1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
|
/*
* round.c - useful routines for rounding
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "CNround.h"
#define SMALL 1.0e-8
#define VERY_SMALL 1.0e-30
#define EXTREMELY_SMALL 1.0e-99
static double round_to_pow();
/*
* round down a number to the nearest decimal place
* i.e. 0.0145 -> 0.01, 0.017 -> 0.020
*/
double
CNround_to_decimal(x)
double x;
{
double dpower, x2;
int power;
/* error-checking */
if (fabs(x) < SMALL) {
return(x);
}
dpower = log10(fabs(x));
power = (dpower > SMALL) ? (int)dpower : (int)dpower - 1;
x2 = round_to_pow(x,power);
return(x2);
}
/*
* round down a number to the decimal place given by power
* e.g round(1.0256,-2) means round to 2nd decimal -> 1.03
*/
static double round_to_pow(x,power)
double x;
int power;
{
double inc, xnew;
inc = pow(10.0,(double)power);
xnew = inc * (floor(x/inc + 0.5 + SMALL));
return(xnew);
}
/*
* autorange on the x-axis
*/
void CNget_autorange(xmin,xmax,xmin2,xmax2,deltx)
double xmin,xmax,*xmin2,*xmax2,*deltx;
{
double dpower;
int power;
/* error-checking */
if (fabs(xmax-xmin) < EXTREMELY_SMALL) {
(void) fprintf(stderr,"Log(zero) Error! xmin = xmax = %g!\n",xmin);
*xmin2 = xmin;
*xmax2 = xmax;
} else {
/* round down xmin and round up xmax */
dpower = CNlog10(xmax-xmin);
power = (dpower > -SMALL) ? (int)dpower : (int)dpower - 1;
*xmin2 = CNround_down(xmin,power);
*xmax2 = CNround_up(xmax,power);
*deltx = pow(10.0,(double)power);
}
}
/* round down a number automatically to the nearest log scale */
double CNauto_round_down(x)
double x;
{
double x2, dpower;
int power;
/* error-checking */
if (fabs(x) < EXTREMELY_SMALL) {
(void) fprintf(stderr,"Log(zero) Error! x = %g!\n",x);
return(x);
}
/* round down xmin and round up xmax */
dpower = CNlog10(x);
power = (dpower > -SMALL) ? (int)dpower : (int)dpower - 1;
x2 = pow(10.0,(double)power);
return(x2);
}
/* round up a number automatically to the nearest log scale */
double CNauto_round_up(x)
double x;
{
double x2, dpower;
int power;
/* error-checking */
if (fabs(x) < EXTREMELY_SMALL) {
(void) fprintf(stderr,"Log(zero) Error! x = %g!\n",x);
return(x);
}
/* round down xmin and round up xmax */
dpower = log10(x);
power = (dpower > -SMALL) ? (int)dpower : (int)dpower - 1;
if ((fabs(dpower - (double)power)) < SMALL)
x2 = pow(10.0,(double)power);
else
x2 = pow(10.0,(double)(power+1));
return(x2);
}
/* round down a number */
double CNround_down(x,power)
double x;
int power;
{
double inc, xnew;
inc = pow(10.0,(double)power);
xnew = inc * (floor(x/inc + SMALL));
return(xnew);
}
/* round up a number */
double CNround_up(x,power)
double x;
int power;
{
double inc, xnew;
inc = pow(10.0,(double)power);
xnew = inc * (floor(x/inc - SMALL) + 1);
return(xnew);
}
/*
* Take the log10 of a number; substitute a small num if the value <= 0
*/
double CNlog10(x)
double x;
{
double val;
if (x < 0.0) {
/* Set this to a positive small number */
x = VERY_SMALL;
/*
(void) fprintf(stderr," ***Error : x=%g - cannot take the log of ",x);
(void) fprintf(stderr,"a number less or equal to zero!\n");
(void) fprintf(stderr," Resetting x to %g\n",x);
*/
} else if (x < EXTREMELY_SMALL) {
/* x must be close to or equal to zero */
x = EXTREMELY_SMALL;
}
val = log10(x);
/* Return the number */
return(val);
}
/*
* Routines for log-interpolation
*/
/*
* Find the independent parameter t where t is the ratio between
* 2 distances (d-d1) and (d2-d1)
* Assume that d2-d1 is nonzero
* if d=d1, t=0; d=d2, t=1
*/
double CNinterp_distance(d1,d2,d,loginterp)
double d1, d2, d;
short loginterp;
{
double t;
double z, z1, z2;
if (!loginterp) {
/*
* Linear interpolation
*/
if ((d1 == d2) && (d == d1))
t = 0.5;
else
t = (d - d1)/(d2 - d1);
} else {
/*
* Use log interpolation
* The result depends on the sign of the 2 points d1 and d2
*/
if ((d1 > 0.0) && (d2 > 0.0)) {
/* Both end points are positive */
if (d <= 0.0)
t = -1.0;
else {
z = CNlog10(d);
z1 = CNlog10(d1);
z2 = CNlog10(d2);
if ((z1 == z2) && (z == z1))
t = 0.5;
else
t = (z - z1)/(z2 - z1);
}
} else if ((d1 < 0.0) && (d2 < 0.0)) {
/* Both end points are negative */
if (d >= 0.0)
t = -1;
else {
z = CNlog10(-d);
z1 = CNlog10(-d1);
z2 = CNlog10(-d2);
if ((z1 == z2) && (z == z1))
t = 0.5;
else
t = (z - z1)/(z2 - z1);
}
} else if ( ((d1 < 0.0) && (d2 > 0.0)) ||
((d1 > 0.0) && (d2 < 0.0)) ) {
/*
* This uses the formula :
* log(x) = sign(x) * log(1+abs(x))
*/
/* One point is negative and the other is positive */
if (d == 0.0) {
z = 0.0;
z1 = ((d1 < 0.0) ? -1.0 : 1.0) * CNlog10(fabs(d1));
z2 = ((d2 < 0.0) ? -1.0 : 1.0) * CNlog10(fabs(d2));
if ((z1 == z2) && (z == z1))
t = 0.5;
else
t = (z - z1)/(z2 - z1);
} else {
z = ((d < 0.0) ? -1.0 : 1.0) * CNlog10(1.0+fabs(d));
z1 = ((d1 < 0.0) ? -1.0 : 1.0) * CNlog10(1.0+fabs(d1));
z2 = ((d2 < 0.0) ? -1.0 : 1.0) * CNlog10(1.0+fabs(d2));
if ((z1 == z2) && (z == z1))
t = 0.5;
else
t = (z - z1)/(z2 - z1);
}
} else {
/* Resort to linear interpolation */
if ((d1 == d2) && (d == d1))
t = 0.5;
t = (d - d1)/(d2 - d1);
}
}
/* Return */
return(t);
}
/*
* Figure out the log-function to use
* return 1 to indicate true log, and 0 to indicate false log
*/
int CNlogmode2(z1,z2)
double z1, z2;
{
int mode;
if ((z1 > 0.0) && (z2 > 0.0)) {
/* All positive */
mode = 1;
} else if ((z1 < 0.0) && (z2 < 0.0)) {
/* All negative */
mode = 1;
} else {
/* The points differ in sign */
mode = 0;
}
return(mode);
}
/*
* Figure out the log-function to use
* return 1 to indicate true log, and 0 to indicate false log
*/
int CNlogmode3(z1,z2,z3)
double z1, z2, z3;
{
int mode;
if ((z1 > 0.0) && (z2 > 0.0) && (z3 > 0.0)) {
/* All positive */
mode = 1;
} else if ((z1 < 0.0) && (z2 < 0.0) && (z3 < 0.0)) {
/* All negative */
mode = 1;
} else {
/* The points differ in sign */
mode = 0;
}
return(mode);
}
/*
* Figure out the log-function to use
* return 1 to indicate true log, and 0 to indicate false log
*/
int CNlogmode4(z1,z2,z3,z4)
double z1, z2, z3, z4;
{
int mode;
if ((z1 > 0.0) && (z2 > 0.0) && (z3 > 0.0) && (z4 > 0.0)) {
/* All positive */
mode = 1;
} else if ((z1 < 0.0) && (z2 < 0.0) && (z3 < 0.0) && (z4 < 0.0)) {
/* All negative */
mode = 1;
} else {
/* The points differ in sign */
mode = 0;
}
return(mode);
}
/*
* Return the sign of a number
* if x=0 return 1
*/
int CNsign(x)
double x;
{
int y;
y = (x >= 0.0) ? 1 : -1;
return(y);
}
/*
* Take the log of the absolute - use the logmode flag to determine function
*/
double CNlogabs(x,logmode)
double x;
int logmode;
{
/*
* If logmode == 0 => then just do linear; don't convert to log
*/
double y;
/*
y = (logmode) ? CNlog_abs(x) : CNlog_1plusabs(x);
*/
y = (logmode) ? CNlog_abs(x) : x;
return(y);
}
/*
* Take the log of the absolute
* Formula:
* y = sign(x) * log10(abs(x))
*/
double CNlog_abs(x)
double x;
{
double y;
y = CNsign(x) * CNlog10(fabs(x));
return(y);
}
/*
* Take the log of the absolute+1
* Formula:
* y = sign(x) * log10(1+abs(x))
* y = sign(x) * log10(1+abs(x))
* or
*
* x >=0 y = log10(1+x)
* x < 0 y = - log10(1-x)
*
* This formula minimizes the effect of having values that cross the x=0
* plane, but is not good for values of x <= 1
*
* In addition if x>0, y>0 and x<0, y<0
*/
double CNlog_1plusabs(x)
double x;
{
double y;
y = CNsign(x) * CNlog10(1+fabs(x));
return(y);
}
/*
* Take the inv log of the absolute
* - use the logmode flag to determine function
*/
double CNinvlogabs(y,signx,logmode)
double y;
int signx;
int logmode;
{
/*
* If logmode == 0 => then just do linear; don't convert to log
*/
double x;
/*
x = (logmode) ? CNinvlog_abs(y,signx) : CNinvlog_1plusabs(y);
*/
x = (logmode) ? CNinvlog_abs(y,signx) : y;
return(x);
}
/*
* Take the inv-log of the absolute
* Formula:
* y = sign(x) * log10(abs(x))
* or
* y = sign(x) * log10(sign(x) * x)
*
* To take the inverse, we need the sign of x
*/
double CNinvlog_abs(y,signx)
double y;
int signx;
{
double x;
x = signx * pow(10.0,signx*y);
return(x);
}
/*
* Take the log of the absolute+1
* Formula:
* y = sign(x) * log10(1+abs(x))
* or
*
* x >=0 y = log10(1+x)
* x < 0 y = - log10(1-x)
*
* This formula minimizes the effect of having values that cross the x=0
* plane, but is not good for values of x <= 1
*
* In addition if x>0, y>0 and x<0, y<0
*/
double CNinvlog_1plusabs(y)
double y;
{
double x;
if (y >= 0)
x = pow(10.0, y) - 1;
else
x = -pow(10.0,-y) + 1;
return(x);
}
|