1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
#include "parse_trigrams.h"
#include "unique_sort.h"
#include <assert.h>
#include <string.h>
#include <wctype.h>
using namespace std;
string print_td(const TrigramDisjunction &td)
{
if (td.read_trigrams.size() == 0) {
// Before we've done hash lookups (or none matched), so print all alternatives.
if (td.trigram_alternatives.size() == 1) {
return print_trigram(td.trigram_alternatives[0]);
} else {
string ret;
ret = "(";
bool first = true;
for (uint32_t trgm : td.trigram_alternatives) {
if (!first)
ret += " OR ";
ret += print_trigram(trgm);
first = false;
}
return ret + ")";
}
} else {
// Print only those that we actually have in the index.
if (td.read_trigrams.size() == 1) {
return print_trigram(td.read_trigrams[0].first.trgm);
} else {
string ret;
ret = "(";
bool first = true;
for (auto &[trgmptr, len] : td.read_trigrams) {
if (!first)
ret += " OR ";
ret += print_trigram(trgmptr.trgm);
first = false;
}
return ret + ")";
}
}
}
string print_trigram(uint32_t trgm)
{
char ch[3] = {
char(trgm & 0xff), char((trgm >> 8) & 0xff), char((trgm >> 16) & 0xff)
};
string str = "'";
for (unsigned i = 0; i < 3;) {
if (ch[i] == '\\') {
str.push_back('\\');
str.push_back(ch[i]);
++i;
} else if (int(ch[i]) >= 32 && int(ch[i]) <= 127) { // Holds no matter whether char is signed or unsigned.
str.push_back(ch[i]);
++i;
} else {
// See if we have an entire UTF-8 codepoint, and that it's reasonably printable.
mbtowc(nullptr, 0, 0);
wchar_t pwc;
int ret = mbtowc(&pwc, ch + i, 3 - i);
if (ret >= 1 && pwc >= 32) {
str.append(ch + i, ret);
i += ret;
} else {
char buf[16];
snprintf(buf, sizeof(buf), "\\x{%02x}", (unsigned char)ch[i]);
str += buf;
++i;
}
}
}
str += "'";
return str;
}
pair<uint32_t, size_t> read_unigram(const string &s, size_t start)
{
if (start >= s.size()) {
return { PREMATURE_END_UNIGRAM, 0 };
}
if (s[start] == '\\') {
// Escaped character.
if (start + 1 >= s.size()) {
return { PREMATURE_END_UNIGRAM, 1 };
} else {
return { (unsigned char)s[start + 1], 2 };
}
}
if (s[start] == '*' || s[start] == '?') {
// Wildcard.
return { WILDCARD_UNIGRAM, 1 };
}
if (s[start] == '[') {
// Character class; search to find the end.
size_t len = 1;
if (start + len >= s.size()) {
return { PREMATURE_END_UNIGRAM, len };
}
if (s[start + len] == '!') {
++len;
}
if (start + len >= s.size()) {
return { PREMATURE_END_UNIGRAM, len };
}
if (s[start + len] == ']') {
++len;
}
for (;;) {
if (start + len >= s.size()) {
return { PREMATURE_END_UNIGRAM, len };
}
if (s[start + len] == ']') {
return { WILDCARD_UNIGRAM, len + 1 };
}
++len;
}
}
// Regular letter.
return { (unsigned char)s[start], 1 };
}
uint32_t read_trigram(const string &s, size_t start)
{
pair<uint32_t, size_t> u1 = read_unigram(s, start);
if (u1.first == WILDCARD_UNIGRAM || u1.first == PREMATURE_END_UNIGRAM) {
return u1.first;
}
pair<uint32_t, size_t> u2 = read_unigram(s, start + u1.second);
if (u2.first == WILDCARD_UNIGRAM || u2.first == PREMATURE_END_UNIGRAM) {
return u2.first;
}
pair<uint32_t, size_t> u3 = read_unigram(s, start + u1.second + u2.second);
if (u3.first == WILDCARD_UNIGRAM || u3.first == PREMATURE_END_UNIGRAM) {
return u3.first;
}
return u1.first | (u2.first << 8) | (u3.first << 16);
}
struct TrigramState {
string buffered;
unsigned next_codepoint;
bool operator<(const TrigramState &other) const
{
if (next_codepoint != other.next_codepoint)
return next_codepoint < other.next_codepoint;
return buffered < other.buffered;
}
bool operator==(const TrigramState &other) const
{
return next_codepoint == other.next_codepoint &&
buffered == other.buffered;
}
};
void parse_trigrams_ignore_case(const string &needle, vector<TrigramDisjunction> *trigram_groups)
{
vector<vector<string>> alternatives_for_cp;
// Parse the needle into Unicode code points, and do inverse case folding
// on each to find legal alternatives. This is far from perfect (e.g. ß
// will not become ss), but it's generally the best we can do without
// involving ICU or the likes.
mbtowc(nullptr, 0, 0);
const char *ptr = needle.c_str();
while (*ptr != '\0') {
wchar_t ch;
int ret = mbtowc(&ch, ptr, strlen(ptr));
if (ret == -1) {
perror(ptr);
exit(1);
}
char buf[MB_CUR_MAX];
vector<string> alt;
alt.push_back(string(ptr, ret));
ptr += ret;
if (towlower(ch) != wint_t(ch)) {
ret = wctomb(buf, towlower(ch));
alt.push_back(string(buf, ret));
}
if (towupper(ch) != wint_t(ch) && towupper(ch) != towlower(ch)) {
ret = wctomb(buf, towupper(ch));
alt.push_back(string(buf, ret));
}
alternatives_for_cp.push_back(move(alt));
}
// Now generate all possible byte strings from those code points in order;
// e.g., from abc, we'd create a and A, then extend those to ab aB Ab AB,
// then abc abC aBc aBC and so on. Since we don't want to have 2^n
// (or even 3^n) strings, we only extend them far enough to cover at
// least three bytes; this will give us a set of candidate trigrams
// (the filename must have at least one of those), and then we can
// chop off the first byte, deduplicate states and continue extending
// and generating trigram sets.
//
// There are a few special cases, notably the dotted i (İ), where the
// UTF-8 versions of upper and lower case have different number of bytes.
// If this happens, we can have combinatorial explosion and get many more
// than the normal 8 states. We detect this and simply bomb out; it will
// never really happen in real strings, and stopping trigram generation
// really only means our pruning of candidates will be less effective.
vector<TrigramState> states;
states.push_back(TrigramState{ "", 0 });
for (;;) {
// Extend every state so that it has buffered at least three bytes.
// If this isn't possible, we are done with the string (can generate
// no more trigrams).
bool need_another_pass;
do {
need_another_pass = false;
vector<TrigramState> new_states;
for (const TrigramState &state : states) {
if (read_trigram(state.buffered, 0) != PREMATURE_END_UNIGRAM) {
// No need to extend this further.
new_states.push_back(state);
continue;
}
if (state.next_codepoint == alternatives_for_cp.size()) {
// We can't form a complete trigram from this alternative,
// so we're done.
return;
}
for (const string &rune : alternatives_for_cp[state.next_codepoint]) {
TrigramState new_state{ state.buffered + rune, state.next_codepoint + 1 };
if (read_trigram(state.buffered, 0) == PREMATURE_END_UNIGRAM) {
need_another_pass = true;
}
new_states.push_back(move(new_state));
}
}
states = move(new_states);
} while (need_another_pass);
// OK, so now we have a bunch of states, and all of them are at least
// three bytes long. This means we have a complete set of trigrams,
// and the destination filename must contain at least one of them.
// Output those trigrams, cut out the first byte and then deduplicate
// the states before we continue.
bool any_wildcard = false;
vector<uint32_t> trigram_alternatives;
for (TrigramState &state : states) {
trigram_alternatives.push_back(read_trigram(state.buffered, 0));
state.buffered.erase(0, read_unigram(state.buffered, 0).second);
assert(trigram_alternatives.back() != PREMATURE_END_UNIGRAM);
if (trigram_alternatives.back() == WILDCARD_UNIGRAM) {
// If any of the candidates are wildcards, we need to drop the entire OR group.
// (Most likely, all of them would be anyway.) We need to keep stripping out
// the first unigram from each state.
any_wildcard = true;
}
}
unique_sort(&trigram_alternatives); // Could have duplicates, although it's rare.
unique_sort(&states);
if (!any_wildcard) {
TrigramDisjunction new_pt;
new_pt.remaining_trigrams_to_read = trigram_alternatives.size();
new_pt.trigram_alternatives = move(trigram_alternatives);
new_pt.max_num_docids = 0;
trigram_groups->push_back(move(new_pt));
}
if (states.size() > 100) {
// A completely crazy pattern with lots of those special characters.
// We just give up; this isn't a realistic scenario anyway.
// We already have lots of trigrams that should reduce the amount of
// candidates.
return;
}
}
}
void parse_trigrams(const string &needle, bool ignore_case, vector<TrigramDisjunction> *trigram_groups)
{
if (ignore_case) {
parse_trigrams_ignore_case(needle, trigram_groups);
return;
}
// The case-sensitive case is straightforward.
for (size_t i = 0; i < needle.size(); i += read_unigram(needle, i).second) {
uint32_t trgm = read_trigram(needle, i);
if (trgm == WILDCARD_UNIGRAM || trgm == PREMATURE_END_UNIGRAM) {
// Invalid trigram, so skip.
continue;
}
TrigramDisjunction new_pt;
new_pt.remaining_trigrams_to_read = 1;
new_pt.trigram_alternatives.push_back(trgm);
new_pt.max_num_docids = 0;
trigram_groups->push_back(move(new_pt));
}
}
|