1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
# Array not ok
# ------------
import pytest
from pytest import approx
from _plotly_utils.basevalidators import IntegerValidator
import numpy as np
import pandas as pd
# ### Fixtures ###
@pytest.fixture()
def validator():
return IntegerValidator("prop", "parent")
@pytest.fixture
def validator_min_max():
return IntegerValidator("prop", "parent", min=-1, max=2)
@pytest.fixture
def validator_min():
return IntegerValidator("prop", "parent", min=-1)
@pytest.fixture
def validator_max():
return IntegerValidator("prop", "parent", max=2)
@pytest.fixture
def validator_aok(request):
return IntegerValidator("prop", "parent", min=-2, max=10, array_ok=True)
# ### Acceptance ###
@pytest.mark.parametrize("val", [1, -19, 0, -1234])
def test_acceptance(val, validator):
assert validator.validate_coerce(val) == val
# ### Rejection by value ###
@pytest.mark.parametrize(
"val", ["hello", (), [], [1, 2, 3], set(), "34", np.nan, np.inf, -np.inf]
)
def test_rejection_by_value(val, validator):
with pytest.raises(ValueError) as validation_failure:
validator.validate_coerce(val)
assert "Invalid value" in str(validation_failure.value)
# ### With min/max ###
# min == -1 and max == 2
@pytest.mark.parametrize("val", [0, 1, -1, 2])
def test_acceptance_min_max(val, validator_min_max):
assert validator_min_max.validate_coerce(val) == approx(val)
@pytest.mark.parametrize(
"val", [-1.01, -10, 2.1, 3, np.iinfo(np.int).max, np.iinfo(np.int).min]
)
def test_rejection_min_max(val, validator_min_max):
with pytest.raises(ValueError) as validation_failure:
validator_min_max.validate_coerce(val)
assert "in the interval [-1, 2]" in str(validation_failure.value)
# ### With min only ###
# min == -1
@pytest.mark.parametrize("val", [-1, 0, 1, 23, 99999])
def test_acceptance_min(val, validator_min):
assert validator_min.validate_coerce(val) == approx(val)
@pytest.mark.parametrize("val", [-2, -123, np.iinfo(np.int).min])
def test_rejection_min(val, validator_min):
with pytest.raises(ValueError) as validation_failure:
validator_min.validate_coerce(val)
assert "in the interval [-1, 9223372036854775807]" in str(validation_failure.value)
# ### With max only ###
# max == 2
@pytest.mark.parametrize("val", [1, 2, -10, -999999, np.iinfo(np.int32).min])
def test_acceptance_max(val, validator_max):
assert validator_max.validate_coerce(val) == approx(val)
@pytest.mark.parametrize("val", [3, 10, np.iinfo(np.int32).max])
def test_rejection_max(val, validator_max):
with pytest.raises(ValueError) as validation_failure:
validator_max.validate_coerce(val)
assert "in the interval [-9223372036854775808, 2]" in str(validation_failure.value)
# Array ok
# --------
# min=-2 and max=10
# ### Acceptance ###
@pytest.mark.parametrize("val", [-2, 1, 0, 1, 10])
def test_acceptance_aok_scalars(val, validator_aok):
assert validator_aok.validate_coerce(val) == val
@pytest.mark.parametrize("val", [[1, 0], [1], [-2, 1, 8], np.array([3, 2, -1, 5])])
def test_acceptance_aok_list(val, validator_aok):
assert np.array_equal(validator_aok.validate_coerce(val), val)
# ### Coerce ###
# Coerced to general consistent numeric type
@pytest.mark.parametrize(
"val,expected",
[
([1, 0], (1, 0)),
((1, -1), (1, -1)),
(np.array([-1, 0, 5.0], dtype="int16"), [-1, 0, 5]),
(np.array([1, 0], dtype=np.int64), [1, 0]),
(pd.Series([1, 0], dtype=np.int64), [1, 0]),
(pd.Index([1, 0], dtype=np.int64), [1, 0]),
],
)
def test_coercion_aok_list(val, expected, validator_aok):
v = validator_aok.validate_coerce(val)
if isinstance(val, (np.ndarray, pd.Series, pd.Index)):
assert v.dtype == val.dtype
assert np.array_equal(
validator_aok.present(v), np.array(expected, dtype=np.int32)
)
else:
assert isinstance(v, list)
assert validator_aok.present(v) == expected
# ### Rejection ###
#
@pytest.mark.parametrize("val", [["a", 4], [[], 3, 4]])
def test_integer_validator_rejection_aok(val, validator_aok):
with pytest.raises(ValueError) as validation_failure:
validator_aok.validate_coerce(val)
assert "Invalid element(s)" in str(validation_failure.value)
# ### Rejection by element ###
@pytest.mark.parametrize(
"val",
[[-1, 11], [1.5, -3], [0, np.iinfo(np.int32).max], [0, np.iinfo(np.int32).min]],
)
def test_rejection_aok_min_max(val, validator_aok):
with pytest.raises(ValueError) as validation_failure:
validator_aok.validate_coerce(val)
assert "in the interval [-2, 10]" in str(validation_failure.value)
|