File: contour.c

package info (click to toggle)
plotmtv 1.4.1-4
  • links: PTS
  • area: main
  • in suites: slink
  • size: 4,024 kB
  • ctags: 5,006
  • sloc: ansic: 51,179; makefile: 1,976; fortran: 1,277; sh: 510; csh: 439
file content (643 lines) | stat: -rw-r--r-- 20,211 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
/*
 * contour.c - manipulate the contour data
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "CNplot.h"

void CNslice_contours();
void CNfind_contour();
void CNsort_lines();
static void insert_tailpoint();
static void add_to_tailplot();
static void insert_headpoint();
static void add_to_headplot();
static CNlineptr matching_line();
static void find_rect_intsct();
static void find_tria_intsct();
static int plane_intsct_line();


/****************************************************************/
/**********                                            **********/
/**********         General contour subroutines        **********/
/**********                                            **********/
/****************************************************************/


/*
 * Select the contour step size and 
 * cut up the triangles contained in Dptr along the z-planes
 */
void CNslice_contours(Dptr,verbose)
CNdatasetptr Dptr;
int          verbose;
{
   CNcontstepptr C;
   int i;

   /*
    * Get rid of any pre-existing contour curves first 
    */
   CNdelete_curve_list(&(Dptr->curvehead), &(Dptr->curvetail));

   /*
    * Delete the prexisting cstep list 
    */
   if (Dptr->data_pr.stepmethod != CN_USERDEFN) 
   CNdelete_contstep_list(&(Dptr->cstephead), &(Dptr->csteptail));

   if (verbose) {
   (void) fprintf(stdout,"\n   Taking multiple slices of the dataset\n");
   (void) fprintf(stdout,"      Dataset Information:\n");
   (void) fprintf(stdout,"      DATA ID     = %d\n",Dptr->ID);
   (void) fprintf(stdout,"      Origin      = %s\n",Dptr->filename);
   (void) fprintf(stdout,"      Step Method = %d\n",Dptr->data_pr.stepmethod);
   (void) fprintf(stdout,"      LogZ Interp = %s\n",
                  BOOLEAN_VALUE(Dptr->data_pr.logz));
   }

   /*
    * Select the contour step size
    * This is done ONLY if the steps have NOT been specified individually
    */
   if (Dptr->data_pr.stepmethod != CN_USERDEFN) 
   CNselect_contour_step(&(Dptr->data_pr.cmin), 
                         &(Dptr->data_pr.cmax),
                         Dptr->data_pr.stepmethod,
                         &(Dptr->data_pr.cstep),
                         &(Dptr->data_pr.nsteps),
                         Dptr->data_pr.logzstep,
                         &(Dptr->cstephead), &(Dptr->csteptail), verbose);

   /* Error check */
   if (Dptr->cstephead == NULL)
   (void) fprintf(stderr,"Warning! No contour curves found!\n");

   /*
    * now find the contours 
    */
   i = 0;
   for (C=Dptr->cstephead; C!=NULL; C=C->next) {
      if ((C->value > Dptr->bzmin) && (C->value < Dptr->bzmax))
         CNfind_contour(Dptr, C->value, i, &(C->curv_pr));
      i++;
   }
}


/* 
 * find all the line-segments that are formed when triangle intersects z=level 
 */
void CNfind_contour(Dptr,level,lineID,curv_pr)
CNdatasetptr     Dptr;
double           level;
int              lineID;
CNcurve_property *curv_pr;
{
   CNlineptr  line_listhead=NULL, line_listtail=NULL;
   CNtriaptr  T;
   CNrectptr  R;
   char       label[CN_MAXCHAR];
   int        linetyp;
   double     delta;

   /*
    * Delta is the smallest dimension of the data
    */
   delta = MINOF3(fabs(Dptr->bxmax - Dptr->bxmin), 
                  fabs(Dptr->bymax - Dptr->bymin),
                  fabs(Dptr->data_pr.cmax - Dptr->data_pr.cmin));

   /* 
    * find all the line-segments of the rectangles that intersect a plane
    */
   if (Dptr->recthead != NULL) {
      for (R=Dptr->recthead; R!=NULL; R=R->next)
         find_rect_intsct(level,R,&line_listhead,&line_listtail,delta,
                          Dptr->data_pr.logx,
                          Dptr->data_pr.logy,
                          Dptr->data_pr.logz);
   }

   /* 
    * find all the line-segments of the triangles that intersect a plane
    */
   if (Dptr->triahead != NULL) {
      for (T=Dptr->triahead; T!=NULL; T=T->next)
         find_tria_intsct(level,T,&line_listhead,&line_listtail,delta,
                          Dptr->data_pr.logx,
                          Dptr->data_pr.logy,
                          Dptr->data_pr.logz);
   }
   
   /* 
    * The linetype is determined by the order of each slice 
    * The default is 2 linetypes (major and minor)
    */
   if (Dptr->data_pr.linetypes <=0 || Dptr->data_pr.linetypes > 3) 
      Dptr->data_pr.linetypes = 2;
   if (Dptr->data_pr.linetypes <= 2) 
      linetyp = lineID % Dptr->data_pr.linetypes;
   else if (Dptr->data_pr.linetypes == 3) {
      linetyp = lineID % 4;
      if (linetyp == 3) linetyp = 1;
   }
   switch (linetyp) {
   case 0 : linetyp = CN_LN_SOLID;    break;
   case 1 : linetyp = CN_LN_DOTTED;   break;
   case 2 : linetyp = CN_LN_DASHED;   break;
   case 3 : linetyp = CN_LN_DOTDASH;  break;
   default: linetyp = CN_LN_SOLID;    break;
   }

   /*
    * now sort out the list of line-segments 
    * pass the boundary of the data so that the line-segments can be
    * joined on a relative basis rather than an absolute one.
    */
   (void) sprintf(label,"%.3g",level);
   CNsort_lines(&line_listhead, &line_listtail,
                &(Dptr->curvehead), &(Dptr->curvetail),
                delta, label, linetyp, lineID, curv_pr);
}

/*
 * sort out the list of lines to form a joined curve
 * Delta is the smallest dimension of the data, provided for 
 * comparison.
 */
void CNsort_lines(linehead, linetail, curvehead, curvetail,
                  delta, label, linetyp, lineID, curv_pr)
CNlineptr        *linehead, *linetail;
CNcurveptr       *curvehead, *curvetail;
double           delta;
char             *label;
int              linetyp,lineID;
CNcurve_property *curv_pr;
{
   CNlineptr  L;
   CNcurveptr C;
   CNpoint    PT1,PT2;

   while ((L = *linehead)!=NULL) {
      /* Insert the curve */
      C = CNinsert_curve(curvehead, curvetail,lineID);

      /* Apply properties to the curve */
      CNdestroy_string(C->curv_pr.linelabel);
      C->curv_pr.linelabel = CNcreate_string(label);
      C->curv_pr.linetype  = linetyp;
      C->curv_pr.linecolor = linetyp;
      if ((curv_pr != NULL) && (curv_pr->flag != 0))
         CNset_curve_property(&(C->curv_pr), curv_pr);

      /* Put in points */
      PT1 = L->pt1;
      PT2 = L->pt2;
      insert_tailpoint(&(C->pointhead), &(C->pointtail), &PT1, 0);
      insert_tailpoint(&(C->pointhead), &(C->pointtail), &PT2, 0);
      CNdelete_line(linehead, linetail, L);
      add_to_tailplot(linehead, linetail, &PT2, C, delta);
      add_to_headplot(linehead, linetail, &PT1, C, delta);
   }
}


/* 
 * add to the tail of the plot list 
 */
static void
add_to_tailplot(line_listhead, line_listtail, pt, C, delta)
CNlineptr *line_listhead, *line_listtail;
CNpoint   *pt;
CNcurveptr C;
double     delta;
{
   CNlineptr L;

   /* add the further point at every loop iteration */
   while ((L=matching_line(line_listhead,pt,delta))!=NULL) {
      if (CNlongline(&(L->pt1),pt,delta) ) {
         insert_tailpoint(&(C->pointhead), &(C->pointtail), &(L->pt1), 0);
         *pt = L->pt1;
      } else {
         insert_tailpoint(&(C->pointhead), &(C->pointtail), &(L->pt2), 0);
         *pt = L->pt2;
      }
      CNdelete_line(line_listhead, line_listtail, L);
   }
   return;
}

/* 
 * add a point to the tail of the pointlist
 */
static void insert_tailpoint(pointhead, pointtail, pt, ID)
CNpointptr *pointhead, *pointtail;
CNpoint    *pt;
int ID;
{
   (void)CNinsert_tailpoint(pointhead,pointtail,pt->x,pt->y,pt->z,ID);
}

/* add to the head of the plot list */
static void
add_to_headplot(line_listhead, line_listtail, pt, C, delta)
CNlineptr *line_listhead, *line_listtail;
CNpoint   *pt;
CNcurveptr C;
double     delta;
{
   CNlineptr L;

   /* add the further point at every loop iteration */
   while ((L=matching_line(line_listhead,pt,delta))!=NULL) {
      if (CNlongline(&(L->pt1),pt,delta) ) {
         insert_headpoint(&(C->pointhead), &(C->pointtail), &(L->pt1), 0);
         *pt = L->pt1;
      } else {
         insert_headpoint(&(C->pointhead), &(C->pointtail), &(L->pt2), 0);
         *pt = L->pt2;
      }
      CNdelete_line(line_listhead, line_listtail, L);
   }
   return;
}

/* 
 * add a point to the head of the pointlist
 */
static void insert_headpoint(pointhead, pointtail, pt, ID)
CNpointptr *pointhead, *pointtail;
CNpoint    *pt;
int ID;
{
   (void)CNinsert_headpoint(pointhead,pointtail,pt->x,pt->y,pt->z,ID);
}

/* Return line containing data point that matches a given point */
static CNlineptr matching_line(line_listhead,pt,delta)
CNlineptr *line_listhead;
CNpoint   *pt;
double    delta;
{
   int       CNlongline();
   CNlineptr L,LF;
   int       FOUND = CN_FALSE;

   /*
    * Given a point and a line, find out if the point coincides with
    * the points on either end of the line. To do this, do a quick check in
    * x - if the x-coordinates are relatively close, then do a more
    * careful check using CNlongline
    */

   /* check lengths of lines */
   for (L=(*line_listhead); L!=NULL && !FOUND; L=L->next) {
      /* check the first point */
      if (fabs(L->pt1.x - pt->x) < CN_SMALL) 
         FOUND = !(CNlongline(&(L->pt1),pt,delta));
      if (!FOUND) {
         /* now check the second point */
         if (fabs(L->pt2.x - pt->x) < CN_SMALL) 
            FOUND = !(CNlongline(&(L->pt2),pt,delta));
      }
      if (FOUND) LF = L;
   }
   
   /* return the line */
   if (!FOUND) LF = NULL;
   return(LF);
}

/* 
 * Find the line of intersection between a rectangle and a plane 
 * This routine is a simplfication of CNpoly4_intsct_plane()
 * and returns the segments of intersection with the z-plane.
 */
static void find_rect_intsct(z,R,line_listhead,line_listtail,delta,
                             logx, logy, logz)
double    z;
CNrectptr R;
CNlineptr *line_listhead, *line_listtail;
double    delta;
short     logx, logy, logz;     /* Log/Linear interpolation flags */
{
   CNpoint  point[10];
   CNpoint  pt1, pt2, pt3, pt4, pta;
   int      lg01, lg12, lg20;
   int      i;
   
   /* If the nocont flag is set, skip - this is for mesh-based datasets */
   if (R->nocont) return;

   /*
    * Check the points to see if they are all above or below the cut-plane
    * Also if all the points have the same z-value => no intersection
    */
   if ( (R->n1->t > z && R->n2->t > z && R->n3->t > z && R->n4->t > z) ||
        (R->n1->t < z && R->n2->t < z && R->n3->t < z && R->n4->t < z) ||
        ((fabs(R->n1->t - R->n2->t) < CN_SMALLER) &&
         (fabs(R->n2->t - R->n3->t) < CN_SMALLER) &&
         (fabs(R->n3->t - R->n4->t) < CN_SMALLER) &&
         (fabs(R->n4->t - R->n1->t) < CN_SMALLER)) )
      return;

   /*
    * Copy the coordinate data to new points.
    * The true z-value is stored inside n->t;
    * replace the point's z-value with this
    */
   pt1 = *(R->n1->coord);        pt1.z = R->n1->t;
   pt2 = *(R->n2->coord);        pt2.z = R->n2->t;
   pt3 = *(R->n3->coord);        pt3.z = R->n3->t;
   pt4 = *(R->n4->coord);        pt4.z = R->n4->t;

   /*
    * now go thru each segment and find intersections
    */
   i=0;
   if (plane_intsct_line(z,&pt1,&pt2,&pta,logx,logy,logz)) point[i++]=pta;
   if (plane_intsct_line(z,&pt2,&pt3,&pta,logx,logy,logz)) point[i++]=pta;
   if (plane_intsct_line(z,&pt3,&pt4,&pta,logx,logy,logz)) point[i++]=pta;
   if (plane_intsct_line(z,&pt4,&pt1,&pta,logx,logy,logz)) point[i++]=pta;

   /*
    * There can be 0 to 4 intersections
    */
   if (i==4) {
      /*
       * Four intersections - match up pairs based on whether the
       * vertice in between 2 intersections is high or low.
       * pt1 is the vertice between point[0] and point[3]
       *
       * There is a possibility that some points are the same due to
       * floating-point error - handle these cases too
       */
      if (pt1.z > z) {
         /* Pairs are (p0,p1) (p2,p3) */
         if (CNlongline(&(point[0]),&(point[1]),delta) && 
             CNlongline(&(point[2]),&(point[3]),delta)) {
            CNinsert_line(line_listhead,line_listtail,&(point[0]),&(point[1]));
            CNinsert_line(line_listhead,line_listtail,&(point[2]),&(point[3]));
         } else {
            CNinsert_line(line_listhead,line_listtail,&(point[0]),&(point[2]));
         }
      } else {
         /* Pairs are (p0,p3) (p1,p2) */
         if (CNlongline(&(point[0]),&(point[3]),delta) && 
             CNlongline(&(point[1]),&(point[2]),delta)) {
            CNinsert_line(line_listhead,line_listtail,&(point[0]),&(point[3]));
            CNinsert_line(line_listhead,line_listtail,&(point[1]),&(point[2]));
         } else {
            CNinsert_line(line_listhead,line_listtail,&(point[0]),&(point[1]));
         }
      }

   } else if (i==3) {
      /*
       * Three intersections - check the distance between intersections
       * to screen out floating-point-error.
       * Possible that 3 points are on the plane...
       */
      lg01 = CNlongline(&(point[0]),&(point[1]),delta);
      lg12 = CNlongline(&(point[1]),&(point[2]),delta);
      lg20 = CNlongline(&(point[2]),&(point[0]),delta);

      /* If there are 3 long-lines add all 3 to the list */
      if (lg01 && lg12 && lg20) {
         if (lg01) {
            CNinsert_line(line_listhead,line_listtail,&(point[0]),&(point[1]));
         }
         if (lg12) {
            CNinsert_line(line_listhead,line_listtail,&(point[1]),&(point[2]));
         }
         if (lg20) {
            CNinsert_line(line_listhead,line_listtail,&(point[2]),&(point[0]));
         }
      } else if (!lg01) {
         /* pt0 = pt1, ln12 = ln20 */
         if (lg12) {
            CNinsert_line(line_listhead,line_listtail,&(point[1]),&(point[2]));
         }
      } else if (!lg12) {
         /* pt1 = pt2, ln01 = ln20 */
         if (lg01) {
            CNinsert_line(line_listhead,line_listtail,&(point[0]),&(point[1]));
         }
      } else if (!lg20) {
         /* pt0 = pt2, ln01 = ln21 */
         if (lg01) {
            CNinsert_line(line_listhead,line_listtail,&(point[0]),&(point[1]));
         }
      }

   } else if (i==2) {
 
      /*
       * Two intersections - just return 2
       */
      if (CNlongline(&(point[0]),&(point[1]),delta))
         CNinsert_line(line_listhead,line_listtail,&(point[0]),&(point[1]));

   } else if (i!=0) {
 
      /*
       * One intersection - must be floating point error where
       * the plane is at the tip of the triangle
       */
 
      (void) fprintf(stderr,
                     "Warning: Nonstandard No of intersections = %5d\n",i);
 
   /*EMPTY*/
   } else if (i==0) {
      /*
       * No intersections
       */
   }
}

/* 
 * Find the line of intersection between a triangle and a plane 
 * This routine is a simplfication of CNpoly3_intsct_plane()
 * and returns the segments of intersection with the z-plane
 */
static void find_tria_intsct(z,T,line_listhead,line_listtail,
                             delta, logx, logy, logz)
double    z;
CNtriaptr T;
CNlineptr *line_listhead, *line_listtail;
double    delta;
short     logx, logy, logz;     /* Log/Linear interpolation flags */
{
   CNpoint   intpts[3],pta,pt1,pt2,pt3;
   int       i=0;

   /* If the nocont flag is set, skip - this is for mesh-based datasets */
   if (T->nocont) return;

   /*
    * Check the points to see if they are all above or below the cut-plane
    * Also if all the points have the same z-value => no intersection
    */
   if ( (T->n1->t > z && T->n2->t > z && T->n3->t > z) || 
        (T->n1->t < z && T->n2->t < z && T->n3->t < z) ||
        ((fabs(T->n1->t - T->n2->t) < CN_SMALLER) &&
         (fabs(T->n2->t - T->n3->t) < CN_SMALLER) &&
         (fabs(T->n3->t - T->n1->t) < CN_SMALLER)) )
      return;

   /*
    * Copy the coordinate data to new points.
    * The true z-value is stored inside n->t;
    * replace the point's z-value with this
    */
   pt1 = *(T->n1->coord);        pt1.z = T->n1->t;
   pt2 = *(T->n2->coord);        pt2.z = T->n2->t;
   pt3 = *(T->n3->coord);        pt3.z = T->n3->t;

   /* 
    * now go thru each segment and find intersections
    */
   if (plane_intsct_line(z,&pt1,&pt2,&pta,logx,logy,logz)) intpts[i++]=pta;
   if (plane_intsct_line(z,&pt2,&pt3,&pta,logx,logy,logz)) intpts[i++]=pta;
   if (plane_intsct_line(z,&pt3,&pt1,&pta,logx,logy,logz)) intpts[i++]=pta;

   /*
    * There can be 0 to 3 intersections
    */
   if (i==3) {
      /* 
       * Three intersections - two of these must be pretty close
       * Plane probably intersects tria at one of the points 
       */
      if (CNlongline(&(intpts[0]),&(intpts[1]),delta))
         CNinsert_line(line_listhead,line_listtail,&(intpts[0]),&(intpts[1]));
      else if (CNlongline(&(intpts[1]),&(intpts[2]),delta))
         CNinsert_line(line_listhead,line_listtail,&(intpts[1]),&(intpts[2]));
      else if (CNlongline(&(intpts[2]),&(intpts[0]),delta))
         CNinsert_line(line_listhead,line_listtail,&(intpts[2]),&(intpts[0]));
      else
         /* 
          * (void) fprintf(stderr,"Warning: Zero line length\n");
          */
         ;
   } else if (i==2) {

      /*
       * Two intersections - just return 2
       */
      if (CNlongline(&(intpts[0]),&(intpts[1]),delta))
         CNinsert_line(line_listhead,line_listtail,&(intpts[0]),&(intpts[1]));
 
   } else if (i!=0) {

      /*
       * One intersection - must be floating point error where
       * the plane is at the tip of the triangle
       */

      (void) fprintf(stderr,
                     "Warning: Nonstandard No of intersections = %5d\n",i);

   /*EMPTY*/
   } else if (i==0) {
      /*
       * No intersections
       */
   }
}


/* 
 * find out the intersection point between a line and a z-plane 
 */
static int plane_intsct_line(z,pt1,pt2,pt3,logx,logy,logz)
double   z;
CNpoint  *pt1,*pt2,*pt3;
short    logx, logy, logz;
{
   int    intsct = CN_TRUE;
   double t;
   double pt1x, pt1y, pt1z, pt2x, pt2y, pt2z, z0;
   int    xlogmode, ylogmode, zlogmode;

   if ((pt1->z > z && pt2->z > z) || 
       (pt1->z < z && pt2->z < z) ||
       (fabs(pt1->z - pt2->z) < CN_SMALLER) )
      intsct = CN_FALSE;

   if (intsct) {
      if (!logx && !logy && !logz) {
         /*
          * Use linear interpolation to find the intersection 
          */
         t = (z - pt1->z) /(pt2->z - pt1->z);
         if (t < 0.5) {
            pt3->x = pt1->x + t*(pt2->x - pt1->x);
            pt3->y = pt1->y + t*(pt2->y - pt1->y);
            pt3->z = z;
         } else {
            /*
             * This is to prevent problems when t is very small,
             * e.g. t=1e-20, so that 1-t=1.  In such cases, the order
             * of points makes a difference.  This if-else statement
             * circumvents the problem by switching the order of points.
             */
            t = (z - pt2->z) /(pt1->z - pt2->z);
            pt3->x = pt2->x + t*(pt1->x - pt2->x);
            pt3->y = pt2->y + t*(pt1->y - pt2->y);
            pt3->z = z;
         }

      } else {
         /* 
          * Convert the numbers to log then interpolate 
          */
         if (logx) {
            xlogmode = CNlogmode2(pt1->x, pt2->x);
            pt1x = CNlogabs(pt1->x, xlogmode);
            pt2x = CNlogabs(pt2->x, xlogmode);
         } else {
            pt1x = pt1->x;
            pt2x = pt2->x;
         }
         if (logy) {
            ylogmode = CNlogmode2(pt1->y, pt2->y);
            pt1y = CNlogabs(pt1->y, ylogmode);
            pt2y = CNlogabs(pt2->y, ylogmode);
         } else {
            pt1y = pt1->y;
            pt2y = pt2->y;
         }
         if (logz) {
            zlogmode = CNlogmode2(pt1->z, pt2->z);
            pt1z = CNlogabs(pt1->z, zlogmode);
            pt2z = CNlogabs(pt2->z, zlogmode);
            z0   = CNlogabs(z     , zlogmode);
         } else {
            pt1z = pt1->z;
            pt2z = pt2->z;
            z0   = z;
         }

         /* Use linear interpolation to find the intersection */
         t = (z0 - pt1z) /(pt2z - pt1z);
         pt3->x = pt1x + t*(pt2x - pt1x);
         pt3->y = pt1y + t*(pt2y - pt1y);
         pt3->z = z;

         /* Reconvert the numbers */
         if (logx) pt3->x = CNinvlogabs(pt3->x,CNsign(pt1->x),xlogmode);
         if (logy) pt3->y = CNinvlogabs(pt3->y,CNsign(pt1->y),ylogmode);

     }
   }
   return(intsct);
}