File: pvector.c

package info (click to toggle)
plotmtv 1.4.1-4
  • links: PTS
  • area: main
  • in suites: slink
  • size: 4,024 kB
  • ctags: 5,006
  • sloc: ansic: 51,179; makefile: 1,976; fortran: 1,277; sh: 510; csh: 439
file content (181 lines) | stat: -rw-r--r-- 3,502 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/*
 * pvector.c - useful vector operations - these actually are on coords
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "CNdata.h"
#include "CNpvector.h"

/*
 * Normalize a vector
 * return 0 if the vector has zero-length
 */
int CNnormalize_vector(va)
CNcoord  *va;
{
   double dx,dy,dz,ds=1.0;

   /* Get the vector length */
   dx = va->x;
   dy = va->y;
   dz = va->z;
   ds = sqrt(dx*dx + dy*dy + dz*dz);
   if (ds < CN_SMALLER) return(0);

   /* Now normalize */
   va->x = va->x/ds;
   va->y = va->y/ds;
   va->z = va->z/ds;

   /* Return status */
   return(1);
}

/*
 * Return the length-squared of a vector
 */
double CNvector_lengthsq(va)
CNcoord  *va;
{
   double ds;

   /* Get the vector length */
   ds = va->x*va->x + va->y*va->y + va->z*va->z;
 
   /* Return */
   return(ds);
}

/* 
 * Get the angle between 2 vectors 
 */
double CNvector_angle(A,B)
CNcoord  *A, *B;
{
   double dotprod, angle;
   CNcoord va, vb;
   
   /* Make copies of the vectors */
   va.x = A->x;
   va.y = A->y;
   va.z = A->z;
   vb.x = B->x;
   vb.y = B->y;
   vb.z = B->z;

   /* Normalize the vectors first */
   (void) CNnormalize_vector(&va);
   (void) CNnormalize_vector(&vb);

   dotprod = CNvector_dotproduct(&va,&vb);
   angle   = acos(dotprod);

   return(angle);
}

/*
 * Get the dot product of 2 vectors 
 */
double CNvector_dotproduct(A,B)
CNcoord  *A, *B;
{
   double res;
   res = A->x * B->x + A->y * B->y + A->z * B->z;
   return(res);
}

/*
 * find the normal vector of a plane
 * This gets 3 points and returns a,b,c,d of the plane
 */
void CNconv_tria_to_plane(x1,y1,z1,x2,y2,z2,x3,y3,z3,a,b,c,d)
double x1,y1,z1,x2,y2,z2,x3,y3,z3;
double *a,*b,*c,*d;
{
   CNcoord  p1, p2, p3;
   CNcoord  normal;
   double   a0,b0,c0,d0;

   /* Put the points into point data-structure */
   p1.x = x1;   p1.y = y1;   p1.z = z1;
   p2.x = x2;   p2.y = y2;   p2.z = z2;
   p3.x = x3;   p3.y = y3;   p3.z = z3;

   /* Get the plane-normal */
   CNfind_normal_vector(&p1,&p2,&p3,&normal);

   /* The plane equation is ax+by+cz+d = 0 */
   a0 = normal.x;
   b0 = normal.y;
   c0 = normal.z;
   d0 = -1.0*(a0*x1 + b0*y1 + c0*z1);

   /* Normalize the plane */
   if (fabs(a0) > CN_SMALLER) {
      *a = a0 / a0;
      *b = b0 / a0;
      *c = c0 / a0;
      *d = d0 / a0;
   } else if (fabs(b0) > CN_SMALLER) {
      *a = a0 / b0;
      *b = b0 / b0;
      *c = c0 / b0;
      *d = d0 / b0;
   } else if (fabs(c0) > CN_SMALLER) {
      *a = a0 / c0;
      *b = b0 / c0;
      *c = c0 / c0;
      *d = d0 / c0;
   } else {
      *a = a0;
      *b = b0;
      *c = c0;
      *d = d0;
   }
}

/*
 * find the normal vector of a plane
 */
void CNfind_normal_vector(pa1,pa2,pa3,normal)
CNcoord *pa1,*pa2,*pa3,*normal;
{
   CNcoord  lv1, lv2;

   lv1 = CNfind_line_vector(pa1,pa2);
   lv2 = CNfind_line_vector(pa2,pa3);
   *normal = CNcross_product(&lv1,&lv2);
}

/*
 * given 2 points, find the line vector
 */
CNcoord  CNfind_line_vector(p1,p2)
CNcoord *p1, *p2;
{
   CNcoord  linevec;

   linevec.x = p2->x - p1->x;
   linevec.y = p2->y - p1->y;
   linevec.z = p2->z - p1->z;
   return(linevec);
}

/*
 * find the cross product of 2 vectors
 */
CNcoord  CNcross_product(vec1,vec2)
CNcoord  *vec1, *vec2;
{
   CNcoord  cross;

   /* A x B = (AyBz - AzBy)x + (AzBx - AxBz)y + (AxBy - AyBx)z */
   cross.x = vec1->y * vec2->z - vec1->z * vec2->y;
   cross.y = vec1->z * vec2->x - vec1->x * vec2->z;
   cross.z = vec1->x * vec2->y - vec1->y * vec2->x;
   return(cross);
}