1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
import pytest
import numpy as np
import pandas as pd
from datetime import datetime
from _plotly_utils.basevalidators import (
NumberValidator,
IntegerValidator,
DataArrayValidator,
ColorValidator,
)
@pytest.fixture
def data_array_validator(request):
return DataArrayValidator("prop", "parent")
@pytest.fixture
def integer_validator(request):
return IntegerValidator("prop", "parent", array_ok=True)
@pytest.fixture
def number_validator(request):
return NumberValidator("prop", "parent", array_ok=True)
@pytest.fixture
def color_validator(request):
return ColorValidator("prop", "parent", array_ok=True, colorscale_path="")
@pytest.fixture(
params=[
"int8",
"int16",
"int32",
"int64",
"uint8",
"uint16",
"uint32",
"uint64",
"float16",
"float32",
"float64",
]
)
def numeric_dtype(request):
return request.param
@pytest.fixture(params=[pd.Series, pd.Index])
def pandas_type(request):
return request.param
@pytest.fixture
def numeric_pandas(request, pandas_type, numeric_dtype):
return pandas_type(np.arange(10), dtype=numeric_dtype)
@pytest.fixture
def color_object_pandas(request, pandas_type):
return pandas_type(["blue", "green", "red"] * 3, dtype="object")
@pytest.fixture
def color_categorical_pandas(request, pandas_type):
return pandas_type(pd.Categorical(["blue", "green", "red"] * 3))
@pytest.fixture
def dates_array(request):
return np.array(
[
datetime(year=2013, month=10, day=10),
datetime(year=2013, month=11, day=10),
datetime(year=2013, month=12, day=10),
datetime(year=2014, month=1, day=10),
datetime(year=2014, month=2, day=10),
]
)
@pytest.fixture
def datetime_pandas(request, pandas_type, dates_array):
return pandas_type(dates_array)
def test_numeric_validator_numeric_pandas(number_validator, numeric_pandas):
res = number_validator.validate_coerce(numeric_pandas)
# Check type
assert isinstance(res, np.ndarray)
# Check dtype
assert res.dtype == numeric_pandas.dtype
# Check values
np.testing.assert_array_equal(res, numeric_pandas)
def test_integer_validator_numeric_pandas(integer_validator, numeric_pandas):
res = integer_validator.validate_coerce(numeric_pandas)
# Check type
assert isinstance(res, np.ndarray)
# Check dtype
if numeric_pandas.dtype.kind in ("u", "i"):
# Integer and unsigned integer dtype unchanged
assert res.dtype == numeric_pandas.dtype
else:
# Float datatypes converted to default integer type of int32
assert res.dtype == "int32"
# Check values
np.testing.assert_array_equal(res, numeric_pandas)
def test_data_array_validator(data_array_validator, numeric_pandas):
res = data_array_validator.validate_coerce(numeric_pandas)
# Check type
assert isinstance(res, np.ndarray)
# Check dtype
assert res.dtype == numeric_pandas.dtype
# Check values
np.testing.assert_array_equal(res, numeric_pandas)
def test_color_validator_numeric(color_validator, numeric_pandas):
res = color_validator.validate_coerce(numeric_pandas)
# Check type
assert isinstance(res, np.ndarray)
# Check dtype
assert res.dtype == numeric_pandas.dtype
# Check values
np.testing.assert_array_equal(res, numeric_pandas)
def test_color_validator_object(color_validator, color_object_pandas):
res = color_validator.validate_coerce(color_object_pandas)
# Check type
assert isinstance(res, np.ndarray)
# Check dtype
assert res.dtype == "object"
# Check values
np.testing.assert_array_equal(res, color_object_pandas)
def test_color_validator_categorical(color_validator, color_categorical_pandas):
res = color_validator.validate_coerce(color_categorical_pandas)
# Check type
assert color_categorical_pandas.dtype == "category"
assert isinstance(res, np.ndarray)
# Check dtype
assert res.dtype == "object"
# Check values
np.testing.assert_array_equal(res, np.array(color_categorical_pandas))
def test_data_array_validator_dates_series(
data_array_validator, datetime_pandas, dates_array
):
res = data_array_validator.validate_coerce(datetime_pandas)
# Check type
assert isinstance(res, np.ndarray)
# Check dtype
assert res.dtype == "object"
# Check values
np.testing.assert_array_equal(res, dates_array)
def test_data_array_validator_dates_dataframe(
data_array_validator, datetime_pandas, dates_array
):
df = pd.DataFrame({"d": datetime_pandas})
res = data_array_validator.validate_coerce(df)
# Check type
assert isinstance(res, np.ndarray)
# Check dtype
assert res.dtype == "object"
# Check values
np.testing.assert_array_equal(res, dates_array.reshape(len(dates_array), 1))
|