File: intersect3D.c

package info (click to toggle)
plotmtv 1.4.1-4
  • links: PTS
  • area: main
  • in suites: slink
  • size: 4,024 kB
  • ctags: 5,006
  • sloc: ansic: 51,179; makefile: 1,976; fortran: 1,277; sh: 510; csh: 439
file content (915 lines) | stat: -rw-r--r-- 25,351 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
/*
 * intersect3D.c - routines to find the intersection of
 *                 a triangle with a plane
 */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "CNdata.h"
#include "CNproperty.h"
#include "CNdatatypes.h"
#include "CNintersect.h"

#define FALSE    0
#define TRUE     1
#define PARALLEL 2

#define SMALL        1.0e-10
#define LARGE        1.0e10

/* mesh data structure */
typedef struct data_strct {
   double x;
   double y;
   double z;
} data;


static int  tria_intersects_plane();
static int  x_plane_intsct();
static void rotate_y_point();
static void inv_rotate_y_point();
static int  y_plane_intsct();
static void rotate_x_point();
static void inv_rotate_x_point();
static int  z_plane_intsct();
static int  z_intsct_tria();
static int  lines_intersect();

static double min(), max();

static void find_normal_vector();
static data find_line_vector();
static data cross_product();

static int  tria_intsct_plane();
static int  line_intsct_plane();
static int  xtria_intsct_plane();
static int  ytria_intsct_plane();
static int  ztria_intsct_plane();

/*

static void call_pdraw();

main()
{
   int    CNfind_tria_intsct_plane();
   int    pdraw=TRUE;

   double x1 = 0.0;
   double y1 = 0.0;
   double z1 = 0.0;
   double x2 = 0.0;
   double y2 = 1.0;
   double z2 = 0.0;
   double x3 = 0.0;
   double y3 = 0.0;
   double z3 = 1.0;
   double a = 0.0;
   double b = 1.0;
   double c = 0.0;
   double d = -0.5;
   double x4, y4, z4, x5, y5, z5;
   int    intsct;

   (void) fprintf(stdout,"Enter the equation of the plane: (ax+by+cz=d)\n");
   (void) fprintf(stdout,"   a ="); scanf("%lf",&a);
   (void) fprintf(stdout,"   b ="); scanf("%lf",&b);
   (void) fprintf(stdout,"   c ="); scanf("%lf",&c);
   (void) fprintf(stdout,"   d ="); scanf("%lf",&d);
   (void) fprintf(stdout,"The plane equation is : %g*x + %g*y + %g*z = %g\n",a,b,c,d);

   intsct = CNfind_tria_intsct_plane(a,b,c,-d,
                                     x1,y1,z1,
                                     x2,y2,z2,
                                     x3,y3,z3,
                                     &x4,&y4,&z4,
                                     &x5,&y5,&z5,1);
   if (intsct == 1) {
      (void) fprintf(stdout,"Intersection :\n");
      (void) fprintf(stdout,"   x1 = %10.5f  y1 = %10.5f  z1 = %10.5f\n",x4,y4,z4);
      (void) fprintf(stdout,"   x2 = %10.5f  y2 = %10.5f  z2 = %10.5f\n",x5,y5,z5);
      if (pdraw) call_pdraw(x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4,x5,y5,z5);
   } else if (intsct == 2) {
      (void) fprintf(stdout,"The triangle and the plane are parallel\n");
   } else {
      (void) fprintf(stdout,"No intersection!\n");
   }
}
*/

/* 
 * Print out the triangle and intersection to a file and plot it 
 */
/*
static void call_pdraw(x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4,x5,y5,z5)
double x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4,x5,y5,z5;
{
   FILE   *fp, *fopen();
   double xmin, xmax, ymin, ymax, zmin, zmax;
   char   command[1000];
   char   *outfile = "/tmp/outfile";

   if ((fp = fopen(outfile,"w")) == NULL) {
      (void) fprintf(stderr,"Cat: couldnt open file\n",outfile);
      return;  
   }

   xmin = min(x1,x2,x3);
   xmax = max(x1,x2,x3);
   ymin = min(y1,y2,y3);
   ymax = max(y1,y2,y3);
   zmin = min(z1,z2,z3);
   zmax = max(z1,z2,z3);
   (void) fprintf(fp,"%f %f %f %f %f %f\n2.0\n",xmin,xmax,ymin,ymax,zmin,zmax);

   (void) fprintf(fp,"4.0\n");
   (void) fprintf(fp,"%f %f %f\n",x1,y1,z1);
   (void) fprintf(fp,"%f %f %f\n",x2,y2,z2);
   (void) fprintf(fp,"%f %f %f\n",x3,y3,z3);
   (void) fprintf(fp,"%f %f %f\n",x1,y1,z1);

   (void) fprintf(fp,"2.0\n");
   (void) fprintf(fp,"%f %f %f\n",x4,y4,z4);
   (void) fprintf(fp,"%f %f %f\n",x5,y5,z5);
   
   (void) fclose(fp);

   (void) sprintf(command,"pdraw -a 0 -ps %s",outfile);
   (void) system(command);
}
*/
   

/*
 * Normalize a plane equation so that same results are obtained if a,b,c
 * are negative or positive
 * This is important when comparing d-values of points/planes.
 */
void CNnormalize_plane(a,b,c,d)
double *a,*b,*c,*d;
{
   /* 
    * A triangle intersects a plane only if it is above the plane.
    * This avoids multiple intersections by a triangle below the plane
    *
    *              / Segment1
    *             /
    *      --------------plane
    *           /
    *          /Segment2
    * Need to get the same result if plane is specified with 
    *    (ax + by + d = 0)  vs (-ax - by - d = 0)
    */
   if (fabs(*a) > SMALL) {
      if (*a < 0) {
         *a = -1.0 * (*a); 
         *b = -1.0 * (*b); 
         *c = -1.0 * (*c); 
         *d = -1.0 * (*d);
      }
   } else if (fabs(*b) > SMALL) {
      if (*b < 0) {
         *a = -1.0 * (*a); 
         *b = -1.0 * (*b); 
         *c = -1.0 * (*c); 
         *d = -1.0 * (*d);
      }
   } else if (fabs(*c) > SMALL) {
      if (*c < 0) {
         *a = -1.0 * (*a); 
         *b = -1.0 * (*b); 
         *c = -1.0 * (*c); 
         *d = -1.0 * (*d);
      }
   }
}

/* 
 * find the intersection between a triangle and a plane 
 */
int CNfind_tria_intsct_plane(a,b,c,d,
                             x1,y1,z1,x2,y2,z2,x3,y3,z3,
                             x4,y4,z4,x5,y5,z5,verbose)
double a,b,c,d;     /* Equation of the plane */
double x1,y1,z1;    /* Triangle vertice      */
double x2,y2,z2;    /* Triangle vertice      */
double x3,y3,z3;    /* Triangle vertice      */
double *x4,*y4,*z4; /* Intersection point    */
double *x5,*y5,*z5; /* Intersection point    */
int    verbose;     /* Verbose flag          */
{
   data pa1, pa2, pa3, N1, ptmin, ptmax;
   int  intsct;

   /* assign triangle coordinates to data structure */
   pa1.x = x1;    pa1.y = y1;    pa1.z = z1;
   pa2.x = x2;    pa2.y = y2;    pa2.z = z2;
   pa3.x = x3;    pa3.y = y3;    pa3.z = z3;

   /* Normalize the plane equation */
   CNnormalize_plane(&a,&b,&c,&d);

   /* do a initial check to see if the triangle does intsct the plane */
   intsct = tria_intersects_plane(a,b,c,d,&pa1,&pa2,&pa3);

   if (intsct == FALSE)
      /* no intersection */
      return(intsct);
   else if (intsct == PARALLEL)
      /* parallel triangle - plane : tria is on plane */
      return(intsct);
   else   
      /* keep on going */
      ;

   /* find the normal vector to the triangle */
   find_normal_vector(&pa1,&pa2,&pa3,&N1);

   /* check values */
   if ( (fabs(a) < SMALL) && (fabs(b) < SMALL) && (fabs(c) < SMALL)) {
      (void) fprintf(stderr,"Error! Plane a,b,c=0!\n");
      intsct = FALSE;
      return(intsct);
   }
   if ( (fabs(N1.x) < SMALL) && (fabs(N1.y) < SMALL) && (fabs(N1.z) < SMALL)) {
      (void) fprintf(stderr,"Error! Triangle a,b,c=0!\n");
      intsct = FALSE;
      return(intsct);
   }

   if ( (fabs(N1.z) > SMALL) && (fabs(c) > SMALL) ) {
      /* find the intersection by eliminating z */
      if (verbose) (void) fprintf(stdout,"c1>0  c2>0\n");
      intsct = z_plane_intsct(a,b,c,d,&pa1,&pa2,&pa3,&ptmin,&ptmax);

   } else if ( (fabs(N1.x) > SMALL) && (fabs(a) > SMALL) ) {
      /* find the intersection by eliminating x */
      if (verbose) (void) fprintf(stdout,"a1>0  a2>0\n");
      intsct = x_plane_intsct(a,b,c,d,&pa1,&pa2,&pa3,&ptmin,&ptmax);

   } else if ( (fabs(N1.y) > SMALL) && (fabs(b) > SMALL) ) {
      /* find the intersection by eliminating y */
      if (verbose) (void) fprintf(stdout,"b1>0  b2>0\n");
      intsct = y_plane_intsct(a,b,c,d,&pa1,&pa2,&pa3,&ptmin,&ptmax);

   } else {
      if ( (fabs(N1.z) < SMALL) && (fabs(c) > SMALL) ) {
      /* The triangle is normal to z */

         if ( (fabs(a) < SMALL) && (fabs(b) < SMALL) ) {
            /* The triangle intersects plane cz + d = 0 */
            if (verbose) (void) fprintf(stdout,"c1=0 a2=0 b2=0\n");
            intsct = tria_intsct_plane(&pa1,&pa2,&pa3,'z',-d/c,&ptmin,&ptmax);

         } else if (fabs(N1.x) < SMALL) {
            /* The triangle is on the y-plane */
            if (verbose) (void) fprintf(stdout,"a1=0 c1=0\n");
            intsct = ytria_intsct_plane(a,b,c,d,&pa1,&pa2,&pa3,&ptmin,&ptmax);
       
         } else if (fabs(N1.y) < SMALL) {
            /* The triangle is on the x-plane */
            if (verbose) (void) fprintf(stdout,"b1=0 c1=0\n");
            intsct = xtria_intsct_plane(a,b,c,d,&pa1,&pa2,&pa3,&ptmin,&ptmax);
        
         }

      } else if ( (fabs(N1.z) > SMALL) && (fabs(c) < SMALL) ) {
      /* The clipping plane is normal to z */

         if ( (fabs(N1.x) < SMALL) && (fabs(N1.y) < SMALL) ) {
            /* The triangle is on the z-plane */
            if (verbose) (void) fprintf(stdout,"c2=0 a1=0 b1=0\n");
            intsct = ztria_intsct_plane(a,b,c,d,&pa1,&pa2,&pa3,&ptmin,&ptmax);

         } else if (fabs(a) < SMALL) {
            /* The plane is parallel to y : by + d = 0 */
            if (verbose) (void) fprintf(stdout,"a2=0 c2=0\n");
            intsct = tria_intsct_plane(&pa1,&pa2,&pa3,'y',-d/b,&ptmin,&ptmax);

         } else if (fabs(b) < SMALL) {
            /* The plane is parallel to x : ax + d = 0 */
            if (verbose) (void) fprintf(stdout,"b2=0 c2=0\n");
            intsct = tria_intsct_plane(&pa1,&pa2,&pa3,'x',-d/a,&ptmin,&ptmax);
   
         }

      } else if ( (fabs(N1.z) < SMALL) && (fabs(c) < SMALL) ) {
      /* The clipping plane and the triangle are both normal to z */

         if (fabs(a) < SMALL) {
            /* The plane is parallel to y : by + d = 0 */
            if (verbose) (void) fprintf(stdout,"c1=0 a2=0 c2=0\n");
            intsct = tria_intsct_plane(&pa1,&pa2,&pa3,'y',-d/b,&ptmin,&ptmax);

         } else if (fabs(b) < SMALL) {
            /* The plane is parallel to x : ax + d = 0 */
            if (verbose) (void) fprintf(stdout,"c1=0 b2=0 c2=0\n");
            intsct = tria_intsct_plane(&pa1,&pa2,&pa3,'x',-d/a,&ptmin,&ptmax);
   
         } 
      }
   }

   if (intsct == 1) {
      *x4 = ptmin.x;
      *y4 = ptmin.y;
      *z4 = ptmin.z;
      *x5 = ptmax.x;
      *y5 = ptmax.y;
      *z5 = ptmax.z;
   } else {
      *x4 = 0.0;
      *y4 = 0.0;
      *z4 = 0.0;
      *x5 = 0.0;
      *y5 = 0.0;
      *z5 = 0.0;
   }
   return (intsct);
}


/* 
 * find out if the plane does intersect the triangle 
 */
static int tria_intersects_plane(a,b,c,d,p1,p2,p3)
double a,b,c,d;
data   *p1, *p2, *p3;
{
   double d1, d2, d3;
   int    intsct;

   /* plane equation : ax + by + cz + d = 0 */
   d1 = -1.0*( a * p1->x + b * p1->y + c * p1->z); 
   d2 = -1.0*( a * p2->x + b * p2->y + c * p2->z); 
   d3 = -1.0*( a * p3->x + b * p3->y + c * p3->z); 

   /*
    * if d1, d2, d3 all greater or all less than d0, then no intsct 
    * If the triangle is underneath the plane and touches the plane then count
    *    as no intersection.
    * If the triangle is above the plane and touches the plane then count
    *    as an intersection.
    * This avoids double-intersections if the plane is coincident with an
    * edge of the triangle.
    */
   if ( ((d1 >= d ) && (d2 >= d) && (d3 >= d)) ||
        ((d1 <  d ) && (d2 <  d) && (d3 <  d)) )
      /* Tria has points all on one side of plane */
      intsct = FALSE;
   else 
      intsct = TRUE;

   /* if triangles are on the same plane, d1 = d, d2 = d, d3 = d */
   if ( (fabs(d1 - d) < SMALL) &&
        (fabs(d2 - d) < SMALL) &&
        (fabs(d3 - d) < SMALL) ) 
      intsct = PARALLEL;

   /* return intsct */
   return (intsct);
}

/*******************************/
/********   ROTATIONS   ********/
/*******************************/

/* 
 * find the intersections by eliminating x 
 */
static int x_plane_intsct(a,b,c,d,pa1,pa2,pa3,ptmin,ptmax)
double  a, b, c, d;
data    *pa1, *pa2, *pa3;
data    *ptmin,*ptmax;
{
   int intsct;

   rotate_y_point(pa1);
   rotate_y_point(pa2);
   rotate_y_point(pa3);
   intsct = z_plane_intsct(-c,b,a,d,pa1,pa2,pa3,ptmin,ptmax);
   inv_rotate_y_point(pa1);
   inv_rotate_y_point(pa2);
   inv_rotate_y_point(pa3);
   inv_rotate_y_point(ptmin);
   inv_rotate_y_point(ptmax);
   return(intsct);
}

/*
 * switch x and z values (or rotate 90 deg about the y-axis) 
 */
static void rotate_y_point(pt)
data *pt;
{
   double x,z;
   x = pt->x;
   z = pt->z;
   pt->x = -z;
   pt->z =  x;
}

/* 
 * switch x and z values (or rotate -90 deg about the y-axis) 
 */
static void inv_rotate_y_point(pt)
data *pt;
{
   double x,z;
   x = pt->x;
   z = pt->z;
   pt->x =  z;
   pt->z = -x;
}

/* 
 * find the intersections by eliminating y 
 */
static int y_plane_intsct(a,b,c,d,pa1,pa2,pa3,ptmin,ptmax)
double  a, b, c, d;
data    *pa1, *pa2, *pa3;
data    *ptmin,*ptmax;
{
   int intsct;

   rotate_x_point(pa1);
   rotate_x_point(pa2);
   rotate_x_point(pa3);
   intsct = z_plane_intsct(a,-c,b,d,pa1,pa2,pa3,ptmin,ptmax);
   inv_rotate_x_point(pa1);
   inv_rotate_x_point(pa2);
   inv_rotate_x_point(pa3);
   inv_rotate_x_point(ptmin);
   inv_rotate_x_point(ptmax);
   return(intsct);
}

/* 
 * switch y and z values (or rotate 90 deg about the x-axis) 
 */
static void rotate_x_point(pt)
data *pt;
{
   double y,z;
   y = pt->y;
   z = pt->z;
   pt->y = -z;
   pt->z =  y;
}

/* 
 * switch y and z values (or rotate -90 deg about the x-axis) 
 */
static void inv_rotate_x_point(pt)
data *pt;
{
   double y,z;
   y = pt->y;
   z = pt->z;
   pt->y =  z;
   pt->z = -y;
}

/***************************************/
/********  ACTUAL INTERSECTION  ********/
/***************************************/

/* 
 * find the intersections by eliminating z
 */
static int z_plane_intsct(a0,b0,c0,d0,pa1,pa2,pa3,ptmin,ptmax)
double  a0, b0, c0, d0;
data    *pa1, *pa2, *pa3;
data    *ptmin,*ptmax;
{
   double a1, b1, c1, d1;
   double an, bn, dn;
   data   N1;
   int    intsct=FALSE;

  /* 
   * plane    : a0*x + b0*y + c0*z + d0 = 0
   * triangle : Nodes (pa1, pa2, pa3)
   *            a1*x + b1*y + c1*z + d1 = 0;
   *
   * eliminate z
   *            a0/c0*x + b0/c0*y + d0/c0 = a1/c1*x + b1/c1*y + d1/c1
   *            (a0/c0 - a1/c1)x + (b0/c0 - b1/c1)y + (d0/c0 - d1/c1) = 0;
   *                        an*x +             bn*y +             dn  = 0;
   */

   /* find the normal vector to the triangle - the equation of the plane */
   find_normal_vector(pa1,pa2,pa3,&N1);
   a1 = N1.x;
   b1 = N1.y;
   c1 = N1.z;
   d1 = -(a1*pa1->x + b1*pa1->y + c1*pa1->z);

   an = a0/c0 - a1/c1; 
   bn = b0/c0 - b1/c1; 
   dn = d0/c0 - d1/c1;
   if ((fabs(an) < SMALL) && (fabs(bn) < SMALL)) {
      /* the planes are parallel */
      (void) fprintf(stdout,"Warning!  The triangle is parallel to the plane!\n");
      intsct = FALSE;
   }

   /* Now find the intersection of a line with the triangle */
   intsct = z_intsct_tria(an,bn,dn,pa1,pa2,pa3,ptmin,ptmax);
   return(intsct);
}

/* 
 * find the intersection of a triangle with a plane (ax+by+d=0) 
 * should come out with a minimum of 2 points
 */
static int z_intsct_tria(a,b,d,p1,p2,p3,ptmin,ptmax)
double a,b,d;
data   *p1,*p2,*p3;
data    *ptmin,*ptmax;
{
   int    intsct=TRUE;
   data   point[3];
   double d1,d2,d3;
   double x1,y1,x2,y2,x4,y4,z4,x5,y5,z5,x6,y6,z6;
   double xi,yi,t;
   double xmin, xmax, ymin, ymax;
   int    i,j=0;

   ptmin->x =  LARGE;
   ptmax->x = -LARGE;

   /* first find out if the planes intersect */
   d1 = -(a*p1->x + b*p1->y);
   d2 = -(a*p2->x + b*p2->y);
   d3 = -(a*p3->x + b*p3->y);
   if ( ((d1>d)&&(d2>d)&&(d3>d)) || ((d1<d)&&(d2<d)&&(d3<d)) ) 
      intsct = FALSE;      /* points are all above or below the plane */

   if (intsct) {
      /* determine a bounding box for the triangle */
      xmin = min(p1->x, p2->x, p3->x) - 0.1;
      ymin = min(p1->y, p2->y, p3->y) - 0.1;
      xmax = max(p1->x, p2->x, p3->x) + 0.1;
      ymax = max(p1->y, p2->y, p3->y) + 0.1;

      /* find 2 points on the line ax + by + d = 0 */
      if ((fabs(a) < SMALL) && (fabs(b) < SMALL)) {
         (void) fprintf(stderr,"Error: Plane is not specified!\n");
         (void) fflush(stdout);            /* flush the IO buffer */
         return(FALSE);
      } else if (fabs(a) < SMALL) {           /* by = -d */
         x1 = xmin; y1 = -d/b;
         x2 = xmax; y2 = -d/b;
      } else if (fabs(b) < SMALL) {           /* ax = -d */
         y1 = ymin; x1 = -d/a;
         y2 = ymax; x2 = -d/a;
      } else {                                /* ax + by = -d */
         x1 = xmin; y1 = (-d-a*x1)/b;
         x2 = xmax; y2 = (-d-a*x2)/b;
      } 
      
      /* find the intersection of the line with the triangle */
      x4 = p1->x;  y4 = p1->y;  z4 = p1->z;
      x5 = p2->x;  y5 = p2->y;  z5 = p2->z;
      x6 = p3->x;  y6 = p3->y;  z6 = p3->z;
      if (lines_intersect(x1,y1,x2,y2,x4,y4,x5,y5,&xi,&yi,&t)) {
         point[j].x = xi;
         point[j].y = yi;
         point[j].z = z4 + t*(z5-z4);
         j++;
      }
      if (lines_intersect(x1,y1,x2,y2,x5,y5,x6,y6,&xi,&yi,&t)) {
         point[j].x = xi;
         point[j].y = yi;
         point[j].z = z5 + t*(z6-z5);
         j++;
      }
      if (lines_intersect(x1,y1,x2,y2,x6,y6,x4,y4,&xi,&yi,&t)) {
         point[j].x = xi;
         point[j].y = yi;
         point[j].z = z6 + t*(z4-z6);
         j++;
      }

      /* there can be 0 to 3 intersections */
      for (i=0; i<j; i++) {
         if ( (     point[i].x < ptmin->x-SMALL ) ||
             ((fabs(point[i].x - ptmin->x)<SMALL) && 
              (     point[i].y < ptmin->y-SMALL )) ||
             ((fabs(point[i].x - ptmin->x)<SMALL) && 
              (fabs(point[i].y - ptmin->y)<SMALL) && (point[i].z < ptmin->z)) ){
            ptmin->x = point[i].x;
            ptmin->y = point[i].y;
            ptmin->z = point[i].z;
         }
         if ( (     point[i].x > ptmax->x+SMALL ) ||
             ((fabs(point[i].x - ptmax->x)<SMALL) && 
              (     point[i].y > ptmax->y+SMALL )) ||
             ((fabs(point[i].x - ptmax->x)<SMALL) && 
              (fabs(point[i].y - ptmax->y)<SMALL) && (point[i].z > ptmax->z)) ){
            ptmax->x = point[i].x;
            ptmax->y = point[i].y;
            ptmax->z = point[i].z;
         }
      }
      if (j==0) intsct=FALSE;
   }
   return(intsct);
}

/* 
 * intersection of 2 lines 
 */
static int lines_intersect(x1,y1,x2,y2,x3,y3,x4,y4,xi,yi,t)
double x1,y1,x2,y2,x3,y3,x4,y4,*xi,*yi,*t;
{
   int intst = TRUE;

   double xdm, ydm, xdn, ydn, cm, cn, denom;

   xdm = x2-x1;  ydm = y2-y1;
   xdn = x4-x3;  ydn = y4-y3;

   denom = xdn*ydm - xdm*ydn;
   /* if denom is zero, then lines are parallel */
   if (fabs(denom) < SMALL)  intst = FALSE;

   if (intst) {
      cm = x1*y2 - x2*y1;
      cn = x3*y4 - x4*y3;
      *xi = (xdn*cm - xdm*cn) / denom;
      *yi = (ydn*cm - ydm*cn) / denom;
      /* check to see if intersection is on both lines */
      if ( ( ((x1<=*xi+SMALL)&&(*xi<=x2+SMALL)) ||
             ((x2<=*xi+SMALL)&&(*xi<=x1+SMALL)) ) &&
           ( ((x3<=*xi+SMALL)&&(*xi<=x4+SMALL)) ||
             ((x4<=*xi+SMALL)&&(*xi<=x3+SMALL)) ) )
         intst = TRUE;
      else
         intst = FALSE;
      if (intst) {
         if ( ( ((y1<=*yi+SMALL)&&(*yi<=y2+SMALL)) ||
                ((y2<=*yi+SMALL)&&(*yi<=y1+SMALL)) ) &&
              ( ((y3<=*yi+SMALL)&&(*yi<=y4+SMALL)) ||
                ((y4<=*yi+SMALL)&&(*yi<=y3+SMALL)) ) )
            intst = TRUE;
         else
            intst = FALSE;
      }
      if (intst) {
         if      (fabs(x4-x3) > SMALL) *t = (*xi-x3)/(x4-x3);
         else if (fabs(y4-y3) > SMALL) *t = (*yi-y3)/(y4-y3);
      }
   }
   return(intst);
}

/************************************/
/********   MISC FUNCTIONS   ********/
/************************************/

static double min(a,b,c)
double a, b, c;
{ 
   double minval;
   
   minval = a;
   if (minval > b) minval = b; 
   if (minval > c) minval = c; 

   return(minval);
}

static double max(a,b,c)
double a, b, c;
{ 
   double maxval;
   
   maxval = a;
   if (maxval < b) maxval = b; 
   if (maxval < c) maxval = c; 

   return(maxval);
}

/***************************************/
/********   VECTOR OPERATIONS   ********/
/***************************************/

/* 
 * find the normal vector of a plane 
 */
static void find_normal_vector(pa1,pa2,pa3,normal)
data *pa1,*pa2,*pa3,*normal;
{
   data   lv1, lv2;

   lv1 = find_line_vector(pa1,pa2);
   lv2 = find_line_vector(pa2,pa3);
   *normal = cross_product(&lv1,&lv2);
}

/* 
 * given 2 points, find the line vector 
 */
static data find_line_vector(p1,p2)
data *p1, *p2;
{
   data linevec;

   linevec.x = p2->x - p1->x;
   linevec.y = p2->y - p1->y;
   linevec.z = p2->z - p1->z;
   return(linevec);
}

/* 
 * find the cross product of 2 vectors 
 */
static data cross_product(vec1,vec2)
data *vec1, *vec2;
{
   data cross;

   /* A x B = (AyBz - AzBy)x + (AzBx - AxBz)y + (AxBy - AyBx)z */
   cross.x = vec1->y * vec2->z - vec1->z * vec2->y;
   cross.y = vec1->z * vec2->x - vec1->x * vec2->z;
   cross.z = vec1->x * vec2->y - vec1->y * vec2->x;
   return(cross);
}


/***************************************************************/
/********   SPECIAL CASE : Triangle + Orthogonal Plane  ********/
/***************************************************************/

/* 
 * Triangle intersects an orthogonal plane (x=c, y=c, or z=c)
 */
static int tria_intsct_plane(p1,p2,p3,plane,val,ptmin,ptmax)
data *p1,*p2,*p3,*ptmin,*ptmax;
char plane;
double val;
{
   data   point[3];
   double xi,yi,zi;
   int    i,j=0;
   int    intsct = FALSE;

   ptmin->x =  LARGE;
   ptmax->x = -LARGE;

   if      (plane=='x') xi = val;
   else if (plane=='y') yi = val;
   else if (plane=='z') zi = val;

   if (line_intsct_plane(p1,p2,&xi,&yi,&zi,plane)){
      point[j].x = xi;
      point[j].y = yi;
      point[j].z = zi;
      j++;
   }
   if (line_intsct_plane(p2,p3,&xi,&yi,&zi,plane)){
      point[j].x = xi;
      point[j].y = yi;
      point[j].z = zi;
      j++;
   }
   if (line_intsct_plane(p3,p1,&xi,&yi,&zi,plane)){
      point[j].x = xi;
      point[j].y = yi;
      point[j].z = zi;
      j++;
   }
   for (i=0; i<j; i++) {
      if ( (     point[i].x < ptmin->x-SMALL ) ||
          ((fabs(point[i].x - ptmin->x)<SMALL) && 
           (     point[i].y < ptmin->y-SMALL )) ||
          ((fabs(point[i].x - ptmin->x)<SMALL) && 
           (fabs(point[i].y - ptmin->y)<SMALL) && (point[i].z < ptmin->z)) ){
         ptmin->x = point[i].x;
         ptmin->y = point[i].y;
         ptmin->z = point[i].z;
      }
      if ( (     point[i].x > ptmax->x+SMALL ) ||
          ((fabs(point[i].x - ptmax->x)<SMALL) && 
           (     point[i].y > ptmax->y+SMALL )) ||
          ((fabs(point[i].x - ptmax->x)<SMALL) && 
           (fabs(point[i].y - ptmax->y)<SMALL) && (point[i].z > ptmax->z)) ){
         ptmax->x = point[i].x;
         ptmax->y = point[i].y;
         ptmax->z = point[i].z;
      }
   }
   if (j<=0) intsct = FALSE;
   else      intsct = TRUE;
   return(intsct);
}

/*
 * find the intersection values between a line segment and a plane 
 */
static int line_intsct_plane(pta,ptb,xval,yval,zval,target)
double *xval,*yval,*zval;
data   *pta,*ptb;
char   target;
{
   int intsct = TRUE;
   double dx,dy,dz,t;

   dx = ptb->x - pta->x;
   dy = ptb->y - pta->y;
   dz = ptb->z - pta->z;
   if (target == 'x') 
       if (fabs(dx) < SMALL)  intsct = FALSE;
       else                   t  = (*xval - pta->x)/dx;
   else if (target == 'y') 
       if (fabs(dy) < SMALL)  intsct = FALSE;
       else                   t  = (*yval - pta->y)/dy;
   else if (target == 'z') 
       if (fabs(dz) < SMALL)  intsct = FALSE;
       else                   t  = (*zval - pta->z)/dz;

   if (intsct) {
      *xval = pta->x + t*dx;
      *yval = pta->y + t*dy;
      *zval = pta->z + t*dz;
      if ( (t< -1.0*SMALL) || (t> 1.0+SMALL)) intsct = FALSE;
   }
   return (intsct);
}

/***************************************************************/
/********   SPECIAL CASE : Orthogonal Triangle + Plane  ********/
/***************************************************************/

/* 
 * An orthogonal triangle (x=xc) intersects a plane 
 */
static int xtria_intsct_plane(a,b,c,d,pa1,pa2,pa3,ptmin,ptmax)
double  a, b, c, d;
data    *pa1, *pa2, *pa3;
data    *ptmin,*ptmax;
{
   int intsct;

   rotate_y_point(pa1);
   rotate_y_point(pa2);
   rotate_y_point(pa3);
   intsct = ztria_intsct_plane(-c,b,a,d,pa1,pa2,pa3,ptmin,ptmax);
   inv_rotate_y_point(pa1);
   inv_rotate_y_point(pa2);
   inv_rotate_y_point(pa3);
   inv_rotate_y_point(ptmin);
   inv_rotate_y_point(ptmax);
   return(intsct);
}

/* 
 * An orthogonal triangle (y=yc) intersects a plane 
 */
static int ytria_intsct_plane(a,b,c,d,pa1,pa2,pa3,ptmin,ptmax)
double  a, b, c, d;
data    *pa1, *pa2, *pa3;
data    *ptmin,*ptmax;
{
   int intsct;

   rotate_x_point(pa1);
   rotate_x_point(pa2);
   rotate_x_point(pa3);
   intsct = ztria_intsct_plane(a,-c,b,d,pa1,pa2,pa3,ptmin,ptmax);
   inv_rotate_x_point(pa1);
   inv_rotate_x_point(pa2);
   inv_rotate_x_point(pa3);
   inv_rotate_x_point(ptmin);
   inv_rotate_x_point(ptmax);
   return(intsct);
}

/* 
 * An orthogonal triangle (z=zc) intersects a plane 
 */
static int ztria_intsct_plane(a,b,c,d,pa1,pa2,pa3,ptmin,ptmax)
double  a, b, c, d;
data    *pa1, *pa2, *pa3;
data    *ptmin,*ptmax;
{
   double an, bn, dn;
   int    intsct;

   /* 
    * Triangle is parallel with z=0 plane (z=zc) 
    * Intersection is with line : a*x +  b*y + c*zc +d = 0 
    *                            an*x + bn*y +    dn   = 0;
    */
   an = a;
   bn = b;
   dn = c*pa1->z + d;  
   /* Now find the intersection of a line with the triangle */
   intsct = z_intsct_tria(an,bn,dn,pa1,pa2,pa3,ptmin,ptmax);
   return(intsct);
}