File: PKG-INFO

package info (click to toggle)
plotly 4.14.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 77,744 kB
  • sloc: javascript: 324,821; python: 319,618; sh: 49; makefile: 4
file content (252 lines) | stat: -rw-r--r-- 9,382 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
Metadata-Version: 2.1
Name: plotly
Version: 4.14.3
Summary: An open-source, interactive data visualization library for Python
Home-page: https://plotly.com/python/
Author: Chris P
Author-email: chris@plot.ly
Maintainer: Nicolas Kruchten
Maintainer-email: nicolas@plot.ly
License: MIT
Project-URL: Github, https://github.com/plotly/plotly.py
Description: # plotly.py
        
        <table>
            <tr>
                <td>Latest Release</td>
                <td>
                    <a href="https://pypi.org/project/plotly/"/>
                    <img src="https://badge.fury.io/py/plotly.svg"/>
                </td>
            </tr>
            <tr>
                <td>User forum</td>
                <td>
                    <a href="https://community.plot.ly"/>
                    <img src="https://img.shields.io/badge/help_forum-discourse-blue.svg"/>
                </td>
            </tr>
            <tr>
                <td>PyPI Downloads</td>
                <td>
                    <a href="https://pepy.tech/project/plotly"/>
                    <img src="https://pepy.tech/badge/plotly/month"/>
                </td>
            </tr>
            <tr>
                <td>License</td>
                <td>
                    <a href="https://opensource.org/licenses/MIT"/>
                    <img src="https://img.shields.io/badge/License-MIT-yellow.svg"/>
                </td>
            </tr>
        </table>
        
        ## Data Science Workspaces
        
        Our recommended IDE for Plotly’s Python graphing library is Dash Enterprise’s [Data Science Workspaces](https://plotly.com/dash/workspaces/), which has both Jupyter notebook and Python code file support.
        
        ## Quickstart
        
        `pip install plotly==4.14.3`
        
        Inside [Jupyter notebook](https://jupyter.org/install) (installable with `pip install "notebook>=5.3" "ipywidgets>=7.5"`):
        
        ```python
        import plotly.graph_objects as go
        fig = go.Figure()
        fig.add_trace(go.Scatter(y=[2, 1, 4, 3]))
        fig.add_trace(go.Bar(y=[1, 4, 3, 2]))
        fig.update_layout(title = 'Hello Figure')
        fig.show()
        ```
        
        See the [Python documentation](https://plot.ly/python/) for more examples.
        
        Read about what's new in [plotly.py v4](https://medium.com/plotly/plotly-py-4-0-is-here-offline-only-express-first-displayable-anywhere-fc444e5659ee)
        
        ## Overview
        
        [plotly.py](https://plot.ly/python) is an interactive, open-source, and browser-based graphing library for Python :sparkles:
        
        Built on top of [plotly.js](https://github.com/plotly/plotly.js), `plotly.py` is a high-level, declarative charting library. plotly.js ships with over 30 chart types, including scientific charts, 3D graphs, statistical charts, SVG maps, financial charts, and more.
        
        `plotly.py` is [MIT Licensed](packages/python/chart-studio/LICENSE.txt). Plotly graphs can be viewed in Jupyter notebooks, standalone HTML files, or hosted online using [Chart Studio Cloud](https://chart-studio.plot.ly/feed/).
        
        [Contact us](https://plot.ly/products/consulting-and-oem/) for consulting, dashboard development, application integration, and feature additions.
        
        <p align="center">
            <a href="https://plot.ly/python" target="_blank">
            <img src="https://raw.githubusercontent.com/cldougl/plot_images/add_r_img/plotly_2017.png">
        </a></p>
        
        ---
        
        - [Online Documentation](https://plot.ly/python)
        - [Contributing to plotly](contributing.md)
        - [Changelog](CHANGELOG.md)
        - [Code of Conduct](CODE_OF_CONDUCT.md)
        - [Version 4 Migration Guide](https://plot.ly/python/next/v4-migration/)
        - [New! Announcing Dash 1.0](https://medium.com/plotly/welcoming-dash-1-0-0-f3af4b84bae)
        - [Community forum](https://community.plot.ly/c/api/python)
        
        ---
        
        ## Installation
        
        plotly.py may be installed using pip...
        
        ```
        pip install plotly==4.14.3
        ```
        
        or conda.
        
        ```
        conda install -c plotly plotly=4.14.3
        ```
        
        ### Jupyter Notebook Support
        
        For use in the Jupyter Notebook, install the `notebook` and `ipywidgets`
        packages using `pip`:
        
        ```
        pip install "notebook>=5.3" "ipywidgets>=7.5"
        ```
        
        or `conda`:
        
        ```
        conda install "notebook>=5.3" "ipywidgets>=7.5"
        ```
        
        ### JupyterLab Support
        
        For use in JupyterLab, install the `jupyterlab` and `ipywidgets`
        packages using `pip`:
        
        ```
        pip install jupyterlab "ipywidgets>=7.5"
        ```
        
        or `conda`:
        
        ```
        conda install jupyterlab "ipywidgets>=7.5"
        ```
        
        Then run the following commands to install the required JupyterLab extensions (note that this will require [`node`](https://nodejs.org/) to be installed):
        
        ```
        # Basic JupyterLab renderer support
        jupyter labextension install jupyterlab-plotly@4.14.3
        
        # OPTIONAL: Jupyter widgets extension for FigureWidget support
        jupyter labextension install @jupyter-widgets/jupyterlab-manager plotlywidget@4.14.3
        ```
        
        Please check out our [Troubleshooting guide](https://plotly.com/python/troubleshooting/) if you run into any problems with JupyterLab.
        
        ### Static Image Export
        
        plotly.py supports [static image export](https://plotly.com/python/static-image-export/),
        using either the [`kaleido`](https://github.com/plotly/Kaleido)
        package (recommended, supported as of `plotly` version 4.9) or the [orca](https://github.com/plotly/orca)
        command line utility (legacy as of `plotly` version 4.9).
        
        #### Kaleido
        
        The [`kaleido`](https://github.com/plotly/Kaleido) package has no dependencies and can be installed
        using pip...
        
        ```
        $ pip install -U kaleido
        ```
        
        or conda.
        
        ```
        $ conda install -c conda-forge python-kaleido
        ```
        
        #### Orca
        
        While Kaleido is now the recommended image export approach because it is easier to install
        and more widely compatible, [static image export](https://plotly.com/python/static-image-export/)
        can also be supported
        by the legacy [orca](https://github.com/plotly/orca) command line utility and the
         [`psutil`](https://github.com/giampaolo/psutil) Python package.
        
        These dependencies can both be installed using conda:
        
        ```
        conda install -c plotly plotly-orca==1.3.1 psutil
        ```
        
        Or, `psutil` can be installed using pip...
        
        ```
        pip install psutil
        ```
        
        and orca can be installed according to the instructions in the [orca README](https://github.com/plotly/orca).
        
        
        ### Extended Geo Support
        
        Some plotly.py features rely on fairly large geographic shape files. The county
        choropleth figure factory is one such example. These shape files are distributed as a
        separate `plotly-geo` package. This package can be installed using pip...
        
        ```
        pip install plotly-geo==1.0.0
        ```
        
        or conda
        
        ```
        conda install -c plotly plotly-geo=1.0.0
        ```
        
        ### Chart Studio support
        
        The `chart-studio` package can be used to upload plotly figures to Plotly's Chart
        Studio Cloud or On-Prem service. This package can be installed using pip...
        
        ```
        pip install chart-studio==1.1.0
        ```
        
        or conda
        
        ```
        conda install -c plotly chart-studio=1.1.0
        ```
        
        ## Migration
        
        If you're migrating from plotly.py v3 to v4, please check out the [Version 4 migration guide](https://plot.ly/python/next/v4-migration/)
        
        If you're migrating from plotly.py v2 to v3, please check out the [Version 3 migration guide](migration-guide.md)
        
        ## Copyright and Licenses
        
        Code and documentation copyright 2019 Plotly, Inc.
        
        Code released under the [MIT license](packages/python/chart-studio/LICENSE.txt).
        
        Docs released under the [Creative Commons license](https://github.com/plotly/documentation/blob/source/LICENSE).
        
Platform: UNKNOWN
Classifier: Development Status :: 5 - Production/Stable
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.3
Classifier: Programming Language :: Python :: 3.4
Classifier: Programming Language :: Python :: 3.5
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Topic :: Scientific/Engineering :: Visualization
Description-Content-Type: text/markdown