx_x2s[index_oaidx] & 1;
cswritep = strcpyax(cswritep, allele_storage[index_allele_idx_offset_base + aidx], '\t');
if (unlikely(Cswrite(&css, &cswritep))) {
goto ClumpReports_ret_WRITE_FAIL;
}
} else {
cswritep = strcpya_k(cswritep, ".\t");
}
} else {
cswritep = strcpyax(cswritep, allele_storage[index_allele_idx], '\t');
if (unlikely(Cswrite(&css, &cswritep))) {
goto ClumpReports_ret_WRITE_FAIL;
}
}
}
if (best_fidx_x2s) {
index_file_idx1 = best_fidx_x2s[index_oaidx] >> 1;
}
if (f_col) {
cswritep = u32toa_x(index_file_idx1, '\t', cswritep);
}
const double index_ln_pval = index_candidates[clump_idx].ln_pval;
if (!output_log10) {
const double reported_ln = MAXV(index_ln_pval, output_min_ln);
cswritep = lntoa_g(reported_ln, cswritep);
} else {
const double reported_val = (-kRecipLn10) * index_ln_pval;
cswritep = dtoa_g(reported_val, cswritep);
}
if (total_col || bin_bound_ct) {
uintptr_t total_ct = 0;
if (bin_bound_ct) {
ZeroWArr(bin_bound_ct + 1, cur_bin_counts);
for (uintptr_t member_idx = 0; member_idx != clump_size_including_self; ++member_idx) {
const uintptr_t cur_allele_idx = clump_allele_idxs[member_idx];
const uintptr_t cur_oaidx = RawToSubsettedPosW(observed_alleles, observed_alleles_cumulative_popcounts_w, cur_allele_idx);
if (nonsig_arr) {
cur_bin_counts[bin_bound_ct] += nonsig_arr[cur_oaidx];
}
const unsigned char* varint_read_iter = clump_entry_varints[cur_oaidx];
const unsigned char* varint_read_end = clump_entry_varints[cur_oaidx + 1];
while (varint_read_iter != varint_read_end) {
const uint32_t pval_bin = GetVint32Unsafe(&varint_read_iter) >> 1;
cur_bin_counts[pval_bin] += 1;
if (save_all_fidxs) {
SkipVintUnsafe(&varint_read_iter);
}
}
}
// Keep appearances of this (variant, uidx) in other files, but don't
// count the central appearance.
const uint32_t index_pval_bin = LowerBoundNonemptyD(ln_bin_boundaries, bin_bound_ct, index_ln_pval);
cur_bin_counts[index_pval_bin] -= 1;
for (uint32_t bin_idx = 0; bin_idx <= bin_bound_ct; ++bin_idx) {
total_ct += cur_bin_counts[bin_idx];
}
} else {
for (uintptr_t member_idx = 0; member_idx != clump_size_including_self; ++member_idx) {
const uintptr_t cur_allele_idx = clump_allele_idxs[member_idx];
const uintptr_t cur_oaidx = RawToSubsettedPosW(observed_alleles, observed_alleles_cumulative_popcounts_w, cur_allele_idx);
if (nonsig_arr) {
total_ct += nonsig_arr[cur_oaidx];
}
const unsigned char* varint_read_start = clump_entry_varints[cur_oaidx];
const unsigned char* varint_read_end = clump_entry_varints[cur_oaidx + 1];
const uintptr_t varint_ct = CountVints(varint_read_start, varint_read_end);
total_ct += varint_ct >> save_all_fidxs;
}
--total_ct;
}
if (total_col) {
*cswritep++ = '\t';
cswritep = wtoa(total_ct, cswritep);
}
}
if (bounds_col || ranges_col) {
for (intptr_t direction = 1; direction != -3; direction -= 2) {
uint32_t pval_too_high = 1;
uintptr_t member_idx = (direction == 1)? 0 : (clump_size_including_self - 1);
for (; member_idx != clump_size_including_self ; member_idx += direction) {
const uintptr_t cur_allele_idx = clump_allele_idxs[member_idx];
const uintptr_t cur_oaidx = RawToSubsettedPosW(observed_alleles, observed_alleles_cumulative_popcounts_w, cur_allele_idx);
const unsigned char* varint_read_iter = clump_entry_varints[cur_oaidx];
const unsigned char* varint_read_end = clump_entry_varints[cur_oaidx + 1];
while (varint_read_iter != varint_read_end) {
pval_too_high = GetVint32Unsafe(&varint_read_iter) & 1;
if (!pval_too_high) {
break;
}
}
if (!pval_too_high) {
uint32_t variant_uidx;
if (!allele_idx_offsets) {
variant_uidx = cur_allele_idx / 2;
} else {
variant_uidx = RawToSubsettedPos(variant_last_alidxs, variant_last_alidxs_cumulative_popcounts, cur_allele_idx);
}
if (direction == 1) {
first_bp = variant_bps[variant_uidx];
} else {
last_bp = variant_bps[variant_uidx];
}
break;
}
}
if (member_idx == clump_size_including_self) {
// special case: no --clump-p2 hits at all, not even index variant
assert(ln_p1 > ln_p2);
first_bp = UINT32_MAX;
break;
}
}
if (bounds_col) {
*cswritep++ = '\t';
if (first_bp != UINT32_MAX) {
cswritep = u32toa_x(first_bp, '\t', cswritep);
cswritep = u32toa(last_bp, cswritep);
} else {
cswritep = strcpya_k(cswritep, ".\t.");
}
}
}
if (bin_bound_ct) {
if (unlikely(Cswrite(&css, &cswritep))) {
goto ClumpReports_ret_WRITE_FAIL;
}
for (uint32_t bin_idx = bin_bound_ct + 1; bin_idx; ) {
--bin_idx;
*cswritep++ = '\t';
cswritep = wtoa(cur_bin_counts[bin_idx], cswritep);
}
}
if (sp2_col) {
*cswritep++ = '\t';
uint32_t nonempty = 0;
for (uintptr_t member_idx = 0; member_idx != clump_size_including_self; ++member_idx) {
const uintptr_t cur_allele_idx = clump_allele_idxs[member_idx];
const uintptr_t cur_oaidx = RawToSubsettedPosW(observed_alleles, observed_alleles_cumulative_popcounts_w, cur_allele_idx);
const unsigned char* varint_read_iter = clump_entry_varints[cur_oaidx];
const unsigned char* varint_read_end = clump_entry_varints[cur_oaidx + 1];
while (varint_read_iter != varint_read_end) {
const uint32_t pval_too_high = GetVint32Unsafe(&varint_read_iter) & 1;
if (!pval_too_high) {
if (save_all_fidxs) {
const uint32_t file_idx1_x2 = GetVint32Unsafe(&varint_read_iter);
file_idx1 = file_idx1_x2 >> 1;
biallelic_forced_a1_alt = file_idx1_x2 & 1;
}
if ((cur_allele_idx != index_allele_idx) || (file_idx1 != index_file_idx1)) {
if (unlikely(Cswrite(&css, &cswritep))) {
goto ClumpReports_ret_WRITE_FAIL;
}
nonempty = 1;
uintptr_t cur_allele_idx_offset_base;
uint32_t cur_variant_uidx;
if (!allele_idx_offsets) {
cur_variant_uidx = cur_allele_idx / 2;
cur_allele_idx_offset_base = cur_allele_idx & (~k1LU);
} else {
cur_variant_uidx = RawToSubsettedPos(variant_last_alidxs, variant_last_alidxs_cumulative_popcounts, cur_allele_idx);
cur_allele_idx_offset_base = allele_idx_offsets[cur_variant_uidx];
cur_allele_ct = allele_idx_offsets[cur_variant_uidx + 1] - cur_allele_idx_offset_base;
}
cswritep = strcpya(cswritep, variant_ids[cur_variant_uidx]);
if (force_a1 || (cur_allele_ct > 2)) {
*cswritep++ = '(';
cswritep = strcpyax(cswritep, allele_storage[cur_allele_idx + biallelic_forced_a1_alt], ')');
}
if (f_in_sp2) {
*cswritep++ = '(';
cswritep = u32toa_x(file_idx1, ')', cswritep);
}
*cswritep++ = ',';
}
} else {
if (save_all_fidxs) {
SkipVintUnsafe(&varint_read_iter);
}
}
}
}
if (nonempty) {
--cswritep;
} else {
*cswritep++ = '.';
}
}
if (ranges_col) {
*cswritep++ = '\t';
uint32_t nonempty = 0;
if (first_bp != UINT32_MAX) {
const uintptr_t cur_rg_start_idx = rg_chr_bounds[chr_idx];
uint32_t** cur_rg_setdefs = &(rg_setdefs[cur_rg_start_idx]);
const char* cur_rg_names = &(range_group_names[cur_rg_start_idx * max_range_group_id_blen + kMaxChrCodeDigits]);
const uintptr_t cur_rg_ct = rg_chr_bounds[chr_idx + 1] - cur_rg_start_idx;
const uint32_t end_bp = last_bp + 1;
for (uintptr_t rg_idx = 0; rg_idx != cur_rg_ct; ++rg_idx) {
if (IntervalInSetdef(cur_rg_setdefs[rg_idx], first_bp, end_bp)) {
if (unlikely(Cswrite(&css, &cswritep))) {
goto ClumpReports_ret_WRITE_FAIL;
}
nonempty = 1;
cswritep = strcpyax(cswritep, &(cur_rg_names[rg_idx * max_range_group_id_blen]), ',');
}
}
}
if (nonempty) {
--cswritep;
} else {
*cswritep++ = '.';
}
}
AppendBinaryEoln(&cswritep);
if (unlikely(Cswrite(&css, &cswritep))) {
goto ClumpReports_ret_WRITE_FAIL;
}
}
if (unlikely(CswriteCloseNull(&css, cswritep))) {
goto ClumpReports_ret_WRITE_FAIL;
}
logprintf("Results written to %s .\n", outname);
if (clump_overlap_tmp) {
if (unlikely(fclose_null(&clump_overlap_tmp))) {
goto ClumpReports_ret_READ_FAIL;
}
snprintf(outname_end, kMaxOutfnameExtBlen, ".clumps.tmp");
if (unlikely(unlink(outname))) {
goto ClumpReports_ret_WRITE_FAIL;
}
}
}
while (0) {
ClumpReports_ret_NOMEM:
reterr = kPglRetNomem;
break;
ClumpReports_ret_OPEN_FAIL:
reterr = kPglRetOpenFail;
break;
ClumpReports_ret_READ_FAIL:
if (feof_unlocked(clump_overlap_tmp)) {
errno = 0;
}
logerrprintfww(kErrprintfFread, "--clump-allow-overlap temporary file", rstrerror(errno));
reterr = kPglRetReadFail;
break;
ClumpReports_ret_PGR_FAIL:
PgenErrPrintN(reterr);
break;
ClumpReports_ret_WRITE_FAIL:
reterr = kPglRetWriteFail;
break;
ClumpReports_ret_TSTREAM_FAIL:
TextStreamErrPrint("--clump file", &txs);
break;
ClumpReports_ret_MALFORMED_INPUT_WW:
WordWrapB(0);
logerrputsb();
reterr = kPglRetMalformedInput;
break;
ClumpReports_ret_MISSING_TOKENS:
snprintf(g_logbuf, kLogbufSize, "Error: Line %" PRIuPTR " of %s has fewer tokens than expected.\n", line_idx, fname_iter);
ClumpReports_ret_INCONSISTENT_INPUT_WW:
WordWrapB(0);
logerrputsb();
ClumpReports_ret_INCONSISTENT_INPUT:
reterr = kPglRetInconsistentInput;
break;
ClumpReports_ret_INVALID_PVAL:
logerrprintfww("Error: Invalid p-value on line %" PRIuPTR " of %s.\n", line_idx, fname_iter);
reterr = kPglRetInconsistentInput;
break;
ClumpReports_ret_THREAD_CREATE_FAIL:
reterr = kPglRetThreadCreateFail;
break;
ClumpReports_ret_NOT_YET_SUPPORTED:
reterr = kPglRetNotYetSupported;
break;
}
ClumpReports_ret_1:
CleanupThreads(&tg);
CswriteCloseCond(&css, cswritep);
CleanupTextStream2("--clump file", &txs, &reterr);
fclose_cond(clump_overlap_tmp);
BigstackDoubleReset(bigstack_mark, bigstack_end_mark);
pgfip->block_base = nullptr;
return reterr;
}
// indexes here are all subsetted (founder_idx / variant_idx), not sample_uidx
// / variant_uidx.
typedef struct VcorMatrixCtxStruct {
// Shared constants.
const uintptr_t* founder_male_collapsed;
const uintptr_t* founder_nonmale_collapsed;
// invmask is the most useful representation, since we have a bunch of
// dosage-processing functions which interpret 65535 as missing.
const Dosage* male_dosage_invmask;
const Dosage* nonmale_dosage_invmask;
const uint32_t* chr_fo_idx_end;
uint32_t chr_ct;
uint32_t chrx_idx; // UINT32_MAX if not present
uint32_t founder_ct;
uint32_t founder_male_ct;
unsigned char is_unsquared;
unsigned char triangle_calc; // true for both square0 and triangle
unsigned char phase_type;
unsigned char check_dosage;
uint32_t variant_ct;
uintptr_t unpacked_variant_byte_stride;
// Input data.
unsigned char* unpacked_row_variants[2]; // read from [row_parity]
unsigned char* unpacked_col_variants[2]; // read from [col_parity]
uint32_t cur_row_variant_idx_start;
uint32_t row_window_size;
uint32_t cur_col_variant_idx_start;
uint32_t col_window_size;
// per-thread chrX workspaces.
uintptr_t** cur_nm_bufs;
Dosage** invmask_bufs;
// Output double-buffer. write to [row_parity]
double* results_d[2];
float* results_f[2];
} VcorMatrixCtx;
THREAD_FUNC_DECL VcorMatrixThread(void* raw_arg) {
ThreadGroupFuncArg* arg = S_CAST(ThreadGroupFuncArg*, raw_arg);
const uint32_t tidx = arg->tidx;
const uint32_t calc_thread_ct = GetThreadCt(arg->sharedp);
VcorMatrixCtx* ctx = S_CAST(VcorMatrixCtx*, arg->sharedp->context);
const uintptr_t* founder_male_collapsed = ctx->founder_male_collapsed;
const uintptr_t* founder_nonmale_collapsed = ctx->founder_nonmale_collapsed;
const Dosage* male_dosage_invmask = ctx->male_dosage_invmask;
const Dosage* nonmale_dosage_invmask = ctx->nonmale_dosage_invmask;
uintptr_t* cur_nm_buf = ctx->cur_nm_bufs? ctx->cur_nm_bufs[tidx] : nullptr;
Dosage* invmask_buf = ctx->invmask_bufs? ctx->invmask_bufs[tidx] : nullptr;
const uint32_t* chr_fo_idx_end = ctx->chr_fo_idx_end;
const uint32_t chr_ct = ctx->chr_ct;
const uint32_t chrx_idx = ctx->chrx_idx;
const uint32_t x_exists = (chrx_idx < UINT32_MAXM1);
const uint32_t founder_ct = ctx->founder_ct;
const uint32_t founder_male_ct = ctx->founder_male_ct;
const uint32_t is_unsquared = ctx->is_unsquared;
const uint32_t triangle_calc = ctx->triangle_calc;
const R2PhaseType unpack_phase_type = S_CAST(R2PhaseType, ctx->phase_type);
const uint32_t check_dosage = ctx->check_dosage;
const uintptr_t variant_ct = ctx->variant_ct;
const uintptr_t unpacked_variant_byte_stride = ctx->unpacked_variant_byte_stride;
// only flips when moving to next row-window. detect this with
// (cur_col_variant_idx_start == 0).
// initialize to 1 instead of 0 so we don't need to special-case first row.
uint32_t row_parity = 1;
// always flips
uint32_t col_parity = 0;
do {
const uint32_t cur_row_variant_idx_start = ctx->cur_row_variant_idx_start;
const uint32_t cur_col_variant_idx_start = ctx->cur_col_variant_idx_start;
if (cur_col_variant_idx_start == 0) {
row_parity = 1 - row_parity;
}
const uint64_t row_window_size = ctx->row_window_size;
const uint32_t row_start_offset = (row_window_size * tidx) / calc_thread_ct;
const uint32_t row_end_offset = (row_window_size * (tidx + 1)) / calc_thread_ct;
const uintptr_t shard_row_variant_idx_end = cur_row_variant_idx_start + row_end_offset;
uintptr_t shard_row_variant_idx_start = cur_row_variant_idx_start + row_start_offset;
uint64_t start_coord;
if (triangle_calc) {
start_coord = (cur_row_variant_idx_start * S_CAST(uint64_t, cur_row_variant_idx_start + 1)) / 2;
if (cur_col_variant_idx_start > shard_row_variant_idx_start) {
// shards are rectangle-shaped. we're computing the lower-left
// half-triangle of the matrix.
// so shards closer to the upper-right may have truncated or even empty
// intersection with the region we're computing.
shard_row_variant_idx_start = cur_col_variant_idx_start;
}
} else {
start_coord = cur_row_variant_idx_start * S_CAST(uint64_t, variant_ct);
}
if (shard_row_variant_idx_end > shard_row_variant_idx_start) {
const unsigned char* unpacked_row_variants_iter = &(ctx->unpacked_row_variants[row_parity][row_start_offset * unpacked_variant_byte_stride]);
const unsigned char* unpacked_col_variants = ctx->unpacked_col_variants[col_parity];
double* results_d = ctx->results_d[row_parity];
float* results_f = ctx->results_f[row_parity];
double* results_d_row = nullptr;
float* results_f_row = nullptr;
const uint32_t col_initial_chr_idx = LowerBoundNonemptyU32(chr_fo_idx_end, chr_ct, cur_col_variant_idx_start + 1);
uint32_t row_chr_idx = LowerBoundNonemptyU32(chr_fo_idx_end, chr_ct, shard_row_variant_idx_start + 1);
uint32_t row_chr_end = chr_fo_idx_end[row_chr_idx];
uint32_t row_is_chrx = (row_chr_idx == chrx_idx);
const uint32_t shard_col_variant_idx_end = cur_col_variant_idx_start + ctx->col_window_size;
uint32_t col_variant_idx_stop = shard_col_variant_idx_end;
for (uint32_t row_variant_idx = shard_row_variant_idx_start; row_variant_idx != shard_row_variant_idx_end; ++row_variant_idx, unpacked_row_variants_iter = &(unpacked_row_variants_iter[unpacked_variant_byte_stride])) {
if (row_variant_idx == row_chr_end) {
++row_chr_idx;
row_chr_end = chr_fo_idx_end[row_chr_idx];
row_is_chrx = (row_chr_idx == chrx_idx);
}
uint64_t row_start_coord;
if (triangle_calc) {
row_start_coord = (row_variant_idx * S_CAST(uint64_t, row_variant_idx + 1)) / 2;
col_variant_idx_stop = MINV(row_variant_idx + 1, shard_col_variant_idx_end);
} else {
row_start_coord = row_variant_idx * S_CAST(uint64_t, variant_ct);
}
{
const uintptr_t row_start_coord_offset = row_start_coord - start_coord;
if (results_d) {
results_d_row = &(results_d[row_start_coord_offset]);
} else {
results_f_row = &(results_f[row_start_coord_offset]);
}
}
R2Variant row_r2v;
FillR2V(unpacked_row_variants_iter, founder_ct, unpack_phase_type, x_exists, check_dosage, &row_r2v);
uint32_t col_chr_idx = col_initial_chr_idx;
uint32_t col_chr_end = chr_fo_idx_end[col_chr_idx];
uint32_t col_is_chrx = (col_chr_idx == chrx_idx);
uint32_t either_is_chrx = row_is_chrx || col_is_chrx;
uint32_t same_chr = (row_chr_idx == col_chr_idx);
R2PhaseType compare_phase_type = same_chr? unpack_phase_type : R2PhaseOmit(unpack_phase_type);
const unsigned char* unpacked_col_variants_iter = unpacked_col_variants;
for (uint32_t col_variant_idx = cur_col_variant_idx_start; col_variant_idx != col_variant_idx_stop; ++col_variant_idx, unpacked_col_variants_iter = &(unpacked_col_variants_iter[unpacked_variant_byte_stride])) {
if (col_variant_idx == col_chr_end) {
++col_chr_idx;
col_chr_end = chr_fo_idx_end[col_chr_idx];
col_is_chrx = (col_chr_idx == chrx_idx);
either_is_chrx = row_is_chrx || col_is_chrx;
same_chr = (row_chr_idx == col_chr_idx);
compare_phase_type = same_chr? unpack_phase_type : R2PhaseOmit(unpack_phase_type);
}
R2Variant col_r2v;
FillR2V(unpacked_col_variants_iter, founder_ct, unpack_phase_type, either_is_chrx, check_dosage, &col_r2v);
double result;
uint32_t is_neg;
if (!either_is_chrx) {
result = ComputeR2(&row_r2v, &col_r2v, founder_ct, compare_phase_type, check_dosage, nullptr, nullptr, &is_neg);
} else {
result = ComputeXR2(&row_r2v, &col_r2v, founder_male_collapsed, founder_nonmale_collapsed, male_dosage_invmask, nonmale_dosage_invmask, founder_ct, founder_male_ct, compare_phase_type, check_dosage, same_chr, nullptr, nullptr, &is_neg, cur_nm_buf, invmask_buf);
}
if (result == -DBL_MAX) {
result = 0.0 / 0.0;
} else if (is_unsquared) {
result = sqrt(result);
if (is_neg) {
result = -result;
}
}
if (results_d_row) {
results_d_row[col_variant_idx] = result;
} else {
results_f_row[col_variant_idx] = S_CAST(float, result);
}
}
}
}
col_parity = 1 - col_parity;
} while (!THREAD_BLOCK_FINISH(arg));
THREAD_RETURN;
}
typedef struct VcorMatrixWriteCtxStruct {
unsigned char* zbuf;
VcorFlags flags;
uint32_t orig_variant_ct;
uint32_t cur_row_variant_idx_start;
uint32_t row_window_size;
double* results_d[2];
float* results_f[2];
FILE* outfile;
CompressStreamState css;
char* cswritep;
PglErr reterr;
} VcorMatrixWriteCtx;
THREAD_FUNC_DECL VcorMatrixWriteThread(void* raw_arg) {
ThreadGroupFuncArg* arg = S_CAST(ThreadGroupFuncArg*, raw_arg);
VcorMatrixWriteCtx* ctx = S_CAST(VcorMatrixWriteCtx*, arg->sharedp->context);
const unsigned char* zbuf = ctx->zbuf;
const VcorFlags flags = ctx->flags;
const uintptr_t orig_variant_ct = ctx->orig_variant_ct;
const uint32_t triangle_calc = ((flags & (kfVcorMatrixSq0 | kfVcorMatrixTri)) != 0);
const uint32_t is_square0 = (flags / kfVcorMatrixSq0) & 1;
const uint32_t is_bin = ((flags & (kfVcorBin8 | kfVcorBin4)) != 0);
const uint32_t is_bin4 = (flags / kfVcorBin4) & 1;
uint32_t row_parity = 0;
do {
double* cur_results_d_iter = ctx->results_d[row_parity];
const uintptr_t row_idx_start = ctx->cur_row_variant_idx_start;
const uintptr_t row_window_size = ctx->row_window_size;
if (is_bin) {
FILE* outfile = ctx->outfile;
if (is_bin4) {
float* cur_results_f_iter = ctx->results_f[row_parity];
if (is_square0) {
const uintptr_t row_idx_stop = row_idx_start + row_window_size;
for (uintptr_t row_idx_p1 = row_idx_start + 1; row_idx_p1 <= row_idx_stop; ++row_idx_p1) {
if (unlikely(fwrite_checked(cur_results_f_iter, row_idx_p1 * sizeof(float), outfile) ||
fwrite_checked(zbuf, (orig_variant_ct - row_idx_p1) * sizeof(float), outfile))) {
goto VcorMatrixWriteThread_ret_WRITE_FAIL;
}
cur_results_f_iter = &(cur_results_f_iter[row_idx_p1]);
}
} else {
uintptr_t entry_ct;
if (triangle_calc) {
entry_ct = ((row_idx_start * 2 + row_window_size + 1) * row_window_size) / 2;
} else {
entry_ct = row_window_size * orig_variant_ct;
}
if (unlikely(fwrite_checked(cur_results_f_iter, entry_ct * sizeof(float), outfile))) {
goto VcorMatrixWriteThread_ret_WRITE_FAIL;
}
}
} else {
if (is_square0) {
const uintptr_t row_idx_stop = row_idx_start + row_window_size;
for (uintptr_t row_idx_p1 = row_idx_start + 1; row_idx_p1 <= row_idx_stop; ++row_idx_p1) {
if (unlikely(fwrite_checked(cur_results_d_iter, row_idx_p1 * sizeof(double), outfile) ||
fwrite_checked(zbuf, (orig_variant_ct - row_idx_p1) * sizeof(double), outfile))) {
goto VcorMatrixWriteThread_ret_WRITE_FAIL;
}
cur_results_d_iter = &(cur_results_d_iter[row_idx_p1]);
}
} else {
uintptr_t entry_ct;
if (triangle_calc) {
entry_ct = ((row_idx_start * 2 + row_window_size + 1) * row_window_size) / 2;
} else {
entry_ct = row_window_size * orig_variant_ct;
}
if (unlikely(fwrite_checked(cur_results_d_iter, entry_ct * sizeof(double), outfile))) {
goto VcorMatrixWriteThread_ret_WRITE_FAIL;
}
}
}
} else {
char* cswritep = ctx->cswritep;
CompressStreamState* cssp = &(ctx->css);
const uintptr_t row_idx_stop = row_idx_start + row_window_size;
uintptr_t col_idx_stop = triangle_calc? (row_idx_start + 1) : orig_variant_ct;
for (uintptr_t row_idx = row_idx_start; row_idx != row_idx_stop; ++row_idx) {
for (uintptr_t col_idx = 0; col_idx != col_idx_stop; ++col_idx) {
cswritep = dtoa_g(*cur_results_d_iter++, cswritep);
*cswritep++ = '\t';
}
if (triangle_calc) {
if (is_square0) {
AppendZerotabsUnsafe(orig_variant_ct - col_idx_stop, &cswritep);
}
++col_idx_stop;
}
--cswritep;
AppendBinaryEoln(&cswritep);
if (unlikely(Cswrite(cssp, &cswritep))) {
goto VcorMatrixWriteThread_ret_WRITE_FAIL;
}
}
ctx->cswritep = cswritep;
}
row_parity = 1 - row_parity;
while (0) {
VcorMatrixWriteThread_ret_WRITE_FAIL:
ctx->reterr = kPglRetWriteFail;
}
} while (!THREAD_BLOCK_FINISH(arg));
THREAD_RETURN;
}
PglErr VcorMatrix(const uintptr_t* orig_variant_include, const ChrInfo* cip, const char* const* variant_ids, const AlleleCode* maj_alleles, const uintptr_t* founder_info, const uintptr_t* sex_nm, const uintptr_t* sex_male, const VcorInfo* vcip, const char* flagname, uint32_t raw_variant_ct, uint32_t orig_variant_ct, uint32_t raw_sample_ct, uint32_t founder_ct, uint32_t parallel_idx, uint32_t parallel_tot, uint32_t max_thread_ct, PgenReader* simple_pgrp, char* outname, char* outname_end) {
// todo: take a real look at BLIS
// todo: if we can't just rework the whole function around BLIS, try using
// dsyrk() for just the unphased, dosage-present, no-missing-genotype,
// no-chrX-mixed-sex, no-chrY-nonmale case (see CalcGrm[Part]Thread())
unsigned char* bigstack_mark = g_bigstack_base;
unsigned char* bigstack_end_mark = g_bigstack_end;
PglErr reterr = kPglRetSuccess;
VcorMatrixCtx ctx;
VcorMatrixWriteCtx write_ctx;
ThreadGroup tg;
ThreadGroup write_tg;
write_ctx.outfile = nullptr;
PreinitCstream(&write_ctx.css);
write_ctx.cswritep = nullptr;
PreinitThreads(&tg);
PreinitThreads(&write_tg);
{
// Don't want to do much shared initialization with VcorTable() upfront,
// since chrX/chrY presence may be affected by
// --ld-snp/--ld-snps/--ld-snp-list
const VcorFlags flags = vcip->flags;
if (unlikely((orig_variant_ct > 400000) && (parallel_tot == 1) && (!(flags & kfVcorYesReally)))) {
logerrprintfww("Error: Gigantic (over 400k variants) %s unfiltered, non-distributed computation. Rerun with the 'yes-really' modifier if you are SURE you have enough hard drive space and want to do this.\n", flagname);
goto VcorMatrix_ret_INCONSISTENT_INPUT;
}
const uint32_t triangle_calc = ((flags & (kfVcorMatrixSq0 | kfVcorMatrixTri)) != 0);
const uint32_t first_variant_uidx = FindNth1BitFrom(orig_variant_include, 0, 1);
uint32_t row_variant_uidx_start = first_variant_uidx;
uint32_t row_variant_idx_start = 0;
uint32_t row_variant_idx_stop = orig_variant_ct;
uint32_t variant_uidx_stop = raw_variant_ct;
uint32_t variant_ct = orig_variant_ct;
const uintptr_t* variant_include = orig_variant_include;
if (parallel_tot != 1) {
if (unlikely(variant_ct < 2 * parallel_tot)) {
logerrprintf("Error: Too few variants in %s run for --parallel %u %u.\n", flagname, parallel_idx + 1, parallel_tot);
goto VcorMatrix_ret_INCONSISTENT_INPUT;
}
if (triangle_calc) {
ParallelBounds(variant_ct, 0, parallel_idx, parallel_tot, R_CAST(int32_t*, &row_variant_idx_start), R_CAST(int32_t*, &row_variant_idx_stop));
if (row_variant_idx_stop != variant_ct) {
// Outside of square0's zero-padding, we can just act as if there are
// fewer variants.
// (though we need to be a bit careful with chrX/chrY check)
variant_ct = row_variant_idx_stop;
variant_uidx_stop = 1 + FindNth1BitFrom(variant_include, 0, variant_ct);
const uint32_t variant_uidx_stopl = BitCtToWordCt(variant_uidx_stop);
uintptr_t* new_variant_include;
if (unlikely(bigstack_alloc_w(variant_uidx_stopl, &new_variant_include))) {
goto VcorMatrix_ret_INCONSISTENT_INPUT;
}
memcpy(new_variant_include, variant_include, variant_uidx_stopl * sizeof(intptr_t));
ZeroTrailingBits(variant_uidx_stop, new_variant_include);
variant_include = new_variant_include;
}
} else {
row_variant_idx_start = (S_CAST(uint64_t, variant_ct) * parallel_idx) / parallel_tot;
row_variant_idx_stop = (S_CAST(uint64_t, variant_ct) * (parallel_idx + 1)) / parallel_tot;
}
if (row_variant_idx_start) {
row_variant_uidx_start = FindNth1BitFrom(variant_include, first_variant_uidx, 1 + row_variant_idx_start);
}
}
const uint32_t phased_calc = (flags / kfVcorPhased) & 1;
const uint32_t is_unsquared = (flags / kfVcorUnsquared) & 1;
const uint32_t is_bin = ((flags & (kfVcorBin8 | kfVcorBin4)) != 0);
const uint32_t is_bin4 = (flags / kfVcorBin4) & 1;
const uint32_t matrix_output_zst = (flags / kfVcorZs) & 1;
{
write_ctx.zbuf = nullptr;
if ((flags & kfVcorMatrixSq0) && is_bin) {
const uintptr_t max_zeroes_needed = orig_variant_ct + 1 - row_variant_idx_start;
const uintptr_t max_zerobytes_needed = (2 - is_bin4) * 4 * max_zeroes_needed;
if (bigstack_alloc_uc(max_zerobytes_needed, &write_ctx.zbuf)) {
goto VcorMatrix_ret_NOMEM;
}
memset(write_ctx.zbuf, 0, max_zerobytes_needed);
}
// Write .vars file (unless parallel_idx > 0), and initialize main
// filename
char* outname_write_iter = outname_end;
*outname_write_iter++ = '.';
if (!phased_calc) {
outname_write_iter = strcpya_k(outname_write_iter, "un");
}
outname_write_iter = strcpya_k(outname_write_iter, "phased.vcor");
*outname_write_iter++ = '2' - is_unsquared;
if (is_bin) {
outname_write_iter = strcpya_k(outname_write_iter, ".bin");
}
if (parallel_idx == 0) {
strcpy_k(outname_write_iter, ".vars");
// this is never .zst-compressed since, if it's large enough for that
// to matter, the matrix itself is ridiculously large
if (fopen_checked(outname, FOPEN_WB, &write_ctx.outfile)) {
goto VcorMatrix_ret_OPEN_FAIL;
}
// variant IDs limited to 16k chars
char* write_iter = g_textbuf;
char* write_flush = &(g_textbuf[kMaxMediumLine]);
uintptr_t variant_uidx_base = 0;
uintptr_t cur_bits = variant_include[0];
for (uint32_t variant_idx = 0; variant_idx != variant_ct; ++variant_idx) {
const uintptr_t variant_uidx = BitIter1(variant_include, &variant_uidx_base, &cur_bits);
write_iter = strcpya(write_iter, variant_ids[variant_uidx]);
AppendBinaryEoln(&write_iter);
if (unlikely(fwrite_ck(write_flush, write_ctx.outfile, &write_iter))) {
goto VcorMatrix_ret_WRITE_FAIL;
}
}
if (fclose_flush_null(write_flush, write_iter, &write_ctx.outfile)) {
goto VcorMatrix_ret_WRITE_FAIL;
}
logprintfww("%s: Variant IDs written to %s .\n", flagname, outname);
}
if (parallel_tot != 1) {
*outname_write_iter++ = '.';
outname_write_iter = u32toa(parallel_idx + 1, outname_write_iter);
}
if (matrix_output_zst) {
outname_write_iter = strcpya_k(outname_write_iter, ".zst");
}
*outname_write_iter = '\0';
}
if (is_bin) {
if (fopen_checked(outname, FOPEN_WB, &write_ctx.outfile)) {
goto VcorMatrix_ret_OPEN_FAIL;
}
} else {
const uintptr_t overflow_buf_size = kCompressStreamBlock + (kMaxDoubleGSlen + 1) * variant_ct + strlen(EOLN_STR) - 1;
uint32_t compress_thread_ct = 1;
if ((!phased_calc) && (max_thread_ct > 4) && (founder_ct <= 8192)) {
compress_thread_ct = 2 + ((max_thread_ct > 8) && (founder_ct <= 4096));
}
reterr = InitCstreamAlloc(outname, 0, matrix_output_zst, compress_thread_ct, overflow_buf_size, &write_ctx.css, &write_ctx.cswritep);
if (unlikely(reterr)) {
goto VcorMatrix_ret_1;
}
}
const uint32_t raw_sample_ctl = BitCtToWordCt(raw_sample_ct);
const uint32_t founder_ctl = BitCtToWordCt(founder_ct);
const uint32_t founder_ctv = BitCtToVecCt(founder_ct);
const uint32_t founder_ctv2 = NypCtToVecCt(founder_ct);
const uint32_t founder_ctaw = founder_ctv * kWordsPerVec;
const uint32_t founder_male_ct = PopcountWordsIntersect(founder_info, sex_male, raw_sample_ctl);
const uint32_t all_haploid = IsSet(cip->haploid_mask, 0);
PgenGlobalFlags effective_gflags = PgrGetGflags(simple_pgrp) & (kfPgenGlobalHardcallPhasePresent | kfPgenGlobalDosagePresent | kfPgenGlobalDosagePhasePresent);
if (variant_ct < variant_uidx_stop) {
effective_gflags &= GflagsVfilter(variant_include, PgrGetVrtypes(simple_pgrp), variant_uidx_stop, effective_gflags);
}
const uint32_t check_phase = phased_calc && (!all_haploid) && (effective_gflags & (kfPgenGlobalHardcallPhasePresent | kfPgenGlobalDosagePhasePresent));
if (!check_phase) {
effective_gflags &= kfPgenGlobalDosagePresent;
}
const R2PhaseType phase_type = GetR2PhaseType(phased_calc, check_phase);
const uint32_t check_dosage = (effective_gflags / kfPgenGlobalDosagePresent) & 1;
uintptr_t* raregeno = nullptr;
uint32_t* difflist_sample_ids = nullptr;
const uint32_t max_simple_difflist_len = founder_ct / 64;
if (!phased_calc) {
const uint32_t max_returned_difflist_len = 2 * (raw_sample_ct / kPglMaxDifflistLenDivisor);
if (unlikely(bigstack_alloc_w(NypCtToWordCt(max_returned_difflist_len), &raregeno) ||
bigstack_alloc_u32(max_returned_difflist_len, &difflist_sample_ids))) {
goto VcorMatrix_ret_NOMEM;
}
}
// create abbreviated chromosome-view for use by worker threads.
// they may need to know where each chromosome starts/ends (use phase or
// not?), and which chromosome is X; that's it
uint32_t x_code = UINT32_MAX;
uint32_t x_fo_idx = UINT32_MAX;
// if all-males, we can ignore phase on chrX, as well as skipping
// male/nonmale-specific stats
// if all-nonmales, we initialize x_code to prevent phase from being
// ignored, but can skip the male/nonmale-specific stats
if (founder_male_ct != founder_ct) {
if (XymtExists(cip, kChrOffsetX, &x_code) && (founder_male_ct != 0)) {
x_fo_idx = cip->chr_idx_to_foidx[x_code];
}
}
const uintptr_t* founder_male_collapsed = nullptr;
const Dosage* male_dosage_invmask = nullptr;
ctx.founder_nonmale_collapsed = nullptr;
ctx.nonmale_dosage_invmask = nullptr;
{
const uint32_t chr_ct = cip->chr_ct;
uint32_t* chr_fo_idx_end;
if (bigstack_alloc_u32(chr_ct, &chr_fo_idx_end)) {
goto VcorMatrix_ret_NOMEM;
}
// not quite the same as FillSubsetChrFoVidxStart since we prune
// now-empty chromosomes. may want to have this logic in plink2_common
// too
uint32_t new_chr_ct = 0;
uint32_t chr_variant_uidx_start = 0;
uint32_t chr_variant_idx_start = 0;
ctx.chrx_idx = UINT32_MAX;
for (uint32_t chr_fo_idx = 0; chr_variant_idx_start < variant_ct; ++chr_fo_idx) {
uint32_t chr_variant_uidx_end = cip->chr_fo_vidx_start[chr_fo_idx + 1];
if (chr_variant_uidx_end > variant_uidx_stop) {
chr_variant_uidx_end = variant_uidx_stop;
}
const uint32_t chr_variant_ct = PopcountBitRange(variant_include, chr_variant_uidx_start, chr_variant_uidx_end);
if (chr_variant_ct) {
if (chr_fo_idx == x_fo_idx) {
ctx.chrx_idx = new_chr_ct;
}
const uint32_t chr_variant_idx_end = chr_variant_idx_start + chr_variant_ct;
chr_fo_idx_end[new_chr_ct++] = chr_variant_idx_end;
chr_variant_idx_start = chr_variant_idx_end;
}
chr_variant_uidx_start = chr_variant_uidx_end;
}
assert(chr_variant_idx_start == variant_ct);
ctx.chr_ct = new_chr_ct;
BigstackShrinkTop(chr_fo_idx_end, new_chr_ct * sizeof(int32_t));
ctx.chr_fo_idx_end = chr_fo_idx_end;
if (ctx.chrx_idx != UINT32_MAX) {
uintptr_t* founder_male_collapsed_fill;
uintptr_t* founder_nonmale_collapsed;
if (unlikely(bigstack_alloc_w(founder_ctl, &founder_male_collapsed_fill) ||
bigstack_alloc_w(founder_ctl, &founder_nonmale_collapsed))) {
goto VcorMatrix_ret_NOMEM;
}
CopyBitarrSubset(sex_male, founder_info, founder_ct, founder_male_collapsed_fill);
founder_male_collapsed = founder_male_collapsed_fill;
BitvecInvertCopy(founder_male_collapsed, founder_ctl, founder_nonmale_collapsed);
ZeroTrailingBits(founder_ct, founder_nonmale_collapsed);
ctx.founder_nonmale_collapsed = founder_nonmale_collapsed;
if (check_dosage) {
const uint32_t founder_ctad = RoundUpPow2(founder_ct, kDosagePerVec);
Dosage* male_dosage_invmask_fill;
Dosage* nonmale_dosage_invmask;
if (bigstack_alloc_dosage(founder_ctad, &male_dosage_invmask_fill) ||
bigstack_alloc_dosage(founder_ctad, &nonmale_dosage_invmask)) {
goto VcorMatrix_ret_NOMEM;
}
Expand1bitTo16(founder_male_collapsed, founder_ctad, 0xffff, male_dosage_invmask_fill);
Expand1bitTo16(founder_nonmale_collapsed, founder_ctad, 0xffff, nonmale_dosage_invmask);
male_dosage_invmask = male_dosage_invmask_fill;
ctx.nonmale_dosage_invmask = nonmale_dosage_invmask;
}
}
}
const uint32_t x_exists = (ctx.chrx_idx < UINT32_MAXM1);
ctx.founder_male_collapsed = founder_male_collapsed;
ctx.male_dosage_invmask = male_dosage_invmask;
uint32_t y_start;
uint32_t y_end;
GetXymtStartAndEnd(cip, kChrOffsetY, &y_start, &y_end);
uintptr_t* founder_female_collapsed = nullptr;
uintptr_t* founder_female_collapsed_interleaved = nullptr;
if (y_end) {
if (y_end > variant_uidx_stop) {
y_end = variant_uidx_stop;
}
if ((founder_male_ct == founder_ct) || (y_start >= variant_uidx_stop) || AllBitsAreZero(variant_include, y_start, y_end)) {
y_start = 0;
y_end = 0;
}
if (y_end) {
uintptr_t* founder_female;
if (bigstack_end_alloc_w(raw_sample_ctl, &founder_female)) {
goto VcorMatrix_ret_NOMEM;
}
BitvecInvmaskCopy(sex_nm, sex_male, raw_sample_ctl, founder_female);
BitvecAnd(founder_info, raw_sample_ctl, founder_female);
if (AllWordsAreZero(founder_female, raw_sample_ctl)) {
y_start = 0;
y_end = 0;
} else {
if (bigstack_alloc_w(founder_ctaw, &founder_female_collapsed) ||
bigstack_alloc_w(founder_ctaw, &founder_female_collapsed_interleaved)) {
goto VcorMatrix_ret_NOMEM;
}
CopyBitarrSubset(founder_female, founder_info, founder_ct, founder_female_collapsed);
ZeroTrailingWords(founder_ctl, founder_female_collapsed);
FillInterleavedMaskVec(founder_female_collapsed, founder_ctv, founder_female_collapsed_interleaved);
}
BigstackEndReset(bigstack_end_mark);
}
}
ctx.founder_ct = founder_ct;
ctx.founder_male_ct = founder_male_ct;
ctx.is_unsquared = is_unsquared;
ctx.triangle_calc = triangle_calc;
const uintptr_t bitvec_byte_ct = BitCtToVecCt(founder_ct) * kBytesPerVec;
uintptr_t dosagevec_byte_ct = 0;
uintptr_t unpacked_variant_byte_stride;
if (check_dosage) {
dosagevec_byte_ct = DivUp(founder_ct, kDosagePerVec) * kBytesPerVec;
const uintptr_t dosage_trail_byte_ct = LdDosageTrailAlignedByteCt(S_CAST(R2PhaseType, phased_calc), x_exists);
unpacked_variant_byte_stride = dosagevec_byte_ct * (1 + phased_calc + check_phase) + bitvec_byte_ct + dosage_trail_byte_ct;
} else {
unpacked_variant_byte_stride = RoundUpPow2(16, kBytesPerVec) + bitvec_byte_ct * (3 + 2 * check_phase);
#ifndef USE_AVX2
const uintptr_t sparse_req = RoundUpPow2((6 + max_simple_difflist_len) * sizeof(int32_t), kBytesPerVec) + NypCtToVecCt(max_simple_difflist_len) * kBytesPerVec + RoundUpPow2(founder_ctl * (kBytesPerWord + sizeof(int32_t)), kBytesPerVec);
if (sparse_req > unpacked_variant_byte_stride) {
unpacked_variant_byte_stride = sparse_req;
}
#endif
const uintptr_t nondosage_trail_byte_ct = LdNondosageTrailAlignedByteCt(S_CAST(R2PhaseType, phased_calc), x_exists);
unpacked_variant_byte_stride += nondosage_trail_byte_ct;
}
uint32_t* founder_info_cumulative_popcounts;
PgenVariant pgv;
if (unlikely(bigstack_alloc_u32(raw_sample_ctl, &founder_info_cumulative_popcounts) ||
BigstackAllocPgv(founder_ct, 0, effective_gflags, &pgv))) {
goto VcorMatrix_ret_NOMEM;
}
FillCumulativePopcounts(founder_info, raw_sample_ctl, founder_info_cumulative_popcounts);
PgrSampleSubsetIndex pssi;
PgrSetSampleSubsetIndex(founder_info_cumulative_popcounts, simple_pgrp, &pssi);
ctx.phase_type = phase_type;
ctx.check_dosage = check_dosage;
ctx.variant_ct = variant_ct;
ctx.unpacked_variant_byte_stride = unpacked_variant_byte_stride;
// Determine row-window size. Byte cost of each row-window variant:
// unpacked_variant_byte_stride for preprocessed variant data
// variant_ct * 4 * (2 - is_bin4) for results (this is an overestimate
// for triangle case)
// Assign up to ~half of remaining memory to this (ok to overshoot
// slightly).
uint32_t usual_row_window_size = row_variant_idx_stop - row_variant_idx_start;
uint32_t calc_thread_ct = max_thread_ct - (max_thread_ct > 4) - (max_thread_ct > 8);
if (calc_thread_ct > usual_row_window_size) {
calc_thread_ct = usual_row_window_size;
}
ctx.cur_nm_bufs = nullptr;
ctx.invmask_bufs = nullptr;
if (ctx.chrx_idx != UINT32_MAX) {
if (unlikely(bigstack_alloc_wp(calc_thread_ct, &ctx.cur_nm_bufs))) {
goto VcorMatrix_ret_NOMEM;
}
for (uint32_t tidx = 0; tidx != calc_thread_ct; ++tidx) {
if (unlikely(bigstack_alloc_w(founder_ctl, &(ctx.cur_nm_bufs[tidx])))) {
goto VcorMatrix_ret_NOMEM;
}
}
if (check_dosage) {
if (unlikely(bigstack_alloc_dosagep(calc_thread_ct, &ctx.invmask_bufs))) {
goto VcorMatrix_ret_NOMEM;
}
for (uint32_t tidx = 0; tidx != calc_thread_ct; ++tidx) {
// allocation automatically rounded up to at least end of vector
if (unlikely(bigstack_alloc_dosage(founder_ct, &(ctx.invmask_bufs[tidx])))) {
goto VcorMatrix_ret_NOMEM;
}
}
}
}
{
const uintptr_t row_byte_cost = unpacked_variant_byte_stride + variant_ct * (4 * k1LU) * (2 - is_bin4);
const uintptr_t row_capacity = bigstack_left() / (4 * row_byte_cost);
if (row_capacity < usual_row_window_size) {
// If multipass, may as well make usual_row_window_size a multiple of
// thread_ct.
if (row_capacity < calc_thread_ct) {
calc_thread_ct = row_capacity;
}
const uint32_t thread_workload = row_capacity / calc_thread_ct;
if (unlikely(!thread_workload)) {
goto VcorMatrix_ret_NOMEM;
}
usual_row_window_size = thread_workload * calc_thread_ct;
}
}
ctx.cur_row_variant_idx_start = row_variant_idx_start;
ctx.row_window_size = usual_row_window_size;
if (unlikely(bigstack_alloc_uc(usual_row_window_size * unpacked_variant_byte_stride, &(ctx.unpacked_row_variants[0])) ||
bigstack_alloc_uc(usual_row_window_size * unpacked_variant_byte_stride, &(ctx.unpacked_row_variants[1])))) {
goto VcorMatrix_ret_NOMEM;
}
{
const uintptr_t slot_ct = usual_row_window_size * variant_ct;
if (is_bin4) {
if (unlikely(bigstack_alloc_f(slot_ct, &(ctx.results_f[0])) ||
bigstack_alloc_f(slot_ct, &(ctx.results_f[1])))) {
goto VcorMatrix_ret_NOMEM;
}
ctx.results_d[0] = nullptr;
ctx.results_d[1] = nullptr;
} else {
if (unlikely(bigstack_alloc_d(slot_ct, &(ctx.results_d[0])) ||
bigstack_alloc_d(slot_ct, &(ctx.results_d[1])))) {
goto VcorMatrix_ret_NOMEM;
}
ctx.results_f[0] = nullptr;
ctx.results_f[1] = nullptr;
}
}
write_ctx.flags = flags;
write_ctx.orig_variant_ct = orig_variant_ct;
write_ctx.row_window_size = usual_row_window_size;
write_ctx.results_d[0] = ctx.results_d[0];
write_ctx.results_d[1] = ctx.results_d[1];
write_ctx.results_f[0] = ctx.results_f[0];
write_ctx.results_f[1] = ctx.results_f[1];
write_ctx.reterr = kPglRetSuccess;
if (unlikely(SetThreadCt(1, &write_tg))) {
goto VcorMatrix_ret_NOMEM;
}
SetThreadFuncAndData(VcorMatrixWriteThread, &write_ctx, &write_tg);
uint32_t usual_col_window_size = variant_ct;
{
const uintptr_t half_bytes_avail = RoundDownPow2(bigstack_left() / 2, kCacheline);
if (unlikely(half_bytes_avail < unpacked_variant_byte_stride)) {
goto VcorMatrix_ret_NOMEM;
}
if (variant_ct * S_CAST(uint64_t, unpacked_variant_byte_stride) > half_bytes_avail) {
usual_col_window_size = half_bytes_avail / unpacked_variant_byte_stride;
}
}
if (unlikely(bigstack_alloc_uc(usual_col_window_size * unpacked_variant_byte_stride, &(ctx.unpacked_col_variants[0])) ||
bigstack_alloc_uc(usual_col_window_size * unpacked_variant_byte_stride, &(ctx.unpacked_col_variants[1])))) {
goto VcorMatrix_ret_NOMEM;
}
if (unlikely(SetThreadCt(calc_thread_ct, &tg))) {
goto VcorMatrix_ret_NOMEM;
}
SetThreadFuncAndData(VcorMatrixThread, &ctx, &tg);
uint64_t job_size;
if (triangle_calc) {
job_size = ((S_CAST(uint64_t, row_variant_idx_stop) * (row_variant_idx_stop + 1)) - (S_CAST(uint64_t, row_variant_idx_start) * (row_variant_idx_start + 1))) / 2;
} else {
job_size = (row_variant_idx_stop - row_variant_idx_start) * S_CAST(uint64_t, variant_ct);
}
if (flags & kfVcorRefBased) {
maj_alleles = nullptr;
}
AlleleCode aidx = 0;
uint64_t job_done = 0;
uint64_t next_job_done = 0;
uint64_t pct_thresh = job_size / 100;
uint32_t pct = 0;
uint32_t cur_row_variant_idx_start = row_variant_idx_start;
uint32_t row_window_size = usual_row_window_size;
uint32_t col_variant_idx_stop = variant_ct;
uint32_t row_chr_fo_idx = UINT32_MAX; // deliberate overflow
uint32_t row_chr_end = 0;
uint32_t row_read_phase = 0;
uint32_t row_parity = 0;
uint32_t col_parity = 0;
uintptr_t row_variant_uidx_base;
uintptr_t row_cur_bits;
BitIter1Start(variant_include, row_variant_uidx_start, &row_variant_uidx_base, &row_cur_bits);
printf("%s: 0%%", flagname);
fflush(stdout);
do {
// 1. unpack all variants in current row block.
// 2. iterate through column blocks.
if (cur_row_variant_idx_start + row_window_size > row_variant_idx_stop) {
row_window_size = row_variant_idx_stop - cur_row_variant_idx_start;
}
unsigned char* row_load_iter = ctx.unpacked_row_variants[row_parity];
for (uint32_t vidx_offset = 0; vidx_offset != row_window_size; ++vidx_offset, row_load_iter = &(row_load_iter[unpacked_variant_byte_stride])) {
const uint32_t variant_uidx = BitIter1(variant_include, &row_variant_uidx_base, &row_cur_bits);
if (variant_uidx >= row_chr_end) {
do {
++row_chr_fo_idx;
row_chr_end = cip->chr_fo_vidx_start[row_chr_fo_idx + 1];
} while (variant_uidx >= row_chr_end);
if (phase_type == kR2PhaseTypePresent) {
const uint32_t row_chr_idx = cip->chr_file_order[row_chr_fo_idx];
row_read_phase = (!IsSet(cip->haploid_mask, row_chr_idx)) || (row_chr_idx == x_code);
if (!row_read_phase) {
pgv.phasepresent_ct = 0;
pgv.dphase_ct = 0;
}
}
}
if (maj_alleles) {
aidx = maj_alleles[variant_uidx];
}
const uint32_t is_y = (variant_uidx < y_end) && (variant_uidx >= y_start);
if (check_dosage) {
if (row_read_phase) {
reterr = PgrGetInv1Dp(founder_info, pssi, founder_ct, variant_uidx, aidx, simple_pgrp, &pgv);
} else {
reterr = PgrGetInv1D(founder_info, pssi, founder_ct, variant_uidx, aidx, simple_pgrp, pgv.genovec, pgv.dosage_present, pgv.dosage_main, &pgv.dosage_ct);
}
if (unlikely(reterr)) {
goto VcorMatrix_ret_PGR_FAIL;
}
if (is_y) {
InterleavedSetMissingCleardosage(founder_female_collapsed, founder_female_collapsed_interleaved, founder_ctv2, pgv.genovec, &pgv.dosage_ct, pgv.dosage_present, pgv.dosage_main);
}
LdUnpackDosage(&pgv, founder_male_collapsed, male_dosage_invmask, founder_ct, phase_type, row_load_iter);
} else {
if ((!phased_calc) && (!is_y)) {
uint32_t difflist_common_geno;
uint32_t difflist_len;
reterr = PgrGetInv1DifflistOrGenovec(founder_info, pssi, founder_ct, max_simple_difflist_len, variant_uidx, aidx, simple_pgrp, pgv.genovec, &difflist_common_geno, raregeno, difflist_sample_ids, &difflist_len);
if (unlikely(reterr)) {
goto VcorMatrix_ret_PGR_FAIL;
}
if (difflist_common_geno != UINT32_MAX) {
if (difflist_len <= max_simple_difflist_len) {
LdUnpackNondosageSparse(raregeno, difflist_sample_ids, founder_male_collapsed, founder_ct, founder_male_ct, difflist_common_geno, difflist_len, row_load_iter);
continue;
}
PgrDifflistToGenovecUnsafe(raregeno, difflist_sample_ids, difflist_common_geno, founder_ct, difflist_len, pgv.genovec);
}
} else {
if (row_read_phase) {
reterr = PgrGetInv1P(founder_info, pssi, founder_ct, variant_uidx, aidx, simple_pgrp, pgv.genovec, pgv.phasepresent, pgv.phaseinfo, &pgv.phasepresent_ct);
} else {
reterr = PgrGetInv1(founder_info, pssi, founder_ct, variant_uidx, aidx, simple_pgrp, pgv.genovec);
}
if (unlikely(reterr)) {
goto VcorMatrix_ret_PGR_FAIL;
}
if (is_y) {
InterleavedSetMissing(founder_female_collapsed_interleaved, founder_ctv2, pgv.genovec);
}
}
LdUnpackNondosageDense(&pgv, founder_male_collapsed, founder_ct, phase_type, row_load_iter);
}
}
const uint32_t cur_row_variant_idx_stop = cur_row_variant_idx_start + row_window_size;
if (triangle_calc) {
col_variant_idx_stop = cur_row_variant_idx_stop;
}
uint32_t cur_col_variant_idx_start = 0;
uint32_t col_window_size = usual_col_window_size;
uint32_t col_chr_fo_idx = UINT32_MAX; // deliberate overflow
uint32_t col_chr_end = 0;
uint32_t col_read_phase = 0;
uintptr_t col_variant_uidx_base;
uintptr_t col_cur_bits;
BitIter1Start(variant_include, first_variant_uidx, &col_variant_uidx_base, &col_cur_bits);
do {
if (cur_col_variant_idx_start + col_window_size > col_variant_idx_stop) {
col_window_size = col_variant_idx_stop - cur_col_variant_idx_start;
}
unsigned char* col_load_iter = ctx.unpacked_col_variants[col_parity];
// possible todo: don't duplicate already-unpacked row variants
for (uint32_t vidx_offset = 0; vidx_offset != col_window_size; ++vidx_offset, col_load_iter = &(col_load_iter[unpacked_variant_byte_stride])) {
const uint32_t variant_uidx = BitIter1(variant_include, &col_variant_uidx_base, &col_cur_bits);
if (variant_uidx >= col_chr_end) {
do {
++col_chr_fo_idx;
col_chr_end = cip->chr_fo_vidx_start[col_chr_fo_idx + 1];
} while (variant_uidx >= col_chr_end);
if (phase_type == kR2PhaseTypePresent) {
const uint32_t col_chr_idx = cip->chr_file_order[col_chr_fo_idx];
col_read_phase = (!IsSet(cip->haploid_mask, col_chr_idx)) || (col_chr_idx == x_code);
if (!col_read_phase) {
pgv.phasepresent_ct = 0;
pgv.dphase_ct = 0;
}
}
}
if (maj_alleles) {
aidx = maj_alleles[variant_uidx];
}
const uint32_t is_y = (variant_uidx < y_end) && (variant_uidx >= y_start);
if (check_dosage) {
if (col_read_phase) {
reterr = PgrGetInv1Dp(founder_info, pssi, founder_ct, variant_uidx, aidx, simple_pgrp, &pgv);
} else {
reterr = PgrGetInv1D(founder_info, pssi, founder_ct, variant_uidx, aidx, simple_pgrp, pgv.genovec, pgv.dosage_present, pgv.dosage_main, &pgv.dosage_ct);
}
if (unlikely(reterr)) {
goto VcorMatrix_ret_PGR_FAIL;
}
if (is_y) {
InterleavedSetMissingCleardosage(founder_female_collapsed, founder_female_collapsed_interleaved, founder_ctv2, pgv.genovec, &pgv.dosage_ct, pgv.dosage_present, pgv.dosage_main);
}
LdUnpackDosage(&pgv, founder_male_collapsed, male_dosage_invmask, founder_ct, phase_type, col_load_iter);
} else {
if ((!phased_calc) && (!is_y)) {
uint32_t difflist_common_geno;
uint32_t difflist_len;
reterr = PgrGetInv1DifflistOrGenovec(founder_info, pssi, founder_ct, max_simple_difflist_len, variant_uidx, aidx, simple_pgrp, pgv.genovec, &difflist_common_geno, raregeno, difflist_sample_ids, &difflist_len);
if (unlikely(reterr)) {
goto VcorMatrix_ret_PGR_FAIL;
}
if (difflist_common_geno != UINT32_MAX) {
if (difflist_len <= max_simple_difflist_len) {
LdUnpackNondosageSparse(raregeno, difflist_sample_ids, founder_male_collapsed, founder_ct, founder_male_ct, difflist_common_geno, difflist_len, col_load_iter);
continue;
}
PgrDifflistToGenovecUnsafe(raregeno, difflist_sample_ids, difflist_common_geno, founder_ct, difflist_len, pgv.genovec);
}
} else {
if (col_read_phase) {
reterr = PgrGetInv1P(founder_info, pssi, founder_ct, variant_uidx, aidx, simple_pgrp, pgv.genovec, pgv.phasepresent, pgv.phaseinfo, &pgv.phasepresent_ct);
} else {
reterr = PgrGetInv1(founder_info, pssi, founder_ct, variant_uidx, aidx, simple_pgrp, pgv.genovec);
}
if (unlikely(reterr)) {
goto VcorMatrix_ret_PGR_FAIL;
}
if (is_y) {
InterleavedSetMissing(founder_female_collapsed_interleaved, founder_ctv2, pgv.genovec);
}
}
LdUnpackNondosageDense(&pgv, founder_male_collapsed, founder_ct, phase_type, col_load_iter);
}
}
const uint32_t cur_col_variant_idx_stop = cur_col_variant_idx_start + col_window_size;
job_done = next_job_done;
if (triangle_calc) {
// Shard shape can be generalized as a (possibly-zero-height)
// trapezoid stacked on a (possibly-zero-height) rectangle.
//
// Trapezoid starts on the first nonempty row, and ends either after
// the first full row or, if that's not in the shard, at the shard
// bottom. Rectangle starts where the trapezoid ends.
// both of these values are guaranteed to be less than
// cur_row_variant_idx_stop == col_variant_idx_stop
const uintptr_t trapezoid_start_row_idx = MAXV(cur_row_variant_idx_start, cur_col_variant_idx_start);
const uintptr_t trapezoid_stop_row_idx = MINV(cur_row_variant_idx_stop, MAXV(cur_row_variant_idx_start, cur_col_variant_idx_stop));
const uintptr_t trapezoid_height = trapezoid_stop_row_idx - trapezoid_start_row_idx;
if (trapezoid_height) {
const uintptr_t first_row_len = trapezoid_start_row_idx + 1 - cur_col_variant_idx_start;
const uintptr_t last_row_len = trapezoid_stop_row_idx - cur_col_variant_idx_start;
next_job_done += (S_CAST(uint64_t, trapezoid_height) * (first_row_len + last_row_len)) / 2;
}
next_job_done += (cur_row_variant_idx_stop - trapezoid_stop_row_idx) * S_CAST(uint64_t, col_window_size);
} else {
next_job_done += row_window_size * S_CAST(uint64_t, col_window_size);
}
if ((cur_row_variant_idx_start > row_variant_idx_start) || cur_col_variant_idx_start) {
JoinThreads(&tg);
if (!cur_col_variant_idx_start) {
const uint32_t prev_row_variant_idx_start = cur_row_variant_idx_start - usual_row_window_size;
if (prev_row_variant_idx_start > row_variant_idx_start) {
JoinThreads(&write_tg);
if (unlikely(write_ctx.reterr)) {
reterr = write_ctx.reterr;
goto VcorMatrix_ret_1;
}
}
write_ctx.cur_row_variant_idx_start = prev_row_variant_idx_start;
if (unlikely(SpawnThreads(&write_tg))) {
goto VcorMatrix_ret_THREAD_CREATE_FAIL;
}
ctx.cur_row_variant_idx_start = cur_row_variant_idx_start;
ctx.row_window_size = row_window_size;
}
}
ctx.cur_col_variant_idx_start = cur_col_variant_idx_start;
ctx.col_window_size = col_window_size;
if (next_job_done == job_size) {
DeclareLastThreadBlock(&tg);
}
if (unlikely(SpawnThreads(&tg))) {
goto VcorMatrix_ret_THREAD_CREATE_FAIL;
}
col_parity = 1 - col_parity;
if (job_done >= pct_thresh) {
if (pct > 10) {
putc_unlocked('\b', stdout);
}
pct = (job_done * 100) / job_size;
printf("\b\b%u%%", pct++);
fflush(stdout);
pct_thresh = (pct * job_size) / 100;
}
cur_col_variant_idx_start = cur_col_variant_idx_stop;
} while (cur_col_variant_idx_start != col_variant_idx_stop);
cur_row_variant_idx_start = cur_row_variant_idx_stop;
row_parity = 1 - row_parity;
} while (cur_row_variant_idx_start != row_variant_idx_stop);
JoinThreads(&tg);
const uint32_t prev_row_variant_idx_start = cur_row_variant_idx_start - row_window_size;
if (prev_row_variant_idx_start > row_variant_idx_start) {
JoinThreads(&write_tg);
if (unlikely(write_ctx.reterr)) {
reterr = write_ctx.reterr;
goto VcorMatrix_ret_1;
}
}
DeclareLastThreadBlock(&write_tg);
write_ctx.cur_row_variant_idx_start = prev_row_variant_idx_start;
write_ctx.row_window_size = row_window_size;
if (unlikely(SpawnThreads(&write_tg))) {
goto VcorMatrix_ret_THREAD_CREATE_FAIL;
}
JoinThreads(&write_tg);
if (unlikely(write_ctx.reterr)) {
reterr = write_ctx.reterr;
goto VcorMatrix_ret_1;
}
fputs("\r", stdout);
logprintfww("%s: Matrix%s written to %s .\n", flagname, (parallel_tot == 1)? "" : " piece", outname);
}
while (0) {
VcorMatrix_ret_NOMEM:
reterr = kPglRetNomem;
break;
VcorMatrix_ret_OPEN_FAIL:
reterr = kPglRetOpenFail;
break;
VcorMatrix_ret_WRITE_FAIL:
reterr = kPglRetWriteFail;
break;
VcorMatrix_ret_INCONSISTENT_INPUT:
reterr = kPglRetInconsistentInput;
break;
VcorMatrix_ret_THREAD_CREATE_FAIL:
reterr = kPglRetThreadCreateFail;
break;
VcorMatrix_ret_PGR_FAIL:
PgenErrPrintN(reterr);
break;
}
VcorMatrix_ret_1:
CleanupThreads(&write_tg);
CleanupThreads(&tg);
CswriteCloseCond(&write_ctx.css, write_ctx.cswritep);
fclose_cond(write_ctx.outfile);
BigstackDoubleReset(bigstack_mark, bigstack_end_mark);
return reterr;
}
// indexes here are all subsetted (founder_idx / variant_idx), not sample_uidx
// / variant_uidx.
typedef struct VcorTableCtxStruct {
// Shared constants.
const uintptr_t* founder_male_collapsed;
const uintptr_t* founder_nonmale_collapsed;
const Dosage* male_dosage_invmask;
const Dosage* nonmale_dosage_invmask;
uint32_t chrx_idx; // UINT32_MAX if not present
uint32_t founder_ct;
uint32_t founder_male_ct;
unsigned char is_unsquared;
unsigned char phase_type;
unsigned char check_dosage;
unsigned char report_d;
unsigned char report_dprime;
uintptr_t unpacked_variant_byte_stride;
// Input data.
unsigned char* unpacked_variants[2]; // read from [col_parity]
// uint32_t* row_uvidxs[2]; // read from [row_parity]
uint32_t* col_uvidxs[2]; // read from [col_parity]
ChrIdx* row_chr_idxs[2]; // read from [row_parity]
ChrIdx* col_chr_idxs[2]; // read from [col_parity]
uint32_t* col_offset_starts[2]; // read from [row_parity]
// read from [row_parity].
// col_offset_end = write_idx_starts[k+1] - write_idx_starts[k].
// Note that these intervals usually include col_variant_idx ==
// row_variant_idx. Those entries are skipped by the writer and aren't
// filled.
// In the --ld-snp/--ld-snps/--ld-snp-list case, if col_variant_idx is in the
// row-variant set, and col_variant_idx < row_variant_idx, the writer skips
// the entry (since it was previously written with row/column swapped), but
// we currently don't optimize out the computation.
uintptr_t* write_idx_starts[2];
uint32_t* row_window_sizes; // read from [row_parity]
uint32_t col_window_starts[2]; // read from [col_parity]
uint32_t col_window_ends[2]; // read from [col_parity]
// per-thread chrX workspaces.
uintptr_t** cur_nm_bufs;
Dosage** invmask_bufs;
// Output double-buffer. Write to [row_parity]. For better locality,
// r^2 / d / dprime are adjacent (and in that order) if we're writing more
// than one of them.
double* results[2];
} VcorTableCtx;
THREAD_FUNC_DECL VcorTableThread(void* raw_arg) {
ThreadGroupFuncArg* arg = S_CAST(ThreadGroupFuncArg*, raw_arg);
const uint32_t tidx = arg->tidx;
const uint32_t calc_thread_ct = GetThreadCt(arg->sharedp);
VcorTableCtx* ctx = S_CAST(VcorTableCtx*, arg->sharedp->context);
const uintptr_t* founder_male_collapsed = ctx->founder_male_collapsed;
const uintptr_t* founder_nonmale_collapsed = ctx->founder_nonmale_collapsed;
const Dosage* male_dosage_invmask = ctx->male_dosage_invmask;
const Dosage* nonmale_dosage_invmask = ctx->nonmale_dosage_invmask;
uintptr_t* cur_nm_buf = ctx->cur_nm_bufs? ctx->cur_nm_bufs[tidx] : nullptr;
Dosage* invmask_buf = ctx->invmask_bufs? ctx->invmask_bufs[tidx] : nullptr;
const uint32_t chrx_idx = ctx->chrx_idx;
const uint32_t x_exists = (chrx_idx < UINT32_MAXM1);
const uint32_t founder_ct = ctx->founder_ct;
const uint32_t founder_male_ct = ctx->founder_male_ct;
const uint32_t is_unsquared = ctx->is_unsquared;
const R2PhaseType unpack_phase_type = S_CAST(R2PhaseType, ctx->phase_type);
const uint32_t check_dosage = ctx->check_dosage;
const uint32_t report_d = ctx->report_d;
const uint32_t report_dprime = ctx->report_dprime;
const uintptr_t unpacked_variant_byte_stride = ctx->unpacked_variant_byte_stride;
const uintptr_t result_stride = 1 + report_d + report_dprime;
// only flips when moving to next row-window. detect this with
// (col_window_start == 0).
// initialize to 1 instead of 0 so we don't need to special-case first row.
uint32_t row_parity = 1;
// always flips
uint32_t col_parity = 0;
double dd = 0.0;
double dprime = 0.0;
double* d_ptr = report_d? (&dd) : nullptr;
double* dprime_ptr = report_dprime? (&dprime) : nullptr;
do {
const uint32_t col_window_start = ctx->col_window_starts[col_parity];
const uint32_t col_window_end = ctx->col_window_ends[col_parity];
if (col_window_start == 0) {
row_parity = 1 - row_parity;
}
const uint64_t row_window_size = ctx->row_window_sizes[row_parity];
const uint32_t row_start_offset = (row_window_size * tidx) / calc_thread_ct;
const uint32_t row_end_offset = (row_window_size * (tidx + 1)) / calc_thread_ct;
if (row_end_offset > row_start_offset) {
unsigned char* unpacked_variants = ctx->unpacked_variants[col_parity];
// uint32_t* row_uvidxs = ctx->row_uvidxs[row_parity];
uint32_t* col_uvidxs = ctx->col_uvidxs[col_parity];
const ChrIdx* row_chr_idxs = ctx->row_chr_idxs[row_parity];
const ChrIdx* col_chr_idxs = ctx->col_chr_idxs[col_parity];
const uint32_t* col_offset_starts = ctx->col_offset_starts[row_parity];
const uintptr_t* write_idx_starts = ctx->write_idx_starts[row_parity];
double* results = ctx->results[row_parity];
for (uint32_t row_offset_idx = row_start_offset; row_offset_idx != row_end_offset; ++row_offset_idx) {
const uint32_t col_offset_start = col_offset_starts[row_offset_idx];
const uintptr_t write_idx_start = write_idx_starts[row_offset_idx];
uint32_t col_offset_stop = (write_idx_starts[row_offset_idx + 1] - write_idx_start) + col_offset_start;
if ((col_offset_start >= col_window_end) || (col_offset_stop <= col_window_start)) {
continue;
}
if (col_offset_stop > col_window_end) {
col_offset_stop = col_window_end;
}
// const uint32_t cur_row_uvidx = row_uvidxs[row_offset_idx];
const uint32_t cur_row_uvidx = row_offset_idx;
const unsigned char* unpacked_row_ptr = &(unpacked_variants[row_offset_idx * unpacked_variant_byte_stride]);
R2Variant row_r2v;
FillR2V(unpacked_row_ptr, founder_ct, unpack_phase_type, x_exists, check_dosage, &row_r2v);
const uint32_t row_chr_idx = row_chr_idxs[row_offset_idx];
const uint32_t row_is_chrx = (row_chr_idx == chrx_idx);
uint32_t col_offset_idx = MAXV(col_offset_start, col_window_start);
double* write_iter = &(results[(write_idx_start + col_offset_idx - col_offset_start) * result_stride]);
for (; col_offset_idx != col_offset_stop; ++col_offset_idx) {
// bugfix (18 Apr 2024): must subtract col_window_start
const uint32_t cur_col_uvidx = col_uvidxs[col_offset_idx - col_window_start];
if (cur_row_uvidx == cur_col_uvidx) {
write_iter = &(write_iter[result_stride]);
continue;
}
const unsigned char* unpacked_col_ptr = &(unpacked_variants[cur_col_uvidx * unpacked_variant_byte_stride]);
const uint32_t col_chr_idx = col_chr_idxs[col_offset_idx - col_window_start];
const uint32_t either_is_chrx = row_is_chrx || (col_chr_idx == chrx_idx);
R2Variant col_r2v;
FillR2V(unpacked_col_ptr, founder_ct, unpack_phase_type, either_is_chrx, check_dosage, &col_r2v);
const uint32_t same_chr = (row_chr_idx == col_chr_idx);
R2PhaseType compare_phase_type = same_chr? unpack_phase_type : R2PhaseOmit(unpack_phase_type);
double r_or_r2;
uint32_t is_neg;
if (!either_is_chrx) {
r_or_r2 = ComputeR2(&row_r2v, &col_r2v, founder_ct, compare_phase_type, check_dosage, d_ptr, dprime_ptr, &is_neg);
} else {
r_or_r2 = ComputeXR2(&row_r2v, &col_r2v, founder_male_collapsed, founder_nonmale_collapsed, male_dosage_invmask, nonmale_dosage_invmask, founder_ct, founder_male_ct, compare_phase_type, check_dosage, same_chr, d_ptr, dprime_ptr, &is_neg, cur_nm_buf, invmask_buf);
}
if (r_or_r2 == -DBL_MAX) {
r_or_r2 = 0.0 / 0.0;
} else if (is_unsquared) {
r_or_r2 = sqrt(r_or_r2) ;
if (is_neg) {
r_or_r2 = -r_or_r2;
}
}
*write_iter++ = r_or_r2;
if (report_d) {
*write_iter++ = dd;
}
if (report_dprime) {
*write_iter++ = dprime;
}
}
}
}
col_parity = 1 - col_parity;
} while (!THREAD_BLOCK_FINISH(arg));
THREAD_RETURN;
}
typedef struct VcorTableWriteCtxStruct {
const uintptr_t* variant_include;
const uint32_t* variant_include_cumulative_popcounts;
const uintptr_t* row_variant_include;
const uint32_t* row_variant_include_cumulative_popcounts;
const uintptr_t* row_subset_exclude;
const ChrInfo* cip;
const uint32_t* variant_bps;
const char* const* variant_ids;
const uintptr_t* allele_idx_offsets;
const char* const* allele_storage;
const uintptr_t* nonref_flags;
const AlleleCode* maj_alleles;
const double* allele_freqs;
double r_or_r2_thresh;
uint32_t raw_variant_ct;
VcorFlags flags;
unsigned char all_nonref;
unsigned char provref_col;
// these are relative to row_variant_include
uint32_t variant_ridx_starts[2];
uint32_t* row_window_sizes; // [2]
// these are relative to variant_include
uint32_t col_variant_idx_starts[2];
uint32_t* col_offset_starts[2];
uintptr_t* write_idx_starts[2];
double* results[2];
char* row_chr_buf;
char* col_chr_buf;
CompressStreamState css;
char* cswritep;
PglErr reterr;
} VcorTableWriteCtx;
THREAD_FUNC_DECL VcorTableWriteThread(void* raw_arg) {
ThreadGroupFuncArg* arg = S_CAST(ThreadGroupFuncArg*, raw_arg);
VcorTableWriteCtx* ctx = S_CAST(VcorTableWriteCtx*, arg->sharedp->context);
const uintptr_t* variant_include = ctx->variant_include;
const uint32_t* variant_include_cumulative_popcounts = ctx->variant_include_cumulative_popcounts;
const uintptr_t* row_variant_include = ctx->row_variant_include;
const uint32_t* row_variant_include_cumulative_popcounts = ctx->row_variant_include_cumulative_popcounts;
const uintptr_t* row_subset_exclude = ctx->row_subset_exclude;
const ChrInfo* cip = ctx->cip;
const uint32_t* variant_bps = ctx->variant_bps;
const char* const* variant_ids = ctx->variant_ids;
const uintptr_t* allele_idx_offsets = ctx->allele_idx_offsets;
const char* const* allele_storage = ctx->allele_storage;
const uintptr_t* nonref_flags = ctx->nonref_flags;
const AlleleCode* maj_alleles = ctx->maj_alleles;
const double* allele_freqs = ctx->allele_freqs;
const VcorFlags flags = ctx->flags;
const uint32_t inter_chr = (flags / kfVcorInterChr) & 1;
const uint32_t chr_col = (flags / kfVcorColChrom) & 1;
const uint32_t pos_col = (flags / kfVcorColPos) & 1;
const uint32_t id_col = (flags / kfVcorColId) & 1;
const uint32_t ref_col = (flags / kfVcorColRef) & 1;
const uint32_t alt1_col = (flags / kfVcorColAlt1) & 1;
const uint32_t alt_col = (flags / kfVcorColAlt) & 1;
const uint32_t all_nonref = ctx->all_nonref;
const uint32_t provref_col = ctx->provref_col;
const uint32_t maj_col = (flags / kfVcorColMaj) & 1;
const uint32_t nonmaj_col = (flags / kfVcorColNonmaj) & 1;
const uint32_t freq_col = (flags / kfVcorColFreq) & 1;
const uint32_t d_col = (flags / kfVcorColD) & 1;
const uint32_t dprime_col = ((flags & (kfVcorColDprime | kfVcorColDprimeAbs)) != 0);
const uint32_t dprime_abs = (flags / kfVcorColDprimeAbs) & 1;
const uint32_t results_stride = 1 + d_col + dprime_col;
const double r_or_r2_thresh = ctx->r_or_r2_thresh;
const uint32_t raw_variant_ctl = BitCtToWordCt(ctx->raw_variant_ct);
char* row_chr_buf = ctx->row_chr_buf;
char* col_chr_buf = ctx->col_chr_buf;
uint32_t row_chr_fo_idx = UINT32_MAX;
uint32_t row_chr_end = 0;
uint32_t row_chr_blen = 0;
uint32_t col_chr_fo_idx = UINT32_MAX;
uint32_t col_chr_end = 0;
uint32_t col_chr_blen = 0;
uint32_t row_allele_ct = 2;
uint32_t col_allele_ct = 2;
uint32_t maj_allele_idx = 0;
uint32_t row_parity = 0;
do {
const uint32_t* col_offset_starts = ctx->col_offset_starts[row_parity];
const uintptr_t* write_idx_starts = ctx->write_idx_starts[row_parity];
const double* cur_results_iter = ctx->results[row_parity];
const uintptr_t variant_ridx_start = ctx->variant_ridx_starts[row_parity];
const uint32_t row_window_size = ctx->row_window_sizes[row_parity];
const uint32_t col_variant_idx_start = ctx->col_variant_idx_starts[row_parity];
char* cswritep = ctx->cswritep;
CompressStreamState* cssp = &(ctx->css);
const uint32_t row_variant_uidx_start = IdxToUidx(row_variant_include, row_variant_include_cumulative_popcounts, 0, raw_variant_ctl, variant_ridx_start);
uintptr_t row_variant_uidx_base;
uintptr_t row_cur_bits;
BitIter1Start(row_variant_include, row_variant_uidx_start, &row_variant_uidx_base, &row_cur_bits);
uint32_t col_variant_widx = 0;
for (uint32_t row_offset = 0; row_offset != row_window_size; ++row_offset) {
const uint32_t row_variant_uidx = BitIter1(row_variant_include, &row_variant_uidx_base, &row_cur_bits);
if (row_variant_uidx >= row_chr_end) {
do {
++row_chr_fo_idx;
row_chr_end = cip->chr_fo_vidx_start[row_chr_fo_idx + 1];
} while (row_variant_uidx >= row_chr_end);
if (row_chr_buf) {
const uint32_t row_chr_idx = cip->chr_file_order[row_chr_fo_idx];
char* chr_name_end = chrtoa(cip, row_chr_idx, row_chr_buf);
*chr_name_end = '\t';
row_chr_blen = 1 + S_CAST(uintptr_t, chr_name_end - row_chr_buf);
// row_chr_buf == col_chr_buf except in inter_chr case
col_chr_blen = row_chr_blen;
}
}
uintptr_t row_allele_idx_offset_base = row_variant_uidx * 2;
if (allele_idx_offsets) {
row_allele_idx_offset_base = allele_idx_offsets[row_variant_uidx];
row_allele_ct = allele_idx_offsets[row_variant_uidx + 1] - row_allele_idx_offset_base;
}
const char* const* cur_row_alleles = &(allele_storage[row_allele_idx_offset_base]);
const uint32_t col_offset_start = col_offset_starts[row_offset];
const uint32_t col_offset_stop = write_idx_starts[row_offset + 1] - write_idx_starts[row_offset] + col_offset_start;
if (inter_chr) {
col_chr_fo_idx = UINT32_MAX;
col_chr_end = 0;
}
const uint32_t col_variant_uidx_start = ExpsearchIdxToUidx(variant_include, variant_include_cumulative_popcounts, raw_variant_ctl, col_variant_idx_start + col_offset_start, &col_variant_widx);
uintptr_t col_variant_uidx_base;
uintptr_t col_cur_bits;
BitIter1Start(variant_include, col_variant_uidx_start, &col_variant_uidx_base, &col_cur_bits);
for (uint32_t col_offset = col_offset_start; col_offset != col_offset_stop; ++col_offset) {
const uint32_t col_variant_uidx = BitIter1(variant_include, &col_variant_uidx_base, &col_cur_bits);
if (col_variant_uidx == row_variant_uidx) {
cur_results_iter = &(cur_results_iter[results_stride]);
continue;
}
// In the usual case, we can report each pair exactly once by requiring
// col_variant_uidx > row_variant_uidx.
// However, if --ld-snp/--ld-snps/--ld-snp-list is in effect, that may
// cause some variant-pairs to not be reported at all. In that case,
// we only enforce the col_variant_uidx > row_variant_uidx rule when
// col_variant_uidx corresponds to a row-variant. (row_subset_exclude
// usually points to row_variant_include; the exception is when
// --parallel is also in effect.)
if (row_subset_exclude && (col_variant_uidx < row_variant_uidx) && IsSet(row_subset_exclude, col_variant_uidx)) {
cur_results_iter = &(cur_results_iter[results_stride]);
continue;
}
const double r_or_r2 = *cur_results_iter;
// !(a >= b) instead of (a < b) so that NaN is handled properly
if ((r_or_r2_thresh >= 0.0) && (!(fabs(r_or_r2) >= r_or_r2_thresh))) {
cur_results_iter = &(cur_results_iter[results_stride]);
continue;
}
++cur_results_iter;
if (col_variant_uidx >= col_chr_end) {
do {
++col_chr_fo_idx;
col_chr_end = cip->chr_fo_vidx_start[col_chr_fo_idx + 1];
} while (col_variant_uidx >= col_chr_end);
if (col_chr_buf) {
const uint32_t col_chr_idx = cip->chr_file_order[col_chr_fo_idx];
char* chr_name_end = chrtoa(cip, col_chr_idx, col_chr_buf);
*chr_name_end = '\t';
col_chr_blen = 1 + S_CAST(uintptr_t, chr_name_end - col_chr_buf);
}
}
if (chr_col) {
cswritep = memcpya(cswritep, row_chr_buf, row_chr_blen);
}
if (pos_col) {
cswritep = u32toa_x(variant_bps[row_variant_uidx], '\t', cswritep);
}
if (id_col) {
cswritep = strcpyax(cswritep, variant_ids[row_variant_uidx], '\t');
}
if (ref_col) {
cswritep = strcpyax(cswritep, cur_row_alleles[0], '\t');
}
if (alt1_col) {
cswritep = strcpyax(cswritep, cur_row_alleles[1], '\t');
}
if (alt_col) {
for (uint32_t allele_idx = 1; allele_idx != row_allele_ct; ++allele_idx) {
if (unlikely(Cswrite(cssp, &cswritep))) {
goto VcorTableWriteThread_ret_WRITE_FAIL;
}
cswritep = strcpyax(cswritep, cur_row_alleles[allele_idx], ',');
}
cswritep[-1] = '\t';
}
if (provref_col) {
*cswritep++ = (all_nonref || (nonref_flags && IsSet(nonref_flags, row_variant_uidx)))? 'Y' : 'N';
*cswritep++ = '\t';
}
if (maj_col || nonmaj_col || freq_col) {
if (maj_alleles) {
maj_allele_idx = maj_alleles[row_variant_uidx];
}
if (maj_col) {
cswritep = strcpyax(cswritep, cur_row_alleles[maj_allele_idx], '\t');
}
if (nonmaj_col) {
for (uint32_t allele_idx = 0; allele_idx != row_allele_ct; ++allele_idx) {
if (allele_idx == maj_allele_idx) {
continue;
}
if (unlikely(Cswrite(cssp, &cswritep))) {
goto VcorTableWriteThread_ret_WRITE_FAIL;
}
cswritep = strcpyax(cswritep, cur_row_alleles[allele_idx], ',');
}
cswritep[-1] = '\t';
}
if (freq_col) {
const double maj_freq = GetAlleleFreq(&(allele_freqs[row_allele_idx_offset_base - row_variant_uidx]), maj_allele_idx, row_allele_ct);
cswritep = dtoa_g(1.0 - maj_freq, cswritep);
*cswritep++ = '\t';
}
}
if (chr_col) {
cswritep = memcpya(cswritep, col_chr_buf, col_chr_blen);
}
if (pos_col) {
cswritep = u32toa_x(variant_bps[col_variant_uidx], '\t', cswritep);
}
if (id_col) {
cswritep = strcpyax(cswritep, variant_ids[col_variant_uidx], '\t');
}
uintptr_t col_allele_idx_offset_base = col_variant_uidx * 2;
if (allele_idx_offsets) {
col_allele_idx_offset_base = allele_idx_offsets[col_variant_uidx];
col_allele_ct = allele_idx_offsets[col_variant_uidx + 1] - col_allele_idx_offset_base;
}
const char* const* cur_col_alleles = &(allele_storage[col_allele_idx_offset_base]);
if (ref_col) {
cswritep = strcpyax(cswritep, cur_col_alleles[0], '\t');
}
if (alt1_col) {
cswritep = strcpyax(cswritep, cur_col_alleles[1], '\t');
}
if (alt_col) {
for (uint32_t allele_idx = 1; allele_idx != col_allele_ct; ++allele_idx) {
if (unlikely(Cswrite(cssp, &cswritep))) {
goto VcorTableWriteThread_ret_WRITE_FAIL;
}
cswritep = strcpyax(cswritep, cur_col_alleles[allele_idx], ',');
}
cswritep[-1] = '\t';
}
if (provref_col) {
*cswritep++ = (all_nonref || (nonref_flags && IsSet(nonref_flags, col_variant_uidx)))? 'Y' : 'N';
*cswritep++ = '\t';
}
if (maj_col || nonmaj_col || freq_col) {
if (maj_alleles) {
maj_allele_idx = maj_alleles[col_variant_uidx];
}
if (maj_col) {
cswritep = strcpyax(cswritep, cur_col_alleles[maj_allele_idx], '\t');
}
if (nonmaj_col) {
for (uint32_t allele_idx = 0; allele_idx != col_allele_ct; ++allele_idx) {
if (allele_idx == maj_allele_idx) {
continue;
}
if (unlikely(Cswrite(cssp, &cswritep))) {
goto VcorTableWriteThread_ret_WRITE_FAIL;
}
cswritep = strcpyax(cswritep, cur_col_alleles[allele_idx], ',');
}
cswritep[-1] = '\t';
}
if (freq_col) {
const double maj_freq = GetAlleleFreq(&(allele_freqs[col_allele_idx_offset_base - col_variant_uidx]), maj_allele_idx, col_allele_ct);
cswritep = dtoa_g(1.0 - maj_freq, cswritep);
*cswritep++ = '\t';
}
}
// R or R2
cswritep = dtoa_g(r_or_r2, cswritep);
if (d_col) {
*cswritep++ = '\t';
cswritep = dtoa_g(*cur_results_iter++, cswritep);
}
if (dprime_col) {
*cswritep++ = '\t';
double dprime = *cur_results_iter++;
if (dprime_abs) {
dprime = fabs(dprime);
}
cswritep = dtoa_g(dprime, cswritep);
}
AppendBinaryEoln(&cswritep);
if (unlikely(Cswrite(cssp, &cswritep))) {
goto VcorTableWriteThread_ret_WRITE_FAIL;
}
}
}
ctx->cswritep = cswritep;
row_parity = 1 - row_parity;
while (0) {
VcorTableWriteThread_ret_WRITE_FAIL:
ctx->reterr = kPglRetWriteFail;
}
} while (!THREAD_BLOCK_FINISH(arg));
THREAD_RETURN;
}
// Determine --ld-window-kb, --ld-window-cm, and --ld-window intersection.
// Assumes chr_start_uidx <= uidx_start <= uidx_end on entry, and that
// uidx_start and uidx_end are not greater than their true values for the
// current variant.
void UpdateVcorWindow(const uintptr_t* variant_include, const uint32_t* variant_bps, const double* variant_cms, uint32_t row_snp_subset, uint32_t var_ct_radius, uint32_t bp_radius, double cm_radius, uint32_t chr_end_uidx, uint32_t center_uidx, uint32_t* uidx_startp, uint32_t* uidx_endp) {
const uint32_t cur_bp = variant_bps[center_uidx];
if (row_snp_subset) {
uint32_t uidx_start = *uidx_startp;
if (cur_bp > bp_radius) {
uidx_start = ExpsearchU32(variant_bps, uidx_start, center_uidx, cur_bp - bp_radius);
}
if (variant_cms) {
const double cur_cm = variant_cms[center_uidx];
uidx_start = ExpsearchD(variant_cms, uidx_start, center_uidx, cur_cm - cm_radius);
}
// var_ct_radius <= 0x7fffffff, so no overflow risk
if (uidx_start + var_ct_radius < center_uidx) {
const uint32_t leading_var_ct = PopcountBitRange(variant_include, uidx_start, center_uidx);
if (leading_var_ct > var_ct_radius) {
uidx_start = FindNth1BitFrom(variant_include, uidx_start + 1, leading_var_ct - var_ct_radius);
}
}
*uidx_startp = uidx_start;
} else {
*uidx_startp = center_uidx;
}
uint32_t uidx_end = MAXV(*uidx_endp, center_uidx + 1);
if (uidx_end < chr_end_uidx) {
uint32_t uidx_end_ceil = ExpsearchU32(variant_bps, uidx_end, chr_end_uidx, cur_bp + bp_radius + 1);
if (variant_cms) {
const double cur_cm = variant_cms[center_uidx];
uidx_end_ceil = ExpsearchD(variant_cms, uidx_end, uidx_end_ceil, cur_cm + cm_radius);
}
if (center_uidx + 1 + var_ct_radius < uidx_end_ceil) {
const uint32_t trailing_var_ct = PopcountBitRange(variant_include, center_uidx + 1, uidx_end_ceil);
if (trailing_var_ct > var_ct_radius) {
uidx_end_ceil = 1 + FindNth1BitFrom(variant_include, center_uidx + 1, var_ct_radius);
}
}
uidx_end = uidx_end_ceil;
}
*uidx_endp = uidx_end;
}
PglErr VcorTable(const uintptr_t* orig_variant_include, const ChrInfo* cip, const uint32_t* variant_bps, const char* const* variant_ids, const double* variant_cms, const uintptr_t* allele_idx_offsets, const char* const* allele_storage, const AlleleCode* maj_alleles, const double* allele_freqs, const uintptr_t* founder_info, const uintptr_t* sex_nm, const uintptr_t* sex_male, const VcorInfo* vcip, const char* flagname, uint32_t raw_variant_ct, uint32_t orig_variant_ct, uint32_t raw_sample_ct, uint32_t founder_ct, uint32_t max_variant_id_slen, uint32_t max_allele_slen, uint32_t parallel_idx, uint32_t parallel_tot, uint32_t max_thread_ct, PgenReader* simple_pgrp, char* outname, char* outname_end) {
unsigned char* bigstack_mark = g_bigstack_base;
unsigned char* bigstack_end_mark = g_bigstack_end;
PglErr reterr = kPglRetSuccess;
VcorTableCtx ctx;
VcorTableWriteCtx write_ctx;
ThreadGroup tg;
ThreadGroup write_tg;
PreinitCstream(&write_ctx.css);
write_ctx.cswritep = nullptr;
PreinitThreads(&tg);
PreinitThreads(&write_tg);
{
const VcorFlags flags = vcip->flags;
const uint32_t is_unsquared = (flags / kfVcorUnsquared) & 1;
const uint32_t phased_calc = (flags / kfVcorPhased) & 1;
const uint32_t ref_based = (flags / kfVcorRefBased) & 1;
if (!(flags & kfVcorAllowAmbiguousAllele)) {
if (is_unsquared) {
uint32_t is_ambiguous_biallelic = 0;
if (!ref_based) {
is_ambiguous_biallelic = !(flags & (kfVcorColMaj | kfVcorColNonmaj));
} else {
const VcorFlags relevant_allele_cols = flags & (kfVcorColRef | kfVcorColAlt1 | kfVcorColAlt);
if (relevant_allele_cols != kfVcorColAlt1) {
is_ambiguous_biallelic = (relevant_allele_cols == kfVcor0);
} else {
if (unlikely(MultiallelicVariantPresent(orig_variant_include, allele_idx_offsets, orig_variant_ct))) {
logerrprintfww("Error: The meaning of r's sign cannot be consistently inferred from just the %s 'alt1' column-set at multiallelic variants. Either filter out multiallelic variants, revise the column-set, or use the 'allow-ambiguous-allele' modifier to override this error.\n", flagname);
return kPglRetInconsistentInput;
}
}
}
if (unlikely(is_ambiguous_biallelic)) {
logerrprintfww("Error: %s column-set doesn't include allele columns which clarify the meaning of r's sign. Either switch to --r2-%sphased, add a disambiguating column-set, or use the 'allow-ambiguous-allele' modifier to override this error.\n", flagname, phased_calc? "" : "un");
return kPglRetInconsistentInput;
}
} else {
uint32_t is_ambiguous_multiallelic;
if (!ref_based) {
is_ambiguous_multiallelic = !(flags & (kfVcorColMaj | kfVcorColNonmaj));
} else {
is_ambiguous_multiallelic = !(flags & (kfVcorColRef | kfVcorColAlt));
}
if (unlikely(is_ambiguous_multiallelic && MultiallelicVariantPresent(orig_variant_include, allele_idx_offsets, orig_variant_ct))) {
logerrprintfww("Error: %s column-set doesn't include allele columns which clarify which calculation is being performed at multiallelic variants. Either filter out multiallelic variants, revise the column-set (with e.g. \"cols=+%s\"), or use the 'allow-ambiguous-allele' modifier to override this error.\n", flagname, ref_based? "ref" : "maj");
return kPglRetInconsistentInput;
}
}
}
// 1. If not inter-chr, remove unplaced variants.
// 2. If --parallel and/or --ld-snp/--ld-snps/--ld-snp-list, initialize
// row_variant_include, then try to shrink variant_include:
// - If inter-chr + --parallel, and this isn't the first piece, we can
// remove leading variants.
// - If not inter-chr, we can remove all variants that are out of range
// of row_variant_include elements.
const uint32_t inter_chr = (flags / kfVcorInterChr) & 1;
const char* ld_snp_list_fname = vcip->ld_snp_list_fname;
const RangeList* ld_snp_range_listp = &(vcip->ld_snp_range_list);
const uint32_t row_snp_subset = ld_snp_list_fname || (ld_snp_range_listp->name_ct != 0);
const double min_r2 = vcip->min_r2;
if (unlikely(inter_chr && (!row_snp_subset) && (min_r2 <= 0.0) && (orig_variant_ct > 400000) && (parallel_tot == 1) && (!(flags & kfVcorYesReally)))) {
logerrprintfww("Error: Gigantic (over 400k variants) %s unfiltered, non-distributed computation. Rerun with the 'yes-really' modifier if you are SURE you have enough hard drive space and want to do this.\n", flagname);
goto VcorTable_ret_INCONSISTENT_INPUT;
}
const uint32_t raw_variant_ctl = BitCtToWordCt(raw_variant_ct);
// There are conditions under which we can optimize out these allocations,
// but we don't realistically need the memory under those conditions, so
// just go ahead and make copies 100% of the time.
uintptr_t* variant_include_buf;
uintptr_t* row_variant_include_buf;
if (unlikely(bigstack_alloc_w(raw_variant_ctl, &variant_include_buf) ||
bigstack_alloc_w(raw_variant_ctl, &row_variant_include_buf))) {
goto VcorTable_ret_NOMEM;
}
memcpy(variant_include_buf, orig_variant_include, raw_variant_ctl * sizeof(intptr_t));
memcpy(row_variant_include_buf, orig_variant_include, raw_variant_ctl * sizeof(intptr_t));
uintptr_t* row_subset_exclude_buf = nullptr;
if (row_snp_subset && (parallel_idx != 0)) {
if (unlikely(bigstack_alloc_w(raw_variant_ctl, &row_subset_exclude_buf))) {
goto VcorTable_ret_NOMEM;
}
}
uint32_t variant_ct = orig_variant_ct;
if (!inter_chr) {
uint32_t skipped_variant_ct = StripUnplacedMut(cip, variant_include_buf);
if (skipped_variant_ct) {
logprintf("%s: Ignoring %u chromosome 0 variant%s.\n", flagname, skipped_variant_ct, (skipped_variant_ct == 1)? "" : "s");
variant_ct -= skipped_variant_ct;
}
}
const uint32_t var_ct_radius = vcip->var_ct_radius;
const uint32_t bp_radius = vcip->bp_radius;
const double cm_radius = vcip->cm_radius;
if (cm_radius == -1.0) {
variant_cms = nullptr;
}
uint32_t row_variant_ct = variant_ct;
if ((parallel_tot != 1) || row_snp_subset) {
if (row_snp_subset) {
unsigned char* bigstack_mark2 = g_bigstack_base;
uint32_t* variant_id_htable;
uint32_t* htable_dup_base;
uint32_t variant_id_htable_size;
AllocAndPopulateIdHtableMt(variant_include_buf, variant_ids, variant_ct, bigstack_left() / 2, max_thread_ct, &variant_id_htable, &htable_dup_base, &variant_id_htable_size, nullptr);
if (ld_snp_list_fname) {
const uint32_t fname_slen = strlen(ld_snp_list_fname);
char* fnames_tmp;
if (unlikely(bigstack_alloc_c(fname_slen + 2, &fnames_tmp))) {
goto VcorTable_ret_NOMEM;
}
memcpy(fnames_tmp, ld_snp_list_fname, fname_slen + 1);
fnames_tmp[fname_slen + 1] = '\0';
reterr = TokenExtractExclude(variant_ids, variant_id_htable, htable_dup_base, fnames_tmp, "ld-snp-list", raw_variant_ct, max_variant_id_slen, variant_id_htable_size, kVfilterExtract, max_thread_ct, row_variant_include_buf, &row_variant_ct);
if (unlikely(reterr)) {
goto VcorTable_ret_1;
}
} else {
uintptr_t* seen_uidxs;
if (unlikely(bigstack_calloc_w(raw_variant_ctl, &seen_uidxs))) {
goto VcorTable_ret_NOMEM;
}
reterr = InterpretVariantRangeList(variant_ids, variant_id_htable, htable_dup_base, ld_snp_range_listp, "--ld-snps", max_variant_id_slen, variant_id_htable_size, seen_uidxs);
if (unlikely(reterr)) {
goto VcorTable_ret_1;
}
BitvecAnd(seen_uidxs, raw_variant_ctl, row_variant_include_buf);
row_variant_ct = PopcountWords(row_variant_include_buf, raw_variant_ctl);
}
BigstackReset(bigstack_mark2);
}
if (parallel_tot > 1) {
const uint32_t row_shard_start = (S_CAST(uint64_t, row_variant_ct) * parallel_idx) / parallel_tot;
const uint32_t row_uidx_start = IdxToUidxBasic(row_variant_include_buf, row_shard_start);
if ((parallel_idx != 0) && row_snp_subset) {
memcpy(row_subset_exclude_buf, row_variant_include_buf, raw_variant_ctl * sizeof(intptr_t));
}
if (row_uidx_start) {
ClearBitsNz(0, row_uidx_start, row_variant_include_buf);
}
uint32_t row_shard_end = row_variant_ct;
if (parallel_idx + 1 != parallel_tot) {
row_shard_end = (S_CAST(uint64_t, row_variant_ct) * (parallel_idx + 1)) / parallel_tot;
const uint32_t row_vecidx_start = row_uidx_start / kBitsPerVec;
const uint32_t row_uidx_end = row_vecidx_start * kBitsPerVec + IdxToUidxBasic(&(row_variant_include_buf[row_vecidx_start * kWordsPerVec]), row_shard_end - row_shard_start);
ClearBitsNz(row_uidx_end, raw_variant_ct, row_variant_include_buf);
}
row_variant_ct = row_shard_end - row_shard_start;
if ((row_shard_start != 0) && (!row_snp_subset)) {
// Safe to remove column-variants before the current row-shard.
variant_ct -= PopcountBitRange(variant_include_buf, 0, row_uidx_start);
ClearBitsNz(0, row_uidx_start, variant_include_buf);
}
}
}
if (!inter_chr) {
// Safe to remove column-variants out of range of all row variants, as
// well as "orphan" row variants.
uint32_t row_chr_fo_idx = UINT32_MAX;
uint32_t row_chr_end = 0;
uint32_t uidx_start = 0;
uint32_t uidx_end = 0;
uintptr_t row_variant_uidx_base = 0;
uintptr_t row_cur_bits = row_variant_include_buf[0];
for (uint32_t row_variant_idx = 0; row_variant_idx != row_variant_ct; ++row_variant_idx) {
const uint32_t row_variant_uidx = BitIter1(row_variant_include_buf, &row_variant_uidx_base, &row_cur_bits);
if (row_variant_uidx >= row_chr_end) {
do {
++row_chr_fo_idx;
row_chr_end = cip->chr_fo_vidx_start[row_chr_fo_idx + 1];
} while (row_variant_uidx >= row_chr_end);
const uint32_t row_chr_start = cip->chr_fo_vidx_start[row_chr_fo_idx];
uidx_start = row_chr_start;
uidx_end = row_chr_start;
}
const uint32_t prev_uidx_end = uidx_end;
UpdateVcorWindow(variant_include_buf, variant_bps, variant_cms, row_snp_subset, var_ct_radius, bp_radius, cm_radius, row_chr_end, row_variant_uidx, &uidx_start, &uidx_end);
if (prev_uidx_end < uidx_start) {
ClearBitsNz(prev_uidx_end, uidx_start, variant_include_buf);
}
if (row_snp_subset && (uidx_start + 1 == uidx_end)) {
// No variants in range. This row-variant is an "orphan" and can be
// skipped.
ClearBit(uidx_start, variant_include_buf);
}
}
BitvecAnd(variant_include_buf, raw_variant_ctl, row_variant_include_buf);
variant_ct = PopcountWords(variant_include_buf, raw_variant_ctl);
}
const uintptr_t* variant_include = variant_include_buf;
const uintptr_t* row_variant_include = row_variant_include_buf;
const uint32_t* variant_include_cumulative_popcounts;
const uint32_t* row_variant_include_cumulative_popcounts;
{
// bugfix (16 May 2024): there are RawToSubsettedPos(variant_include,
// variant_include_cumulative_popcounts, x) calls with x =
// raw_variant_ct. In this case, we may need one more entry.
uint32_t* variant_include_cumulative_popcounts_buf;
uint32_t* row_variant_include_cumulative_popcounts_buf;
if (unlikely(bigstack_alloc_u32(1 + (raw_variant_ct / kBitsPerWord), &variant_include_cumulative_popcounts_buf) ||
bigstack_alloc_u32(raw_variant_ctl, &row_variant_include_cumulative_popcounts_buf))) {
goto VcorTable_ret_NOMEM;
}
FillCumulativePopcounts(variant_include, raw_variant_ctl, variant_include_cumulative_popcounts_buf);
if ((raw_variant_ct % kBitsPerWord) == 0) {
variant_include_cumulative_popcounts_buf[raw_variant_ctl] = variant_ct;
}
FillCumulativePopcounts(row_variant_include, raw_variant_ctl, row_variant_include_cumulative_popcounts_buf);
variant_include_cumulative_popcounts = variant_include_cumulative_popcounts_buf;
row_variant_include_cumulative_popcounts = row_variant_include_cumulative_popcounts_buf;
}
row_variant_ct = row_variant_include_cumulative_popcounts[raw_variant_ctl - 1] + PopcountWord(row_variant_include[raw_variant_ctl - 1]);
// variant_ct == 0 is possible here. In that case, we want to write the
// header line (or nothing at all if parallel_idx > 0) and skip the main
// loop, not error out.
const uintptr_t* nonref_flags = PgrGetNonrefFlags(simple_pgrp);
// "&& (!nonref_flags)" needed since this is after --ref-allele, etc. in
// the order of operations.
const uint32_t all_nonref = (PgrGetGflags(simple_pgrp) & kfPgenGlobalAllNonref) && (!nonref_flags);
write_ctx.all_nonref = all_nonref;
const uint32_t provref_col = (flags & kfVcorColRef) && ProvrefCol(variant_include, nonref_flags, flags / kfVcorColMaybeprovref, raw_variant_ct, all_nonref);
const uint32_t d_col = (flags / kfVcorColD) & 1;
const uint32_t dprime_col = ((flags & (kfVcorColDprime | kfVcorColDprimeAbs)) != 0);
write_ctx.row_chr_buf = nullptr;
write_ctx.col_chr_buf = nullptr;
{
uintptr_t overflow_buf_size = kCompressStreamBlock + 512;
const uint32_t chr_col = (flags / kfVcorColChrom) & 1;
const uint32_t pos_col = (flags / kfVcorColPos) & 1;
const uint32_t id_col = (flags / kfVcorColId) & 1;
const uint32_t ref_col = (flags / kfVcorColRef) & 1;
const uint32_t alt1_col = (flags / kfVcorColAlt1) & 1;
const uint32_t alt_col = (flags / kfVcorColAlt) & 1;
// provref_col defined earlier
const uint32_t maj_col = (flags / kfVcorColMaj) & 1;
const uint32_t nonmaj_col = (flags / kfVcorColNonmaj) & 1;
const uint32_t freq_col = (flags / kfVcorColFreq) & 1;
// d_col, dprime_col defined earlier
if (chr_col) {
const uint32_t max_chr_blen = GetMaxChrSlen(cip) + 1;
if (unlikely(bigstack_alloc_c(max_chr_blen, &write_ctx.row_chr_buf) ||
bigstack_alloc_c(max_chr_blen, &write_ctx.col_chr_buf))) {
goto VcorTable_ret_NOMEM;
}
overflow_buf_size += 2 * max_chr_blen;
}
if (id_col) {
overflow_buf_size += 2 * (max_variant_id_slen + 1);
}
uintptr_t n_allele = ref_col + alt1_col + maj_col;
if (!n_allele) {
if (alt_col || nonmaj_col) {
n_allele = 1;
}
}
overflow_buf_size += n_allele * (max_allele_slen + 1);
const uint32_t output_zst = (flags / kfVcorZs) & 1;
char* outname_write_iter = strcpya_k(outname_end, ".vcor");
if (parallel_tot != 1) {
*outname_write_iter++ = '.';
outname_write_iter = u32toa(parallel_idx + 1, outname_write_iter);
}
uint32_t compress_thread_ct = 1;
if (output_zst) {
outname_write_iter = strcpya_k(outname_write_iter, ".zst");
// more room to tune this, but this is an easy win
if ((!phased_calc) && (min_r2 <= 0.0) && (max_thread_ct > 4) && (founder_ct <= 65536)) {
compress_thread_ct = 2 + ((max_thread_ct > 8) && (founder_ct <= 32768));
}
}
*outname_write_iter = '\0';
reterr = InitCstreamAlloc(outname, 0, output_zst, compress_thread_ct, overflow_buf_size, &write_ctx.css, &write_ctx.cswritep);
if (unlikely(reterr)) {
goto VcorTable_ret_1;
}
if (parallel_idx == 0) {
char* cswritep = write_ctx.cswritep;
*cswritep++ = '#';
if (chr_col) {
cswritep = strcpya_k(cswritep, "CHROM_A\t");
}
if (pos_col) {
cswritep = strcpya_k(cswritep, "POS_A\t");
}
if (id_col) {
cswritep = strcpya_k(cswritep, "ID_A\t");
}
if (ref_col) {
cswritep = strcpya_k(cswritep, "REF_A\t");
}
if (alt1_col) {
cswritep = strcpya_k(cswritep, "ALT1_A\t");
}
if (alt_col) {
cswritep = strcpya_k(cswritep, "ALT_A\t");
}
if (provref_col) {
cswritep = strcpya_k(cswritep, "PROVISIONAL_REF_A?\t");
}
if (maj_col) {
cswritep = strcpya_k(cswritep, "MAJ_A\t");
}
if (nonmaj_col) {
cswritep = strcpya_k(cswritep, "NONMAJ_A\t");
}
if (freq_col) {
cswritep = strcpya_k(cswritep, "NONMAJ_FREQ_A\t");
}
if (chr_col) {
cswritep = strcpya_k(cswritep, "CHROM_B\t");
}
if (pos_col) {
cswritep = strcpya_k(cswritep, "POS_B\t");
}
if (id_col) {
cswritep = strcpya_k(cswritep, "ID_B\t");
}
if (ref_col) {
cswritep = strcpya_k(cswritep, "REF_B\t");
}
if (alt1_col) {
cswritep = strcpya_k(cswritep, "ALT1_B\t");
}
if (alt_col) {
cswritep = strcpya_k(cswritep, "ALT_B\t");
}
if (provref_col) {
cswritep = strcpya_k(cswritep, "PROVISIONAL_REF_B?\t");
}
if (maj_col) {
cswritep = strcpya_k(cswritep, "MAJ_B\t");
}
if (nonmaj_col) {
cswritep = strcpya_k(cswritep, "NONMAJ_B\t");
}
if (freq_col) {
cswritep = strcpya_k(cswritep, "NONMAJ_FREQ_B\t");
}
if (!phased_calc) {
cswritep = strcpya_k(cswritep, "UN");
}
cswritep = strcpya_k(cswritep, "PHASED_R");
if (!is_unsquared) {
*cswritep++ = '2';
}
if (d_col) {
cswritep = strcpya_k(cswritep, "\tD");
}
if (dprime_col) {
*cswritep++ = '\t';
if (flags & kfVcorColDprimeAbs) {
cswritep = strcpya_k(cswritep, "ABS_");
}
cswritep = strcpya_k(cswritep, "DPRIME");
}
AppendBinaryEoln(&cswritep);
write_ctx.cswritep = cswritep;
}
}
if (!row_variant_ct) {
logprintf("%s: No variant-pairs to process.\n", flagname);
goto VcorTable_ret_1;
}
const uint32_t raw_sample_ctl = BitCtToWordCt(raw_sample_ct);
const uint32_t founder_ctl = BitCtToWordCt(founder_ct);
const uint32_t founder_ctv = BitCtToVecCt(founder_ct);
const uint32_t founder_ctv2 = NypCtToVecCt(founder_ct);
const uint32_t founder_ctaw = founder_ctv * kWordsPerVec;
const uint32_t founder_male_ct = PopcountWordsIntersect(founder_info, sex_male, raw_sample_ctl);
const uint32_t all_haploid = IsSet(cip->haploid_mask, 0);
PgenGlobalFlags effective_gflags = PgrGetGflags(simple_pgrp) & (kfPgenGlobalHardcallPhasePresent | kfPgenGlobalDosagePresent | kfPgenGlobalDosagePhasePresent);
const uint32_t check_phase = phased_calc && (!all_haploid) && (effective_gflags & (kfPgenGlobalHardcallPhasePresent | kfPgenGlobalDosagePhasePresent));
if (!check_phase) {
effective_gflags &= kfPgenGlobalDosagePresent;
}
const R2PhaseType phase_type = GetR2PhaseType(phased_calc, check_phase);
const uint32_t check_dosage = (effective_gflags / kfPgenGlobalDosagePresent) & 1;
uintptr_t* raregeno = nullptr;
uint32_t* difflist_sample_ids = nullptr;
const uint32_t max_simple_difflist_len = founder_ct / 64;
if (!phased_calc) {
const uint32_t max_returned_difflist_len = 2 * (raw_sample_ct / kPglMaxDifflistLenDivisor);
if (unlikely(bigstack_alloc_w(NypCtToWordCt(max_returned_difflist_len), &raregeno) ||
bigstack_alloc_u32(max_returned_difflist_len, &difflist_sample_ids))) {
goto VcorTable_ret_NOMEM;
}
}
const uintptr_t* founder_male_collapsed = nullptr;
const Dosage* male_dosage_invmask = nullptr;
ctx.founder_nonmale_collapsed = nullptr;
ctx.nonmale_dosage_invmask = nullptr;
ctx.chrx_idx = UINT32_MAX;
uint32_t x_code = UINT32_MAX;
// if all-males, we can ignore phase on chrX, as well as skipping
// male/nonmale-specific stats
// if all-nonmales, we initialize x_code to prevent phase from being
// ignored, but can skip the male/nonmale-specific stats
if (founder_male_ct != founder_ct) {
if (XymtExists(cip, kChrOffsetX, &x_code) && (founder_male_ct != 0)) {
const uint32_t x_fo_idx = cip->chr_idx_to_foidx[x_code];
const uint32_t start_vidx = cip->chr_fo_vidx_start[x_fo_idx];
const uint32_t end_vidx = cip->chr_fo_vidx_start[x_fo_idx + 1];
if (!AllBitsAreZero(variant_include, start_vidx, end_vidx)) {
ctx.chrx_idx = x_code;
uintptr_t* founder_male_collapsed_fill;
uintptr_t* founder_nonmale_collapsed;
if (unlikely(bigstack_alloc_w(founder_ctl, &founder_male_collapsed_fill) ||
bigstack_alloc_w(founder_ctl, &founder_nonmale_collapsed))) {
goto VcorTable_ret_NOMEM;
}
CopyBitarrSubset(sex_male, founder_info, founder_ct, founder_male_collapsed_fill);
founder_male_collapsed = founder_male_collapsed_fill;
BitvecInvertCopy(founder_male_collapsed, founder_ctl, founder_nonmale_collapsed);
ZeroTrailingBits(founder_ct, founder_nonmale_collapsed);
ctx.founder_nonmale_collapsed = founder_nonmale_collapsed;
if (check_dosage) {
const uint32_t founder_ctad = RoundUpPow2(founder_ct, kDosagePerVec);
Dosage* male_dosage_invmask_fill;
Dosage* nonmale_dosage_invmask;
if (bigstack_alloc_dosage(founder_ctad, &male_dosage_invmask_fill) ||
bigstack_alloc_dosage(founder_ctad, &nonmale_dosage_invmask)) {
goto VcorTable_ret_NOMEM;
}
Expand1bitTo16(founder_male_collapsed, founder_ctad, 0xffff, male_dosage_invmask_fill);
Expand1bitTo16(founder_nonmale_collapsed, founder_ctad, 0xffff, nonmale_dosage_invmask);
male_dosage_invmask = male_dosage_invmask_fill;
ctx.nonmale_dosage_invmask = nonmale_dosage_invmask;
}
}
}
}
const uint32_t x_exists = (ctx.chrx_idx < UINT32_MAXM1);
ctx.founder_male_collapsed = founder_male_collapsed;
ctx.male_dosage_invmask = male_dosage_invmask;
uint32_t y_start;
uint32_t y_end;
GetXymtStartAndEnd(cip, kChrOffsetY, &y_start, &y_end);
uintptr_t* founder_female_collapsed = nullptr;
uintptr_t* founder_female_collapsed_interleaved = nullptr;
if (y_end) {
if ((founder_male_ct == founder_ct) || AllBitsAreZero(variant_include, y_start, y_end)) {
y_start = 0;
y_end = 0;
}
if (y_end) {
uintptr_t* founder_female;
if (bigstack_end_alloc_w(raw_sample_ctl, &founder_female)) {
goto VcorTable_ret_NOMEM;
}
BitvecInvmaskCopy(sex_nm, sex_male, raw_sample_ctl, founder_female);
BitvecAnd(founder_info, raw_sample_ctl, founder_female);
if (AllWordsAreZero(founder_female, raw_sample_ctl)) {
y_start = 0;
y_end = 0;
} else {
if (bigstack_alloc_w(founder_ctaw, &founder_female_collapsed) ||
bigstack_alloc_w(founder_ctaw, &founder_female_collapsed_interleaved)) {
goto VcorTable_ret_NOMEM;
}
CopyBitarrSubset(founder_female, founder_info, founder_ct, founder_female_collapsed);
ZeroTrailingWords(founder_ctl, founder_female_collapsed);
FillInterleavedMaskVec(founder_female_collapsed, founder_ctv, founder_female_collapsed_interleaved);
}
BigstackEndReset(bigstack_end_mark);
}
}
ctx.founder_ct = founder_ct;
ctx.founder_male_ct = founder_male_ct;
ctx.is_unsquared = is_unsquared;
const uintptr_t bitvec_byte_ct = BitCtToVecCt(founder_ct) * kBytesPerVec;
uintptr_t dosagevec_byte_ct = 0;
uintptr_t unpacked_variant_byte_stride;
if (check_dosage) {
dosagevec_byte_ct = DivUp(founder_ct, kDosagePerVec) * kBytesPerVec;
const uintptr_t dosage_trail_byte_ct = LdDosageTrailAlignedByteCt(S_CAST(R2PhaseType, phased_calc), x_exists);
unpacked_variant_byte_stride = dosagevec_byte_ct * (1 + phased_calc + check_phase) + bitvec_byte_ct + dosage_trail_byte_ct;
} else {
unpacked_variant_byte_stride = RoundUpPow2(16, kBytesPerVec) + bitvec_byte_ct * (3 + 2 * check_phase);
#ifndef USE_AVX2
const uintptr_t sparse_req = RoundUpPow2((6 + max_simple_difflist_len) * sizeof(int32_t), kBytesPerVec) + NypCtToVecCt(max_simple_difflist_len) * kBytesPerVec + RoundUpPow2(founder_ctl * (kBytesPerWord + sizeof(int32_t)), kBytesPerVec);
if (sparse_req > unpacked_variant_byte_stride) {
unpacked_variant_byte_stride = sparse_req;
}
#endif
const uintptr_t nondosage_trail_byte_ct = LdNondosageTrailAlignedByteCt(S_CAST(R2PhaseType, phased_calc), x_exists);
unpacked_variant_byte_stride += nondosage_trail_byte_ct;
}
uint32_t* founder_info_cumulative_popcounts;
PgenVariant pgv;
if (unlikely(bigstack_alloc_u32(raw_sample_ctl, &founder_info_cumulative_popcounts) ||
BigstackAllocPgv(founder_ct, 0, effective_gflags, &pgv))) {
goto VcorTable_ret_NOMEM;
}
FillCumulativePopcounts(founder_info, raw_sample_ctl, founder_info_cumulative_popcounts);
PgrSampleSubsetIndex pssi;
PgrSetSampleSubsetIndex(founder_info_cumulative_popcounts, simple_pgrp, &pssi);
ctx.phase_type = phase_type;
ctx.check_dosage = check_dosage;
ctx.report_d = d_col;
ctx.report_dprime = dprime_col;
ctx.unpacked_variant_byte_stride = unpacked_variant_byte_stride;
// Some room to tune this, e.g. if .zst compression is on, founder_ct is
// small, and computation is unphased, we may want more than 1 compression
// thread. But this should be good enough for now.
uint32_t calc_thread_ct = max_thread_ct - (max_thread_ct > 4) - (max_thread_ct > 8);
ctx.cur_nm_bufs = nullptr;
ctx.invmask_bufs = nullptr;
if (x_exists) {
if (unlikely(bigstack_alloc_wp(calc_thread_ct, &ctx.cur_nm_bufs) ||
bigstack_alloc_dosagep(calc_thread_ct, &ctx.invmask_bufs))) {
goto VcorTable_ret_NOMEM;
}
for (uint32_t tidx = 0; tidx != calc_thread_ct; ++tidx) {
if (unlikely(bigstack_alloc_w(founder_ctl, &(ctx.cur_nm_bufs[tidx])) ||
bigstack_alloc_dosage(founder_ct, &(ctx.invmask_bufs[tidx])))) {
goto VcorTable_ret_NOMEM;
}
}
}
// Now initialize the parts of write_ctx that don't depend on uv_capacity.
write_ctx.variant_include = variant_include;
write_ctx.variant_include_cumulative_popcounts = variant_include_cumulative_popcounts;
write_ctx.row_variant_include = row_variant_include;
write_ctx.row_variant_include_cumulative_popcounts = row_variant_include_cumulative_popcounts;
write_ctx.row_subset_exclude = nullptr;
if (row_snp_subset) {
write_ctx.row_subset_exclude = (parallel_idx == 0)? row_variant_include : row_subset_exclude_buf;
}
write_ctx.cip = cip;
write_ctx.variant_bps = variant_bps;
write_ctx.variant_ids = variant_ids;
write_ctx.allele_idx_offsets = allele_idx_offsets;
write_ctx.allele_storage = allele_storage;
write_ctx.nonref_flags = nonref_flags;
write_ctx.maj_alleles = maj_alleles;
write_ctx.allele_freqs = allele_freqs;
if (!is_unsquared) {
write_ctx.r_or_r2_thresh = min_r2;
} else {
write_ctx.r_or_r2_thresh = (min_r2 < 0.0)? -1.0 : sqrt(min_r2);
}
write_ctx.raw_variant_ct = raw_variant_ct;
write_ctx.flags = flags;
write_ctx.provref_col = provref_col;
write_ctx.reterr = kPglRetSuccess;
// Assign ~half of remaining workspace to input buffers and ~half to output
// buffers.
const uintptr_t results_stride = 1 + d_col + dprime_col;
const uintptr_t result_capacity = bigstack_left() / (4 * sizeof(double) * results_stride);
if (unlikely(bigstack_alloc_d(result_capacity * results_stride, &(ctx.results[0])) ||
bigstack_alloc_d(result_capacity * results_stride, &(ctx.results[1])))) {
goto VcorTable_ret_NOMEM;
}
write_ctx.results[0] = ctx.results[0];
write_ctx.results[1] = ctx.results[1];
uint32_t* col_offset_starts_storage[2];
uintptr_t* write_idx_starts_storage[2];
uint32_t row_window_sizes[2];
ctx.row_window_sizes = row_window_sizes;
write_ctx.row_window_sizes = row_window_sizes;
// All remaining allocation sizes are a function of uv_capacity. Set its
// value.
uintptr_t uv_capacity;
{
// ctx:
// unpacked_variants: 2 * unpacked_variant_byte_stride
// (no row_uvidxs)
// col_uvidxs: 2 * sizeof(int32_t)
// row_chr_idxs: 2 * sizeof(ChrIdx)
// col_chr_idxs: 2 * sizeof(ChrIdx)
// col_offset_starts: 2 * sizeof(int32_t)
// write_idx_starts: 2 * sizeof(intptr_t) (length (uv_capacity + 1))
// (could optimize row_chr_idxs and col_chr_idxs out)
uintptr_t bytes_left = bigstack_left();
// defend against adverse rounding
if (unlikely(bytes_left < 11 * kCacheline)) {
goto VcorTable_ret_NOMEM;
}
bytes_left -= 11 * kCacheline;
const uintptr_t bytes_per_unpacked_variant = 2 * (unpacked_variant_byte_stride + 2 * sizeof(int32_t) + 2 * sizeof(ChrIdx) + sizeof(intptr_t));
uv_capacity = bytes_left / bytes_per_unpacked_variant;
if (unlikely(uv_capacity < 2)) {
goto VcorTable_ret_NOMEM;
}
if (uv_capacity > variant_ct) {
uv_capacity = variant_ct;
}
// shouldn't be possible for these allocations to fail
if (unlikely(bigstack_alloc_uc(uv_capacity * unpacked_variant_byte_stride, &(ctx.unpacked_variants[0])) ||
bigstack_alloc_uc(uv_capacity * unpacked_variant_byte_stride, &(ctx.unpacked_variants[1])) ||
bigstack_alloc_u32(uv_capacity, &(ctx.col_uvidxs[0])) ||
bigstack_alloc_u32(uv_capacity, &(ctx.col_uvidxs[1])) ||
bigstack_alloc_chridx(uv_capacity, &(ctx.row_chr_idxs[0])) ||
bigstack_alloc_chridx(uv_capacity, &(ctx.row_chr_idxs[1])) ||
bigstack_alloc_chridx(uv_capacity, &(ctx.col_chr_idxs[0])) ||
bigstack_alloc_chridx(uv_capacity, &(ctx.col_chr_idxs[1])) ||
bigstack_alloc_u32(uv_capacity, &(col_offset_starts_storage[0])) ||
bigstack_alloc_u32(uv_capacity, &(col_offset_starts_storage[1])) ||
bigstack_alloc_w(uv_capacity + 1, &(write_idx_starts_storage[0])) ||
bigstack_alloc_w(uv_capacity + 1, &(write_idx_starts_storage[1])))) {
// shouldn't be possible
goto VcorTable_ret_NOMEM;
}
ctx.col_offset_starts[0] = col_offset_starts_storage[0];
ctx.col_offset_starts[1] = col_offset_starts_storage[1];
ctx.write_idx_starts[0] = write_idx_starts_storage[0];
ctx.write_idx_starts[1] = write_idx_starts_storage[1];
write_ctx.col_offset_starts[0] = col_offset_starts_storage[0];
write_ctx.col_offset_starts[1] = col_offset_starts_storage[1];
write_ctx.write_idx_starts[0] = write_idx_starts_storage[0];
write_ctx.write_idx_starts[1] = write_idx_starts_storage[1];
}
if (calc_thread_ct > uv_capacity) {
calc_thread_ct = uv_capacity;
}
if (unlikely(SetThreadCt(calc_thread_ct, &tg) ||
SetThreadCt(1, &write_tg))) {
goto VcorTable_ret_NOMEM;
}
SetThreadFuncAndData(VcorTableThread, &ctx, &tg);
SetThreadFuncAndData(VcorTableWriteThread, &write_ctx, &write_tg);
if (ref_based) {
maj_alleles = nullptr;
}
AlleleCode aidx = 0;
logprintf("Running %s with the following filter%s:\n", flagname, inter_chr? "" : "s");
if (!inter_chr) {
if (var_ct_radius < 0x7fffffff) {
logprintf(" --ld-window: %u\n", var_ct_radius + 1);
}
logprintf(" --ld-window-kb: %g\n", 0.001 * u31tod(bp_radius));
if (cm_radius != -1.0) {
logprintf(" --ld-window-cm: %g\n", cm_radius);
}
}
logprintf(" --ld-window-r2: %g\n", min_r2);
if (row_snp_subset) {
if (ld_snp_list_fname) {
logputs(" --ld-snp-list\n");
} else {
logputs(" --ld-snp[s]\n");
}
}
uint32_t next_print_variant_ridx = row_variant_ct / 100;
uint32_t pct = 0;
uint32_t prev_variant_ridx_start = 0;
uint32_t cur_variant_ridx_start = 0;
uint32_t row_chr_fo_idx = UINT32_MAX; // deliberate overflow
uint32_t row_chr_idx = 0;
uint32_t row_chr_start = 0;
uint32_t row_chr_end = 0;
uint32_t row_read_phase = 0;
uint32_t row_parity = 0;
uint32_t col_parity = 0;
uint32_t col_variant_widx = 0;
uintptr_t row_variant_uidx_base;
uintptr_t row_cur_bits;
BitIter1Start(row_variant_include, 0, &row_variant_uidx_base, &row_cur_bits);
printf("%s: 0%%", flagname);
fflush(stdout);
do {
// Since we're using a double- rather than a triple-buffer, we must wait
// for the writer to finish flushing results for block (n-2) before we
// overwrite with information about block n.
if (prev_variant_ridx_start) {
JoinThreads(&write_tg);
if (unlikely(write_ctx.reterr)) {
reterr = write_ctx.reterr;
goto VcorTable_ret_1;
}
}
// 1. Determine col_offset_start and col_offset_end for each row-variant
// in the new row-window, and what the current row_window_size is.
// Constraints:
// * Can't run out of results-capacity.
// * Unless variant_ct == uv_capacity, there's also:
// * row_window_size <= row_variant_ct - cur_variant_ridx_start.
// * row_window_size <= uv_capacity / 2. This is unnecessarily
// tight in many cases, but never by a factor of more than 2 (4 if
// we take results-space into account), and I did not find that to
// be a big deal in my testing.
// Fill row_parity-indexed buffers.
// 2. col_capacity := uv_capacity - row_window_size; iterate through
// column-shard(s).
// uint32_t* row_uvidxs = ctx.row_uvidxs[row_parity];
ChrIdx* row_chr_idxs = ctx.row_chr_idxs[row_parity];
uint32_t* col_offset_starts = col_offset_starts_storage[row_parity];
uintptr_t* write_idx_starts = write_idx_starts_storage[row_parity];
uintptr_t write_idx = 0;
uint32_t row_variant_uidx_first = 0;
uint32_t row_variant_uidx_last = 0;
uint32_t col_variant_idx_start = 0;
uint32_t row_window_size;
uint32_t cur_variant_ridx_stop;
uint32_t col_variant_idx_ct;
{
uint32_t row_offset_limit = row_variant_ct - cur_variant_ridx_start;
if ((uv_capacity < variant_ct) && ((uv_capacity / 2) < row_offset_limit)) {
row_offset_limit = uv_capacity / 2;
}
// ok for these to be less than true value
uint32_t uidx_start = row_chr_start;
uint32_t uidx_end = row_chr_start;
unsigned char* row_load_iter = ctx.unpacked_variants[col_parity];
uint32_t row_offset = 0;
// in inter-chr case, should save col-window size
// if row-subset, start at variant_idx=0 instead of at diagonal
for (; row_offset != row_offset_limit; ++row_offset, row_load_iter = &(row_load_iter[unpacked_variant_byte_stride])) {
const uint32_t row_variant_uidx = BitIter1(row_variant_include, &row_variant_uidx_base, &row_cur_bits);
if (row_variant_uidx >= row_chr_end) {
do {
++row_chr_fo_idx;
row_chr_end = cip->chr_fo_vidx_start[row_chr_fo_idx + 1];
} while (row_variant_uidx >= row_chr_end);
row_chr_idx = cip->chr_file_order[row_chr_fo_idx];
row_chr_start = cip->chr_fo_vidx_start[row_chr_fo_idx];
uidx_start = row_chr_start;
uidx_end = row_chr_start;
if (phase_type == kR2PhaseTypePresent) {
row_read_phase = (!IsSet(cip->haploid_mask, row_chr_idx)) || (row_chr_idx == x_code);
if (!row_read_phase) {
pgv.phasepresent_ct = 0;
pgv.dphase_ct = 0;
}
}
}
uint32_t cur_col_offset_start;
uint32_t cur_col_offset_end;
if (inter_chr) {
if (row_offset == 0) {
row_variant_uidx_first = row_variant_uidx;
if (!row_snp_subset) {
col_variant_idx_start = RawToSubsettedPos(variant_include, variant_include_cumulative_popcounts, row_variant_uidx);
}
}
cur_col_offset_start = row_snp_subset? 0 : row_offset;
cur_col_offset_end = variant_ct - col_variant_idx_start;
} else {
UpdateVcorWindow(variant_include, variant_bps, variant_cms, row_snp_subset, var_ct_radius, bp_radius, cm_radius, row_chr_end, row_variant_uidx, &uidx_start, &uidx_end);
if (row_offset == 0) {
row_variant_uidx_first = row_variant_uidx;
col_variant_idx_start = RawToSubsettedPos(variant_include, variant_include_cumulative_popcounts, uidx_start);
}
cur_col_offset_start = RawToSubsettedPos(variant_include, variant_include_cumulative_popcounts, uidx_start) - col_variant_idx_start;
cur_col_offset_end = RawToSubsettedPos(variant_include, variant_include_cumulative_popcounts, uidx_end) - col_variant_idx_start;
}
const uintptr_t next_write_idx = write_idx + cur_col_offset_end - cur_col_offset_start;
if (next_write_idx > result_capacity) {
// Need to backtrack.
row_variant_uidx_base = RoundDownPow2(row_variant_uidx, kBitsPerWord);
row_cur_bits = row_variant_include[row_variant_uidx / kBitsPerWord] & (-(k1LU << (row_variant_uidx % kBitsPerWord)));
break;
}
row_variant_uidx_last = row_variant_uidx;
row_chr_idxs[row_offset] = row_chr_idx;
col_offset_starts[row_offset] = cur_col_offset_start;
write_idx_starts[row_offset] = write_idx;
write_idx = next_write_idx;
if (maj_alleles) {
aidx = maj_alleles[row_variant_uidx];
}
const uint32_t is_y = (row_variant_uidx < y_end) && (row_variant_uidx >= y_start);
if (check_dosage) {
if (row_read_phase) {
reterr = PgrGetInv1Dp(founder_info, pssi, founder_ct, row_variant_uidx, aidx, simple_pgrp, &pgv);
} else {
reterr = PgrGetInv1D(founder_info, pssi, founder_ct, row_variant_uidx, aidx, simple_pgrp, pgv.genovec, pgv.dosage_present, pgv.dosage_main, &pgv.dosage_ct);
}
if (unlikely(reterr)) {
goto VcorTable_ret_PGR_FAIL;
}
if (is_y) {
InterleavedSetMissingCleardosage(founder_female_collapsed, founder_female_collapsed_interleaved, founder_ctv2, pgv.genovec, &pgv.dosage_ct, pgv.dosage_present, pgv.dosage_main);
}
LdUnpackDosage(&pgv, founder_male_collapsed, male_dosage_invmask, founder_ct, phase_type, row_load_iter);
} else {
if ((!phased_calc) && (!is_y)) {
uint32_t difflist_common_geno;
uint32_t difflist_len;
reterr = PgrGetInv1DifflistOrGenovec(founder_info, pssi, founder_ct, max_simple_difflist_len, row_variant_uidx, aidx, simple_pgrp, pgv.genovec, &difflist_common_geno, raregeno, difflist_sample_ids, &difflist_len);
if (unlikely(reterr)) {
goto VcorTable_ret_PGR_FAIL;
}
if (difflist_common_geno != UINT32_MAX) {
if (difflist_len <= max_simple_difflist_len) {
LdUnpackNondosageSparse(raregeno, difflist_sample_ids, founder_male_collapsed, founder_ct, founder_male_ct, difflist_common_geno, difflist_len, row_load_iter);
continue;
}
PgrDifflistToGenovecUnsafe(raregeno, difflist_sample_ids, difflist_common_geno, founder_ct, difflist_len, pgv.genovec);
}
} else {
if (row_read_phase) {
reterr = PgrGetInv1P(founder_info, pssi, founder_ct, row_variant_uidx, aidx, simple_pgrp, pgv.genovec, pgv.phasepresent, pgv.phaseinfo, &pgv.phasepresent_ct);
} else {
reterr = PgrGetInv1(founder_info, pssi, founder_ct, row_variant_uidx, aidx, simple_pgrp, pgv.genovec);
}
if (unlikely(reterr)) {
goto VcorTable_ret_PGR_FAIL;
}
if (is_y) {
InterleavedSetMissing(founder_female_collapsed_interleaved, founder_ctv2, pgv.genovec);
}
}
LdUnpackNondosageDense(&pgv, founder_male_collapsed, founder_ct, phase_type, row_load_iter);
}
}
row_window_size = row_offset;
write_idx_starts[row_window_size] = write_idx;
cur_variant_ridx_stop = cur_variant_ridx_start + row_window_size;
write_ctx.variant_ridx_starts[row_parity] = cur_variant_ridx_start;
row_window_sizes[row_parity] = row_window_size;
write_ctx.col_variant_idx_starts[row_parity] = col_variant_idx_start;
col_variant_idx_ct = col_offset_starts[row_window_size - 1] + write_idx - write_idx_starts[row_window_size - 1];
}
uint32_t col_window_start = 0;
uint32_t col_offset = 0;
uint32_t col_read_phase = 0;
uint32_t col_chr_fo_idx;
uint32_t col_chr_idx;
uint32_t col_chr_end;
uintptr_t col_variant_uidx_base;
uintptr_t col_cur_bits;
{
const uint32_t col_variant_uidx_start = ExpsearchIdxToUidx(variant_include, variant_include_cumulative_popcounts, raw_variant_ctl, col_variant_idx_start, &col_variant_widx);
col_chr_fo_idx = GetVariantChrFoIdx(cip, col_variant_uidx_start);
col_chr_idx = cip->chr_file_order[col_chr_fo_idx];
col_chr_end = cip->chr_fo_vidx_start[col_chr_fo_idx + 1];
if (phase_type == kR2PhaseTypePresent) {
col_read_phase = (!IsSet(cip->haploid_mask, col_chr_idx)) || (col_chr_idx == x_code);
if (!col_read_phase) {
pgv.phasepresent_ct = 0;
pgv.dphase_ct = 0;
}
}
BitIter1Start(variant_include, col_variant_uidx_start, &col_variant_uidx_base, &col_cur_bits);
}
do {
unsigned char* col_load_iter;
{
unsigned char* unpacked_variants = ctx.unpacked_variants[col_parity];
const uintptr_t row_unpacked_variants_byte_ct = row_window_size * unpacked_variant_byte_stride;
if (col_offset != 0) {
memcpy(unpacked_variants, ctx.unpacked_variants[1 - col_parity], row_unpacked_variants_byte_ct);
}
col_load_iter = &(unpacked_variants[row_unpacked_variants_byte_ct]);
}
const uint32_t col_window_limit = MINV(col_window_start + uv_capacity, col_variant_idx_ct);
uint32_t* col_uvidxs = ctx.col_uvidxs[col_parity];
ChrIdx* col_chr_idxs = ctx.col_chr_idxs[col_parity];
uint32_t col_uvidx = row_window_size;
for (; col_offset != col_window_limit; ++col_offset) {
const uint32_t col_variant_uidx = BitIter1(variant_include, &col_variant_uidx_base, &col_cur_bits);
if (col_variant_uidx >= col_chr_end) {
do {
++col_chr_fo_idx;
col_chr_end = cip->chr_fo_vidx_start[col_chr_fo_idx + 1];
} while (col_variant_uidx >= col_chr_end);
col_chr_idx = cip->chr_file_order[col_chr_fo_idx];
if (phase_type == kR2PhaseTypePresent) {
col_read_phase = (!IsSet(cip->haploid_mask, col_chr_idx)) || (col_chr_idx == x_code);
if (!col_read_phase) {
pgv.phasepresent_ct = 0;
pgv.dphase_ct = 0;
}
}
}
if (IsSet(row_variant_include, col_variant_uidx) && (col_variant_uidx >= row_variant_uidx_first) && (col_variant_uidx <= row_variant_uidx_last)) {
// bugfix (18 Apr 2024): must subtract col_window_start
col_uvidxs[col_offset - col_window_start] = RawToSubsettedPos(row_variant_include, row_variant_include_cumulative_popcounts, col_variant_uidx) - cur_variant_ridx_start;
col_chr_idxs[col_offset - col_window_start] = col_chr_idx;
continue;
}
if (col_uvidx == uv_capacity) {
col_variant_uidx_base = RoundDownPow2(col_variant_uidx, kBitsPerWord);
col_cur_bits = variant_include[col_variant_uidx / kBitsPerWord] & (-(k1LU << (col_variant_uidx % kBitsPerWord)));
break;
}
col_uvidxs[col_offset - col_window_start] = col_uvidx++;
col_chr_idxs[col_offset - col_window_start] = col_chr_idx;
if (maj_alleles) {
aidx = maj_alleles[col_variant_uidx];
}
const uint32_t is_y = (col_variant_uidx < y_end) && (col_variant_uidx >= y_start);
if (check_dosage) {
if (col_read_phase) {
reterr = PgrGetInv1Dp(founder_info, pssi, founder_ct, col_variant_uidx, aidx, simple_pgrp, &pgv);
} else {
reterr = PgrGetInv1D(founder_info, pssi, founder_ct, col_variant_uidx, aidx, simple_pgrp, pgv.genovec, pgv.dosage_present, pgv.dosage_main, &pgv.dosage_ct);
}
if (unlikely(reterr)) {
goto VcorTable_ret_PGR_FAIL;
}
if (is_y) {
InterleavedSetMissingCleardosage(founder_female_collapsed, founder_female_collapsed_interleaved, founder_ctv2, pgv.genovec, &pgv.dosage_ct, pgv.dosage_present, pgv.dosage_main);
}
LdUnpackDosage(&pgv, founder_male_collapsed, male_dosage_invmask, founder_ct, phase_type, col_load_iter);
} else {
if ((!phased_calc) && (!is_y)) {
uint32_t difflist_common_geno;
uint32_t difflist_len;
reterr = PgrGetInv1DifflistOrGenovec(founder_info, pssi, founder_ct, max_simple_difflist_len, col_variant_uidx, aidx, simple_pgrp, pgv.genovec, &difflist_common_geno, raregeno, difflist_sample_ids, &difflist_len);
if (unlikely(reterr)) {
goto VcorTable_ret_PGR_FAIL;
}
if (difflist_common_geno != UINT32_MAX) {
if (difflist_len <= max_simple_difflist_len) {
LdUnpackNondosageSparse(raregeno, difflist_sample_ids, founder_male_collapsed, founder_ct, founder_male_ct, difflist_common_geno, difflist_len, col_load_iter);
goto VcorTable_col_finish;
}
PgrDifflistToGenovecUnsafe(raregeno, difflist_sample_ids, difflist_common_geno, founder_ct, difflist_len, pgv.genovec);
}
} else {
if (col_read_phase) {
reterr = PgrGetInv1P(founder_info, pssi, founder_ct, col_variant_uidx, aidx, simple_pgrp, pgv.genovec, pgv.phasepresent, pgv.phaseinfo, &pgv.phasepresent_ct);
} else {
reterr = PgrGetInv1(founder_info, pssi, founder_ct, col_variant_uidx, aidx, simple_pgrp, pgv.genovec);
}
if (unlikely(reterr)) {
goto VcorTable_ret_PGR_FAIL;
}
if (is_y) {
InterleavedSetMissing(founder_female_collapsed_interleaved, founder_ctv2, pgv.genovec);
}
}
LdUnpackNondosageDense(&pgv, founder_male_collapsed, founder_ct, phase_type, col_load_iter);
}
VcorTable_col_finish:
col_load_iter = &(col_load_iter[unpacked_variant_byte_stride]);
}
ctx.col_window_starts[col_parity] = col_window_start;
ctx.col_window_ends[col_parity] = col_offset;
if (cur_variant_ridx_start || col_window_start) {
JoinThreads(&tg);
if (!col_window_start) {
if (unlikely(SpawnThreads(&write_tg))) {
goto VcorTable_ret_THREAD_CREATE_FAIL;
}
}
}
if ((cur_variant_ridx_stop == row_variant_ct) && (col_offset == col_variant_idx_ct)) {
DeclareLastThreadBlock(&tg);
}
if (unlikely(SpawnThreads(&tg))) {
goto VcorTable_ret_THREAD_CREATE_FAIL;
}
col_window_start = col_offset;
col_parity = 1 - col_parity;
} while (col_offset != col_variant_idx_ct);
if (cur_variant_ridx_start >= next_print_variant_ridx) {
if (pct > 10) {
putc_unlocked('\b', stdout);
}
pct = (cur_variant_ridx_start * 100LLU) / row_variant_ct;
printf("\b\b%u%%", pct++);
fflush(stdout);
next_print_variant_ridx = (pct * S_CAST(uint64_t, row_variant_ct)) / 100;
}
prev_variant_ridx_start = cur_variant_ridx_start;
cur_variant_ridx_start = cur_variant_ridx_stop;
row_parity = 1 - row_parity;
} while (cur_variant_ridx_start != row_variant_ct);
JoinThreads(&tg);
if (prev_variant_ridx_start) {
JoinThreads(&write_tg);
if (unlikely(write_ctx.reterr)) {
reterr = write_ctx.reterr;
goto VcorTable_ret_1;
}
}
DeclareLastThreadBlock(&write_tg);
if (unlikely(SpawnThreads(&write_tg))) {
goto VcorTable_ret_THREAD_CREATE_FAIL;
}
JoinThreads(&write_tg);
if (unlikely(write_ctx.reterr)) {
reterr = write_ctx.reterr;
goto VcorTable_ret_1;
}
fputs("\r", stdout);
logprintfww("%s: Results written to %s .\n", flagname, outname);
}
while (0) {
VcorTable_ret_NOMEM:
reterr = kPglRetNomem;
break;
VcorTable_ret_INCONSISTENT_INPUT:
reterr = kPglRetInconsistentInput;
break;
VcorTable_ret_THREAD_CREATE_FAIL:
reterr = kPglRetThreadCreateFail;
break;
VcorTable_ret_PGR_FAIL:
PgenErrPrintN(reterr);
break;
}
VcorTable_ret_1:
CleanupThreads(&write_tg);
CleanupThreads(&tg);
CswriteCloseCond(&write_ctx.css, write_ctx.cswritep);
BigstackDoubleReset(bigstack_mark, bigstack_end_mark);
return reterr;
}
PglErr Vcor(const uintptr_t* orig_variant_include, const ChrInfo* cip, const uint32_t* variant_bps, const char* const* variant_ids, const double* variant_cms, const uintptr_t* allele_idx_offsets, const char* const* allele_storage, const AlleleCode* maj_alleles, const double* allele_freqs, const uintptr_t* founder_info, const uintptr_t* sex_nm, const uintptr_t* sex_male, const VcorInfo* vcip, uint32_t raw_variant_ct, uint32_t orig_variant_ct, uint32_t raw_sample_ct, uint32_t founder_ct, uint32_t max_variant_id_slen, uint32_t max_allele_slen, uint32_t parallel_idx, uint32_t parallel_tot, uint32_t max_thread_ct, PgenReader* simple_pgrp, char* outname, char* outname_end) {
const VcorFlags flags = vcip->flags;
const uint32_t phased_calc = (flags / kfVcorPhased) & 1;
const uint32_t is_unsquared = (flags / kfVcorUnsquared) & 1;
const char* flagname;
if (phased_calc) {
flagname = is_unsquared? "--r-phased" : "--r2-phased";
} else {
flagname = is_unsquared? "--r-unphased" : "--r2-unphased";
}
if (unlikely(founder_ct < 2)) {
logerrprintfww("Error: %s requires at least two founders. (--make-founders may come in handy here.)\n", flagname);
return kPglRetInconsistentInput;
} else if (founder_ct > 0x3fffffff) {
logerrprintf("Error: %s does not support >= 2^30 founders.\n", flagname);
return kPglRetNotYetSupported;
}
const uint32_t is_matrix = ((flags & (kfVcorBin8 | kfVcorBin4 | kfVcorMatrixShapemask)) != 0);
PglErr reterr;
if (is_matrix) {
reterr = VcorMatrix(orig_variant_include, cip, variant_ids, maj_alleles, founder_info, sex_nm, sex_male, vcip, flagname, raw_variant_ct, orig_variant_ct, raw_sample_ct, founder_ct, parallel_idx, parallel_tot, max_thread_ct, simple_pgrp, outname, outname_end);
} else {
reterr = VcorTable(orig_variant_include, cip, variant_bps, variant_ids, variant_cms, allele_idx_offsets, allele_storage, maj_alleles, allele_freqs, founder_info, sex_nm, sex_male, vcip, flagname, raw_variant_ct, orig_variant_ct, raw_sample_ct, founder_ct, max_variant_id_slen, max_allele_slen, parallel_idx, parallel_tot, max_thread_ct, simple_pgrp, outname, outname_end);
}
return reterr;
}
#ifdef __cplusplus
} // namespace plink2
#endif
|