File: test_pandas_series_input.py

package info (click to toggle)
plotly 5.4.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 90,200 kB
  • sloc: python: 368,793; javascript: 213,159; sh: 49; makefile: 4
file content (206 lines) | stat: -rw-r--r-- 4,959 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import pytest
import numpy as np
import pandas as pd
from datetime import datetime
from _plotly_utils.basevalidators import (
    NumberValidator,
    IntegerValidator,
    DataArrayValidator,
    ColorValidator,
)


@pytest.fixture
def data_array_validator(request):
    return DataArrayValidator("prop", "parent")


@pytest.fixture
def integer_validator(request):
    return IntegerValidator("prop", "parent", array_ok=True)


@pytest.fixture
def number_validator(request):
    return NumberValidator("prop", "parent", array_ok=True)


@pytest.fixture
def color_validator(request):
    return ColorValidator("prop", "parent", array_ok=True, colorscale_path="")


@pytest.fixture(
    params=[
        "int8",
        "int16",
        "int32",
        "int64",
        "uint8",
        "uint16",
        "uint32",
        "uint64",
        "float16",
        "float32",
        "float64",
    ]
)
def numeric_dtype(request):
    return request.param


@pytest.fixture(params=[pd.Series, pd.Index])
def pandas_type(request):
    return request.param


@pytest.fixture
def numeric_pandas(request, pandas_type, numeric_dtype):
    return pandas_type(np.arange(10), dtype=numeric_dtype)


@pytest.fixture
def color_object_pandas(request, pandas_type):
    return pandas_type(["blue", "green", "red"] * 3, dtype="object")


@pytest.fixture
def color_categorical_pandas(request, pandas_type):
    return pandas_type(pd.Categorical(["blue", "green", "red"] * 3))


@pytest.fixture
def dates_array(request):
    return np.array(
        [
            datetime(year=2013, month=10, day=10),
            datetime(year=2013, month=11, day=10),
            datetime(year=2013, month=12, day=10),
            datetime(year=2014, month=1, day=10),
            datetime(year=2014, month=2, day=10),
        ]
    )


@pytest.fixture
def datetime_pandas(request, pandas_type, dates_array):
    return pandas_type(dates_array)


def test_numeric_validator_numeric_pandas(number_validator, numeric_pandas):
    res = number_validator.validate_coerce(numeric_pandas)

    # Check type
    assert isinstance(res, np.ndarray)

    # Check dtype
    assert res.dtype == numeric_pandas.dtype

    # Check values
    np.testing.assert_array_equal(res, numeric_pandas)


def test_integer_validator_numeric_pandas(integer_validator, numeric_pandas):
    res = integer_validator.validate_coerce(numeric_pandas)

    # Check type
    assert isinstance(res, np.ndarray)

    # Check dtype
    if numeric_pandas.dtype.kind in ("u", "i"):
        # Integer and unsigned integer dtype unchanged
        assert res.dtype == numeric_pandas.dtype
    else:
        # Float datatypes converted to default integer type of int32
        assert res.dtype == "int32"

    # Check values
    np.testing.assert_array_equal(res, numeric_pandas)


def test_data_array_validator(data_array_validator, numeric_pandas):
    res = data_array_validator.validate_coerce(numeric_pandas)

    # Check type
    assert isinstance(res, np.ndarray)

    # Check dtype
    assert res.dtype == numeric_pandas.dtype

    # Check values
    np.testing.assert_array_equal(res, numeric_pandas)


def test_color_validator_numeric(color_validator, numeric_pandas):
    res = color_validator.validate_coerce(numeric_pandas)

    # Check type
    assert isinstance(res, np.ndarray)

    # Check dtype
    assert res.dtype == numeric_pandas.dtype

    # Check values
    np.testing.assert_array_equal(res, numeric_pandas)


def test_color_validator_object(color_validator, color_object_pandas):

    res = color_validator.validate_coerce(color_object_pandas)

    # Check type
    assert isinstance(res, np.ndarray)

    # Check dtype
    assert res.dtype == "object"

    # Check values
    np.testing.assert_array_equal(res, color_object_pandas)


def test_color_validator_categorical(color_validator, color_categorical_pandas):

    res = color_validator.validate_coerce(color_categorical_pandas)

    # Check type
    assert color_categorical_pandas.dtype == "category"
    assert isinstance(res, np.ndarray)

    # Check dtype
    assert res.dtype == "object"

    # Check values
    np.testing.assert_array_equal(res, np.array(color_categorical_pandas))


def test_data_array_validator_dates_series(
    data_array_validator, datetime_pandas, dates_array
):

    res = data_array_validator.validate_coerce(datetime_pandas)

    # Check type
    assert isinstance(res, np.ndarray)

    # Check dtype
    assert res.dtype == "object"

    # Check values
    np.testing.assert_array_equal(res, dates_array)


def test_data_array_validator_dates_dataframe(
    data_array_validator, datetime_pandas, dates_array
):

    df = pd.DataFrame({"d": datetime_pandas})
    res = data_array_validator.validate_coerce(df)

    # Check type
    assert isinstance(res, np.ndarray)

    # Check dtype
    assert res.dtype == "object"

    # Check values
    np.testing.assert_array_equal(res, dates_array.reshape(len(dates_array), 1))