1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
|
/*
* matrix.c - matrix and view transformations
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <malloc.h>
#include "CNdata.h"
#include "CNplot3D.h"
#define X_AXIS 0 /* X-Axis */
#define Y_AXIS 1 /* Y-Axis */
#define Z_AXIS 2 /* Z-Axis */
#define PI 3.14159265358979323846 /* PI */
#define DEG2RAD PI/180.0 /* Degrees to Radians */
#define RAD2DEG 180.0/PI /* Radians to Degrees */
#define SMALL 1.0e-99 /* A small number */
/*
* The C matrix is organized in row-major order, which
* means that the matrix appears as :
* A[0][0] A[0][1] .. A[0][n]
* A[1][0] ...
* ...
* A[m][0] ... .. A[m][n]
*
* Note that this is the same notation/convention used
* for mathematical representation of matrices, i.e. Aij = A[i][j]
*
* Note also that the cartesian coordinate system is different
* form that used in matrix representation, i.e. element (1,0) would
* refer to the matrix element A[0][1]
*/
/*
* Matrix procedures
*/
CNviewptr CNcreate_view();
void CNinitialize_view();
void CNreinitialize_view();
void CNcalculate_view_transfo();
void CNcalculate_inv_view_transfo();
static int diag_matrix();
static void rotate_view();
static void inv_rotate_view();
static void scale_view();
static void inv_scale_view();
void CNscale_window_to_viewport();
void CNcalculate_eyepos();
void CNrotate_view();
void CNget_view_angles();
static void get_view_angles();
static void init_matrix();
static void create_identity_matrix();
static void create_zero_matrix();
static void create_scale_matrix();
static void create_mirror_matrix();
static void create_translate_matrix();
static void create_perspective_matrix();
static void mult_matrix();
void CNcopy_matrix();
static void print_matrix();
CNcoord CNtransform_point();
/**********************************/
/*** INITIALIZE VIEW PARAMETERS ***/
/**********************************/
/*
* Create and initialize a view structure
*/
CNviewptr CNcreate_view()
{
CNviewptr view_params;
unsigned int size = sizeof(CNview);
/* Allocate space for the view data-struct */
if ((view_params = (CNviewptr)malloc(size))==NULL) {
(void) fprintf(stderr,"Error! Insufficient memory!\n");
(void) fprintf(stderr,"Cannot allocate CNview in CNcreate_view()!\n");
exit(-1);
}
/* Now initialize the view */
CNinitialize_view(view_params,0.0,1.0,0.0,1.0,0.0,1.0);
/* return */
return(view_params);
}
/*
* Delete the view
*/
void CNdelete_view(view_params)
CNviewptr view_params;
{
/* Delete the structure at the given address */
free ((char *)view_params);
}
/*
* Initialize the 3D viewing parameters
*/
void CNinitialize_view(view_params,xmin,xmax,ymin,ymax,zmin,zmax)
CNviewptr view_params;
double xmin, xmax;
double ymin, ymax;
double zmin, zmax;
{
double ds;
/* flag */
view_params->flag = 0;
/* view center */
view_params->viewcenter.x = 0.5*(xmax+xmin);
view_params->viewcenter.y = 0.5*(ymax+ymin);
view_params->viewcenter.z = 0.5*(zmax+zmin);
/* eye position relative to the view center */
view_params->eyepos.x = 1.0;
view_params->eyepos.y = 1.5;
view_params->eyepos.z = 0.5;
/* view-up vector */
view_params->viewup.x = 0.0;
view_params->viewup.y = 0.0;
view_params->viewup.z = 1.0;
/* Min and max boundaries */
view_params->xmin = xmin;
view_params->xmax = xmax;
view_params->ymin = ymin;
view_params->ymax = ymax;
view_params->zmin = zmin;
view_params->zmax = zmax;
/* Window scaling factors */
view_params->windscl_xl = - CN_WINDOWSCALE;
view_params->windscl_xr = CN_WINDOWSCALE;
view_params->windscl_yb = - CN_WINDOWSCALE;
view_params->windscl_yt = CN_WINDOWSCALE;
view_params->prev_windscl_xl = view_params->windscl_xl;
view_params->prev_windscl_xr = view_params->windscl_xr;
view_params->prev_windscl_yb = view_params->windscl_yb;
view_params->prev_windscl_yt = view_params->windscl_yt;
/* True window - Want the window to be x:[-ds,ds] y:[-ds,ds] */
ds = MAXOF3(xmax-xmin, ymax-ymin, zmax-zmin);
view_params->window_xl = view_params->windscl_xl*ds;
view_params->window_xr = view_params->windscl_xr*ds;
view_params->window_yb = view_params->windscl_yb*ds;
view_params->window_yt = view_params->windscl_yt*ds;
/* viewport - in unit coordinates */
view_params->viewport_xl = 0.0;
view_params->viewport_xr = 1.0;
view_params->viewport_yb = 0.0;
view_params->viewport_yt = 1.0;
/* left_handed_world (right-handed coords by default) */
view_params->left_handed_world = 0;
/* Equal scaling on all axes */
view_params->axis_scale = 1;
view_params->xaxis_scale = 1.0;
view_params->yaxis_scale = 1.0;
view_params->zaxis_scale = 1.0;
/* Label the axes */
view_params->axis_label = 1;
/* Rotation of axis with view (1=static; axis rotates) */
view_params->axis_movement = 0;
/* 3D axis guides */
view_params->axis_guides = CN_TRUE;
/* Hiddenline */
view_params->hiddenline = 0;
/* view options */
view_params->paint_cube = 0;
view_params->projection = CN_PARALLEL;
/* Initialize the view-transfo matrix */
CNcalculate_view_transfo(view_params);
}
/*
* Reinitialize the view
*/
void CNreinitialize_view(view_params,xmin,xmax,ymin,ymax,zmin,zmax)
CNviewptr view_params;
double xmin, xmax;
double ymin, ymax;
double zmin, zmax;
{
double ds;
/*
* The eye position is specified relative to the view center,
* so it does not have to be modified
*/
/* view center */
view_params->viewcenter.x = 0.5*(xmax+xmin);
view_params->viewcenter.y = 0.5*(ymax+ymin);
view_params->viewcenter.z = 0.5*(zmax+zmin);
/* Min and max boundaries */
view_params->xmin = xmin;
view_params->xmax = xmax;
view_params->ymin = ymin;
view_params->ymax = ymax;
view_params->zmin = zmin;
view_params->zmax = zmax;
/* Window - Adjust only if asked to */
ds = MAXOF3(xmax-xmin, ymax-ymin, zmax-zmin);
view_params->window_xl = view_params->windscl_xl*ds;
view_params->window_xr = view_params->windscl_xr*ds;
view_params->window_yb = view_params->windscl_yb*ds;
view_params->window_yt = view_params->windscl_yt*ds;
/* Initialize the view-transfo matrix */
CNcalculate_view_transfo(view_params);
}
/*******************************/
/*** TRANSFORMATION MATRICES ***/
/*******************************/
/*
* Calculate the view-transformation matrix given the eye-position,
* the view-center, and the view-up vector.
*/
void CNcalculate_view_transfo(view_params)
CNviewptr view_params;
{
CNmatrix R, Rt, Rp, Rmx, Rpr, Rs, Rvp;
/* Create an identity matrix */
create_identity_matrix(R);
/* Translate to the viewcenter */
create_translate_matrix(Rt,-view_params->viewcenter.x,
-view_params->viewcenter.y,
-view_params->viewcenter.z);
mult_matrix(R, R, Rt);
#ifdef DEBUG
(void) fprintf(stdout,"Translation matrix:\n");
print_matrix(Rt);
#endif
/* Apply scaling */
scale_view(Rs, view_params->axis_scale,
view_params->xaxis_scale,
view_params->yaxis_scale,
view_params->zaxis_scale,
view_params->xmin, view_params->xmax,
view_params->ymin, view_params->ymax,
view_params->zmin, view_params->zmax);
mult_matrix(R, R, Rs);
#ifdef DEBUG
(void) fprintf(stdout,"Scaling matrix:\n");
print_matrix(Rs);
#endif
/* Get the rotation matrix */
rotate_view(Rp, &(view_params->eyepos),
&(view_params->viewup));
mult_matrix(R,R,Rp);
#ifdef DEBUG
(void) fprintf(stdout,"Rotation matrix:\n");
print_matrix(Rp);
#endif
/* Mirror to switch from right-hand coords to left-hand coords */
if (view_params->left_handed_world) {
create_mirror_matrix(Rmx, X_AXIS);
mult_matrix(R, R, Rmx);
}
/* Project on to view plane */
if (view_params->projection == CN_PERSPECTIVE) {
create_perspective_matrix(Rpr, -view_params->viewcenter.z);
mult_matrix(R, R, Rpr);
#ifdef DEBUG
(void) fprintf(stdout,"Perspective matrix:\n");
print_matrix(Rpr);
#endif
}
/* Window-viewport scaling */
CNscale_window_to_viewport(Rvp,
view_params->window_xl, view_params->window_xr,
view_params->window_yb, view_params->window_yt,
view_params->viewport_xl, view_params->viewport_xr,
view_params->viewport_yb, view_params->viewport_yt);
#ifdef DEBUG
(void) fprintf(stdout,"Viewport Scaling matrix:\n");
print_matrix(Rvp);
#endif
/* The final matrix */
mult_matrix(view_params->view_transfo, R, Rvp);
#ifdef DEBUG
(void) fprintf(stdout,"Transform matrix:\n");
print_matrix(view_params->view_transfo);
#endif
}
/*
* Calculate the inverse view-transformation matrix given the eye-position,
* the view-center, and the view-up vector.
*/
void CNcalculate_inv_view_transfo(view_params,T,debug)
CNviewptr view_params;
CNmatrix T;
int debug;
{
CNmatrix R;
CNmatrix Rt, Rp, Rmx, Rs, Rvp;
CNmatrix Rt_inv, Rp_inv, Rmx_inv, Rs_inv, Rvp_inv;
int err;
/* Create an identity matrix */
create_identity_matrix(R);
/* window -> viewport */
CNscale_window_to_viewport(Rvp,
view_params->window_xl, view_params->window_xr,
view_params->window_yb, view_params->window_yt,
view_params->viewport_xl, view_params->viewport_xr,
view_params->viewport_yb, view_params->viewport_yt);
/* viewport->window scaling */
CNscale_viewport_to_window(Rvp_inv,
view_params->window_xl, view_params->window_xr,
view_params->window_yb, view_params->window_yt,
view_params->viewport_xl, view_params->viewport_xr,
view_params->viewport_yb, view_params->viewport_yt);
mult_matrix(R, R, Rvp_inv);
/* No perspective viewing yet */
/* Mirror to switch from right-hand coords to left-hand coords */
create_identity_matrix(Rmx);
create_identity_matrix(Rmx_inv);
if (view_params->left_handed_world) {
create_mirror_matrix(Rmx, X_AXIS);
create_mirror_matrix(Rmx_inv, X_AXIS);
mult_matrix(R, R, Rmx_inv);
}
/* Get the rotation matrix */
rotate_view(Rp, &(view_params->eyepos),
&(view_params->viewup));
/* Get the inverse rotation matrix */
inv_rotate_view(Rp_inv,
&(view_params->eyepos),
&(view_params->viewup));
mult_matrix(R,R,Rp_inv);
/* Apply scaling */
scale_view(Rs, view_params->axis_scale,
view_params->xaxis_scale,
view_params->yaxis_scale,
view_params->zaxis_scale,
view_params->xmin, view_params->xmax,
view_params->ymin, view_params->ymax,
view_params->zmin, view_params->zmax);
/* Apply inverse scaling */
inv_scale_view(Rs_inv,
view_params->axis_scale,
view_params->xaxis_scale,
view_params->yaxis_scale,
view_params->zaxis_scale,
view_params->xmin, view_params->xmax,
view_params->ymin, view_params->ymax,
view_params->zmin, view_params->zmax);
mult_matrix(R, R, Rs_inv);
/* Translate to the viewcenter */
create_translate_matrix(Rt,-view_params->viewcenter.x,
-view_params->viewcenter.y,
-view_params->viewcenter.z);
/* Translate from the viewcenter */
create_translate_matrix(Rt_inv,
view_params->viewcenter.x,
view_params->viewcenter.y,
view_params->viewcenter.z);
mult_matrix(R, R, Rt_inv);
/* The final result */
CNcopy_matrix(T,R);
/* Check the results */
err = diag_matrix("transform",view_params->view_transfo, T, 0);
if (debug) {
if (err==0) {
(void) diag_matrix("transform",view_params->view_transfo, T, 1);
(void) fprintf(stdout,"The inverse matrix was calculated correctly!\n");
} else {
(void) diag_matrix("viewport-window",Rvp, Rvp_inv, 1);
(void) diag_matrix("mirror",Rmx, Rmx_inv, 1);
(void) diag_matrix("rotate",Rp, Rp_inv, 1);
(void) diag_matrix("scale",Rs, Rs_inv, 1);
(void) diag_matrix("translate",Rt, Rt_inv, 1);
(void) diag_matrix("transform",view_params->view_transfo, T, 1);
}
}
#ifdef DEBUG
#endif
}
/*
* Diagnose - print the product of 2 matrices
*/
static int diag_matrix(label,R1,R2,verbose)
char *label;
CNmatrix R1,R2;
int verbose;
{
#define SMALL_NUM 1e-5 /* Precision is not too important... */
CNmatrix R,Rx1,Rx2;
int i,j,ERR=0;
mult_matrix(R, R1, R2);
/* Print out the results */
if (verbose) {
(void) fprintf(stdout,"Matrix operation - %s\n",label);
print_matrix(R1);
print_matrix(R2);
print_matrix(R);
}
/*
* Check to see if this is an identity matrix,
* do this by multiplying an arbitrary matrix by R
*/
init_matrix(Rx1,
1.0, 2.0, 3.0, 4.0,
5.0, 6.0, 7.0, 8.0,
9.0,10.0,11.0,12.0,
13.0,14.0,15.0,16.0);
mult_matrix(Rx2, R, Rx1);
for (i=0; i<CN_NDIM && !ERR; i++)
for (j=0; j<CN_NDIM && !ERR; j++)
if (fabs(Rx1[i][j] - Rx2[i][j]) > SMALL_NUM) ERR = 1;
if (ERR)
(void) fprintf(stderr,"Warning! The product matrix is not an identity matrix!\n");
return(ERR);
}
/*
* This just rotates about the axis given by eyepos-viewcenter.
* The eyeposition is assumed to be relative to the viewcenter,
* i.e. the true eyepos is eyepos+viewcenter
* No translation is applied!
*/
static void rotate_view(T,eyepos,viewup)
CNmatrix T;
CNcoord *eyepos, *viewup;
{
CNmatrix Rx, Ry, Rp, Rz;
CNcoord up;
double x, y, z, l, v;
double ux, uy, w;
/* eye/center */
x = eyepos->x;
y = eyepos->y;
z = eyepos->z;
l = sqrt(x*x + y*y + z*z);
v = sqrt( y*y + z*z);
/*
* Rotate around the x-axis to put the view-plane normal
* onto the (x,z) plane. Rotation of theta,
* where cos(theta) = z/v, and sin(theta) = y/v
*
* If the viewplane normal is parallel to the x-axis then
* don't rotate about x
*/
if (v > SMALL)
init_matrix(Rx,
1.0, 0.0, 0.0, 0.0,
0.0, z/v, y/v, 0.0,
0.0,-y/v, z/v, 0.0,
0.0, 0.0, 0.0, 1.0);
else
create_identity_matrix(Rx);
/*
* Rotate around the y-axis to put the view-plane normal
* onto the z-axis. Rotation of (-phi)
* where cos( phi) = v/l, and sin( phi) = x/l
* where cos(-phi) = v/l, and sin(-phi) = -x/l
*
* If the eye-center to view-center distance is zero then
* don't rotate about y (in this case Rx=I, Ry=I, I=Ident matrix)
*/
if (l > SMALL)
init_matrix(Ry,
v/l, 0.0, x/l, 0.0,
0.0, 1.0, 0.0, 0.0,
-x/l, 0.0, v/l, 0.0,
0.0, 0.0, 0.0, 1.0);
else
create_identity_matrix(Ry);
/*
* Multiply the two matrices to get the current rotation matrix
*/
mult_matrix(Rp,Rx,Ry);
/*
* Rotate about the z-axis to align the view-plane "Up" vector with
* the original y-axis. Transform the "Up" vector first, and then
* rotate using the transformed vector coordinates.
* Rotate by theta
* where cos(theta) = uy/w, sin(theta) = ux/w
*/
up = CNtransform_point(viewup,Rp);
ux = up.x;
uy = up.y;
w = sqrt(ux*ux + uy*uy);
if (w > SMALL)
init_matrix(Rz,
uy/w, ux/w, 0.0, 0.0,
-ux/w, uy/w, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0);
else
create_identity_matrix(Rz);
/*
* Multiply the previous rotation matrix with Rz
*/
mult_matrix(Rp,Rp,Rz);
/*
* Send back the final matrix
*/
CNcopy_matrix(T, Rp);
}
/*
* This just rotates about the axis given by eyepos-viewcenter.
* The eyeposition is assumed to be relative to the viewcenter,
* i.e. the true eyepos is eyepos+viewcenter
* No translation is applied!
* Get the inverse-transformation matrix
*/
static void inv_rotate_view(T,eyepos,viewup)
CNmatrix T;
CNcoord *eyepos, *viewup;
{
CNmatrix Rx, Ry, Rp, Rz;
CNmatrix Rx_inv, Ry_inv, Rp_inv, Rz_inv;
CNcoord up;
double x, y, z, l, v;
double ux, uy, w;
/* eye/center */
x = eyepos->x;
y = eyepos->y;
z = eyepos->z;
l = sqrt(x*x + y*y + z*z);
v = sqrt( y*y + z*z);
/*
* Rotate around the x-axis to put the view-plane normal
* onto the (x,z) plane. Rotation of theta,
* where cos(theta) = z/v, and sin(theta) = y/v
*
* If the viewplane normal is parallel to the x-axis then
* don't rotate about x
*/
if (v > SMALL) {
init_matrix(Rx,
1.0, 0.0, 0.0, 0.0,
0.0, z/v, y/v, 0.0,
0.0,-y/v, z/v, 0.0,
0.0, 0.0, 0.0, 1.0);
init_matrix(Rx_inv,
1.0, 0.0, 0.0, 0.0,
0.0, z/v,-y/v, 0.0,
0.0, y/v, z/v, 0.0,
0.0, 0.0, 0.0, 1.0);
} else {
create_identity_matrix(Rx);
create_identity_matrix(Rx_inv);
}
/*
* Rotate around the y-axis to put the view-plane normal
* onto the z-axis. Rotation of (-phi)
* where cos( phi) = v/l, and sin( phi) = x/l
* where cos(-phi) = v/l, and sin(-phi) = -x/l
*
* If the eye-center to view-center distance is zero then
* don't rotate about y (in this case Rx=I, Ry=I, I=Ident matrix)
*/
if (l > SMALL) {
init_matrix(Ry,
v/l, 0.0, x/l, 0.0,
0.0, 1.0, 0.0, 0.0,
-x/l, 0.0, v/l, 0.0,
0.0, 0.0, 0.0, 1.0);
init_matrix(Ry_inv,
v/l, 0.0,-x/l, 0.0,
0.0, 1.0, 0.0, 0.0,
x/l, 0.0, v/l, 0.0,
0.0, 0.0, 0.0, 1.0);
} else {
create_identity_matrix(Ry);
create_identity_matrix(Ry_inv);
}
/*
* Multiply the two matrices to get the current rotation matrix
*/
mult_matrix(Rp,Rx,Ry);
mult_matrix(Rp_inv,Ry_inv,Rx_inv);
/*
* Rotate about the z-axis to align the view-plane "Up" vector with
* the original y-axis. Transform the "Up" vector first, and then
* rotate using the transformed vector coordinates.
* Rotate by theta
* where cos(theta) = uy/w, sin(theta) = ux/w
*/
up = CNtransform_point(viewup,Rp);
ux = up.x;
uy = up.y;
w = sqrt(ux*ux + uy*uy);
if (w > SMALL) {
init_matrix(Rz,
uy/w, ux/w, 0.0, 0.0,
-ux/w, uy/w, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0);
init_matrix(Rz_inv,
uy/w,-ux/w, 0.0, 0.0,
ux/w, uy/w, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0);
} else {
create_identity_matrix(Rz);
create_identity_matrix(Rz_inv);
}
/*
* The final matrix T = Rx * Ry * Rz
* = Rp * Rz
*
* The inverse matrix T_inv = Rz_inv * Ry_inv * Rx_inv
* = Rz_inv * Rp_inv
*/
mult_matrix(Rp,Rp,Rz);
mult_matrix(Rp,Rz_inv,Rp_inv);
/*
* Send back the final matrix
*/
CNcopy_matrix(T, Rp);
}
/*
* Apply scaling
*/
static void scale_view(T, axis_scale,
xaxis_scale, yaxis_scale, zaxis_scale,
xmin, xmax, ymin, ymax, zmin, zmax)
CNmatrix T;
short axis_scale;
double xaxis_scale, yaxis_scale, zaxis_scale;
double xmin, xmax, ymin, ymax, zmin, zmax;
{
double scalemax;
double sx, sy, sz;
double ds;
sx = 1.0;
sy = 1.0;
sz = 1.0;
/* Scale each axis so that all axis lengths are the same */
if (axis_scale) {
/* Scale the xyz axis scale factors so that the max scale is 1.0 */
scalemax = MAXOF3(xaxis_scale, yaxis_scale, zaxis_scale);
if (xaxis_scale > SMALL) xaxis_scale = xaxis_scale/scalemax;
else xaxis_scale = 1.0;
if (yaxis_scale > SMALL) yaxis_scale = yaxis_scale/scalemax;
else yaxis_scale = 1.0;
if (zaxis_scale > SMALL) zaxis_scale = zaxis_scale/scalemax;
else zaxis_scale = 1.0;
ds = MAXOF3(xmax-xmin, ymax-ymin, zmax-zmin);
if ((xmax - xmin) > SMALL) sx = xaxis_scale*ds/(xmax - xmin);
if ((ymax - ymin) > SMALL) sy = yaxis_scale*ds/(ymax - ymin);
if ((zmax - zmin) > SMALL) sz = zaxis_scale*ds/(zmax - zmin);
}
/* Create the scale matrix */
create_scale_matrix(T,sx,sy,sz);
}
/*
* Apply scaling
* Return the inverse transfo matrix
*/
static void inv_scale_view(T, axis_scale,
xaxis_scale, yaxis_scale, zaxis_scale,
xmin, xmax, ymin, ymax, zmin, zmax)
CNmatrix T;
short axis_scale;
double xaxis_scale, yaxis_scale, zaxis_scale;
double xmin, xmax, ymin, ymax, zmin, zmax;
{
double scalemax;
double sx, sy, sz;
double ds;
sx = 1.0;
sy = 1.0;
sz = 1.0;
/* Scale each axis so that all axis lengths are the same */
if (axis_scale) {
/* Scale the xyz axis scale factors so that the max scale is 1.0 */
scalemax = MAXOF3(xaxis_scale, yaxis_scale, zaxis_scale);
if (xaxis_scale > SMALL) xaxis_scale = xaxis_scale/scalemax;
else xaxis_scale = 1.0;
if (yaxis_scale > SMALL) yaxis_scale = yaxis_scale/scalemax;
else yaxis_scale = 1.0;
if (zaxis_scale > SMALL) zaxis_scale = zaxis_scale/scalemax;
else zaxis_scale = 1.0;
ds = MAXOF3(xmax-xmin, ymax-ymin, zmax-zmin);
if (fabs(ds) < SMALL) ds = SMALL;
if ((xmax - xmin) > SMALL) sx = 1.0*(xmax - xmin)/(ds*xaxis_scale);
if ((ymax - ymin) > SMALL) sy = 1.0*(ymax - ymin)/(ds*yaxis_scale);
if ((zmax - zmin) > SMALL) sz = 1.0*(zmax - zmin)/(ds*zaxis_scale);
}
/* Create the scale matrix */
create_scale_matrix(T,sx,sy,sz);
}
/*
* Given a transformation matrix, find a new matrix that will enable the
* entire plot to fit inside the viewport.
*/
void CNscale_window_to_viewport(T,
window_xl, window_xr,
window_yb, window_yt,
viewport_xl, viewport_xr,
viewport_yb, viewport_yt)
CNmatrix T;
double window_xl, window_xr;
double window_yb, window_yt;
double viewport_xl, viewport_xr;
double viewport_yb, viewport_yt;
{
double sx,sy,tx,ty;
/* create a matrix to scale the window to the viewport */
sx = (viewport_xr - viewport_xl)/(window_xr - window_xl);
sy = (viewport_yt - viewport_yb)/(window_yt - window_yb);
tx = viewport_xl - sx*window_xl;
ty = viewport_yb - sy*window_yb;
create_identity_matrix(T);
T[0][0] = sx;
T[1][1] = sy;
T[3][0] = tx;
T[3][1] = ty;
}
/*
* Given a transformation matrix, find a new matrix that will enable the
* entire plot to fit inside the viewport.
* Return the inverse transformation matrix.
*/
void CNscale_viewport_to_window(T,
window_xl, window_xr,
window_yb, window_yt,
viewport_xl, viewport_xr,
viewport_yb, viewport_yt)
CNmatrix T;
double window_xl, window_xr;
double window_yb, window_yt;
double viewport_xl, viewport_xr;
double viewport_yb, viewport_yt;
{
CNscale_window_to_viewport(T,
viewport_xl, viewport_xr,
viewport_yb, viewport_yt,
window_xl, window_xr,
window_yb, window_yt);
}
/****************************************/
/*** USEFUL TRANSFORMATION PROCEDURES ***/
/****************************************/
/*
* Given absolute angle rotations, find the new eye-position
* Theta and phi are specified in degrees.
*/
void CNcalculate_eyepos(view_params,theta,phi,xeye,yeye,zeye)
CNviewptr view_params;
double theta, phi;
double *xeye,*yeye,*zeye;
{
double x, y, z, r;
/* eye/center */
x = view_params->eyepos.x;
y = view_params->eyepos.y;
z = view_params->eyepos.z;
r = sqrt(x*x + y*y + z*z);
/* The new eye pos */
*xeye = r*sin(phi*DEG2RAD)*cos(theta*DEG2RAD);
*yeye = r*sin(phi*DEG2RAD)*sin(theta*DEG2RAD);
*zeye = r*cos(phi*DEG2RAD);
}
/*
* Rotate the eyepos-viewcenter by the given angles
* d_theta and d_phi are angle rotations from the current eyepos-viewcenter.
*/
void CNrotate_view(view_params,d_theta,d_phi)
CNviewptr view_params;
double d_theta, d_phi;
{
double theta0, phi0;
double theta, phi;
double x,y,z;
/* theta, phi rotation angles based on current eye position */
CNget_view_angles(view_params, &theta0, &phi0);
/* The new rotation angles */
theta = theta0 + d_theta;
phi = phi0 + d_phi;
/* Constrict Phi to between 0 and 180 degrees */
if (phi < 0.0 || phi > 180.0) phi = phi0;
/* Get the new eye-position */
CNcalculate_eyepos(view_params,
theta,phi,&x,&y,&z);
view_params->eyepos.x = x;
view_params->eyepos.y = y;
view_params->eyepos.z = z;
#ifdef DEBUG
(void) fprintf(stdout,"Theta = %7.3f Phi = %7.3f",theta,phi);
print_point(&neweye);
#endif
}
/*
* Calculate view angles based on a cartesian view-axis
*/
void CNget_view_angles(view_params, theta, phi)
CNviewptr view_params;
double *theta;
double *phi;
{
/* theta, phi rotation angles based on current eye position */
get_view_angles(&(view_params->eyepos), theta, phi);
}
/*
* Calculate view angles based on a cartesian view-axis
*/
static void get_view_angles(eyepos, theta, phi)
CNcoord *eyepos;
double *theta;
double *phi;
{
double dx, dy, dz, l, r;
/* view vector */
dx = eyepos->x;
dy = eyepos->y;
dz = eyepos->z;
l = sqrt(dx*dx + dy*dy + dz*dz);
r = sqrt(dx*dx + dy*dy);
if (l > SMALL)
*phi = acos(dz/l)*RAD2DEG;
else
*phi = 0.0;
if (r > SMALL) {
*theta = acos(dx/r)*RAD2DEG;
if (dy < 0) *theta = 360.0 - *theta;
} else
*theta = 0.0;
}
/*************************************/
/*** BASIC TRANSFORMATION MATRICES ***/
/*************************************/
/*
* Initialize the identity matrix
*/
static void init_matrix(A,
A00, A01, A02, A03,
A10, A11, A12, A13,
A20, A21, A22, A23,
A30, A31, A32, A33)
CNmatrix A;
double A00, A01, A02, A03;
double A10, A11, A12, A13;
double A20, A21, A22, A23;
double A30, A31, A32, A33;
{
A[0][0] = A00;
A[0][1] = A01;
A[0][2] = A02;
A[0][3] = A03;
A[1][0] = A10;
A[1][1] = A11;
A[1][2] = A12;
A[1][3] = A13;
A[2][0] = A20;
A[2][1] = A21;
A[2][2] = A22;
A[2][3] = A23;
A[3][0] = A30;
A[3][1] = A31;
A[3][2] = A32;
A[3][3] = A33;
}
/*
* Initialize the identity matrix
*/
static void create_identity_matrix(A)
CNmatrix A;
{
int i,j;
for (i=0; i<CN_NDIM; i++)
for (j=0; j<CN_NDIM; j++)
if (i==j) A[i][j] = 1.0;
else A[i][j] = 0.0;
}
/*
* Initialize the zero matrix
*/
static void create_zero_matrix(A)
CNmatrix A;
{
int i,j;
for (i=0; i<CN_NDIM; i++)
for (j=0; j<CN_NDIM; j++)
A[i][j] = 0.0;
}
/*
* Create a matrix to apply scale transformations
*/
static void create_scale_matrix(A,sx,sy,sz)
CNmatrix A;
double sx, sy, sz;
{
/* Initialize the identity matrix */
create_identity_matrix(A);
/* Fill in the appropriate matrix elements */
A[0][0] = sx;
A[1][1] = sy;
A[2][2] = sz;
}
/*
* Create a matrix to apply mirror transformations
*/
static void create_mirror_matrix(A,axis)
CNmatrix A;
int axis;
{
double sx, sy, sz;
sx = 1.0;
sy = 1.0;
sz = 1.0;
if (axis == X_AXIS) sx = -1.0;
else if (axis == Y_AXIS) sy = -1.0;
else if (axis == Z_AXIS) sz = -1.0;
else {
(void) fprintf(stderr,"Error: Unrecognized axis-type!\n");
(void) fprintf(stderr,"No mirroring will be applied\n");
}
/* Create a scale matrix */
create_scale_matrix(A,sx,sy,sz);
}
#ifdef DEBUG
/*
* Create a matrix to apply rotation transformations
*/
static void create_rotate_matrix(A,axis,angle)
CNmatrix A;
int axis;
double angle;
{
/* Initialize the identity matrix */
create_identity_matrix(A);
/* Fill in the appropriate matrix elements */
if (axis == Z_AXIS) {
A[0][0] = cos(angle);
A[0][1] = sin(angle);
A[1][0] = -sin(angle);
A[1][1] = cos(angle);
} else if (axis == Y_AXIS) {
A[0][0] = cos(angle);
A[0][2] = -sin(angle);
A[2][0] = sin(angle);
A[2][2] = cos(angle);
} else if (axis == X_AXIS) {
A[1][1] = cos(angle);
A[1][2] = sin(angle);
A[2][1] = -sin(angle);
A[2][2] = cos(angle);
} else {
(void) fprintf(stderr,"Error: Unrecognized axis-type!\n");
(void) fprintf(stderr,"No rotation will be applied\n");
}
}
#endif
/*
* Create a matrix to apply translate transformations
*/
static void create_translate_matrix(A,tx,ty,tz)
CNmatrix A;
double tx, ty, tz;
{
/* Initialize the identity matrix */
create_identity_matrix(A);
/* Fill in the appropriate matrix elements */
A[3][0] = tx;
A[3][1] = ty;
A[3][2] = tz;
}
/*
* Create a matrix to apply perspective transformations
*/
static void create_perspective_matrix(A,d)
CNmatrix A;
double d;
{
/*
* d is the distance from the origin
* if it is zero then make it a small number
*/
if (fabs(d) < SMALL) d = SMALL;
/* Initialize the identity matrix */
create_identity_matrix(A);
/* Fill in the appropriate matrix elements */
A[2][2] = 1/d;
A[2][3] = 1/d;
}
/*************************/
/*** MATRIX OPERATIONS ***/
/*************************/
/*
* Multiply 2 matrices : A = B * C
*/
static void mult_matrix(A,B,C)
CNmatrix A,B,C;
{
CNmatrix D;
int i,j,k;
/*
* There is a possibility that A could be the same address as
* B or C. Thus multiply first into a temp matrix and then copy
* the result into A.
*/
/* Initialize resultant matrix */
create_zero_matrix(D);
/* Multiply the matrices */
for (i=0; i<CN_NDIM; i++)
for (j=0; j<CN_NDIM; j++)
for (k=0; k<CN_NDIM; k++)
D[i][j] += B[i][k]*C[k][j];
/* Copy D into A */
CNcopy_matrix(A,D);
}
/*
* Copy Matrix B into A
*/
void CNcopy_matrix(A,B)
CNmatrix A,B;
{
int i,j;
for (i=0; i<CN_NDIM; i++)
for (j=0; j<CN_NDIM; j++)
A[i][j] = B[i][j];
}
/*
* Print out the matrix elements
*/
static void print_matrix(A)
CNmatrix A;
{
int i,j;
for (i=0; i<CN_NDIM; i++) {
(void) fprintf(stdout,"\n");
for (j=0; j<CN_NDIM; j++)
(void) fprintf(stdout,"%10.5f ",A[i][j]);
}
(void) fprintf(stdout,"\n");
}
/************************/
/*** POINT OPERATIONS ***/
/************************/
/*
* Transform a point using a 4x4 transformation matrix
*/
CNcoord CNtransform_point(P,T)
CNcoord *P;
CNmatrix T;
{
CNcoord newpoint;
double a[CN_NDIM];
int j;
for (j=0; j<CN_NDIM; j++)
a[j] = P->x * T[0][j] +
P->y * T[1][j] +
P->z * T[2][j] + T[3][j];
newpoint.x = a[0]/a[3];
newpoint.y = a[1]/a[3];
newpoint.z = a[2]/a[3];
return(newpoint);
}
|