File: rand2mtv.f

package info (click to toggle)
plotmtv 1.4.1-4
  • links: PTS
  • area: main
  • in suites: slink
  • size: 4,024 kB
  • ctags: 5,006
  • sloc: ansic: 51,179; makefile: 1,976; fortran: 1,277; sh: 510; csh: 439
file content (1955 lines) | stat: -rw-r--r-- 63,958 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
c ------------------------------------------------------------------
c
c driver for interpolation program
c
c anselmo@thermsa.eng.sunysb.edu
c
c modified to produce plotmtv-compatible data
c

	program test

	parameter(nmax=3000)
	parameter(nmax_out=200)
	dimension xd(nmax),yd(nmax),zd(nmax)
	dimension xi(nmax_out),yi(nmax_out)
	dimension zi(nmax_out,nmax_out)
	dimension iwk(31*nmax+nmax*nmax)
	dimension wk(6*nmax)

	character *80 infile
	character *80 outfile
	write(*,*)'conversion program - random to uniform grid for CONTOUR'

	write(*,*)'input file:'
	read(*,999) infile
	write(*,*)'output file:'
	read(*,999) outfile

999	format(a80)

c open files
	open(unit=8,file=infile)
	open(unit=9,file=outfile)

c read data, calculate maximum and minimum
	i=1
	xmax=-1e10
	xmin=1e10
	ymax=xmax
	ymin=xmin

100	continue
	read(8,*,end=200) xd(i),yd(i),zd(i)
	if(xd(i).gt.xmax) xmax=xd(i)
	if(xd(i).lt.xmin) xmin=xd(i)
	if(yd(i).gt.ymax) ymax=yd(i)
	if(yd(i).lt.ymin) ymin=yd(i)
	i=i+1
	goto 100
200	continue	
	close(unit=8)
	npts=i-1

c spit out data
c	do 300 i=1,npts
c	write(*,*) i,xd(i),yd(i),zd(i)
c300	continue

	write(*,*) ' '
	write(*,*) 'npts = ',npts
	write(*,*) 'xmax = ',xmax
	write(*,*) 'xmin = ',xmin
	write(*,*) 'ymax = ',ymax
	write(*,*) 'ymin = ',ymin
	dx=xmax-xmin
	dy=ymax-ymin

	write(*,*)'number of uniform grids in the x direction:'
	read(*,*) nxi
	write(*,*)'number of uniform grids in the y direction:'
	read(*,*) nyi


c number of uniform grids in the x and y
c	nxi=10
c	nyi=15

c create the grid values
	do 400 i=1,nxi
	frac=float(i-1)/float(nxi-1)
	xi(i)=xmin+frac*dx
400	continue

	do 500 i=1,nyi
	frac=float(i-1)/float(nyi-1)
	yi(i)=ymin+frac*dy
500	continue


	call IDSFFT (1,NPTS,XD,YD,ZD,NXI,NYI,NMAX_OUT,XI,YI,ZI,IWK,WK)

c for simple x-y-z dump
c	do 600 i=1,nxi
c	do 600 j=1,nyi
c	write(9,*) xi(i),yi(j),zi(i,j)
c600	continue


c for CONTOUR-MTV format
	write(9,*) '$ DATA=CONTOUR'
	write(9,*) '% xmin=',xmin,' xmax=',xmax
	write(9,*) '% ymin=',ymin,' ymax=',ymax
	write(9,*) '% nx=',nxi,' ny=',nyi
	do 600 j=1,nyi
	write(9,*) (zi(i,j),i=1,nxi)
600	continue
	write(9,*) '$END'

	close(unit=9)

	stop
	end
c ------------------------------------------------------------------

C
C PACKAGE BIVAR          NOTE:  DOCUMENTATION FOR INDIVIDUAL ROUTINES
C                        FOLLOWS THE GENERAL PACKAGE INFORMATION.
C
C LATEST REVISION        JANUARY, 1985
C
C PURPOSE                TO PROVIDE BIVARIATE INTERPOLATION AND SMOOTH
C                        SURFACE FITTING FOR VALUES GIVEN AT IRREGULARLY
C                        DISTRIBUTED POINTS.
C
C                        THE RESULTING INTERPOLATING FUNCTION AND
C                        ITS FIRST-ORDER PARTIAL DERIVATIVES ARE
C                        CONTINUOUS.
C
C                        THE METHOD EMPLOYED IS LOCAL, I.E. A CHANGE
C                        IN THE DATA IN ONE AREA OF THE PLANE DOES NOT
C                        AFFECT THE INTERPOLATING FUNCTION EXCEPT IN
C                        THAT LOCAL AREA.  THIS IS ADVANTAGEOUS OVER
C                        GLOBAL INTERPOLATION METHODS.
C
C                        ALSO, THE METHOD GIVES EXACT RESULTS WHEN ALL
C                        POINTS LIE IN A PLANE. THIS IS ADVANTAGEOUS
C                        OVER OTHER METHODS SUCH AS TWO-DIMENSIONAL
C                        FOURIER SERIES INTERPOLATION.
C
C USAGE                  THIS PACKAGE CONTAINS TWO USER ENTRIES,
C                        IDBVIP AND IDSFFT, BOTH REQUIRING INPUT
C                        DATA TO BE GIVEN AT POINTS
C                        ( X(I) , Y(I) ), I=1,...,N.
C
C                        IF THE USER DESIRES THE INTERPOLATED DATA
C                        TO BE OUTPUT AT GRID POINTS, I.E. AT POINTS
C                        ( XI(I) , YI(J) ), I=1,...,NX, J=1,...,NYI,
C                        ROUTINE IDSFFT SHOULD BE USED.  THIS IS
C                        USEFUL FOR GENERATING AN INTERPOLATING
C                        SURFACE.
C
C                        THE OTHER USER ENTRY POINT, IDBVIP, WILL
C                        PRODUCE INTERPOLATED VALUES AT POINTS
C                        ( XI(I) , YI(I) ), I=1,...,NIP.  THIS IS
C                        USEFUL FOR FILLING IN MISSING DATA POINTS
C                        ON A GRID.
C
C I/O                    NONE, EXCEPT ERROR MESSAGES PRINTED VIA
C                        ROUTINE ULIBER.
C
C PRECISION              SINGLE
C
C REQUIRED LIBRARY       ULIBER ON ULIB, WHICH IS AUTOMATICALLY
C FILES                  LOADED ON NCAR'S CRAY MACHINES.
C
C LANGUAGE               FORTRAN
C
C HISTORY                THE ORIGINAL VERSION OF BIVAR WAS WRITTEN BY
C                        HIROSHI AKIMA IN AUGUST 1975 AND REWRITTEN BY
C                        HIM IN LATE 1976.  IT WAS INCORPORATED INTO
C                        NCAR'S PUBLIC SOFTWARE LIBRARIES IN JANUARY
C                        1977.  IN AUGUST 1984 A NEW VERSION OF BIVAR,
C                        INCORPORATING CHANGES DESCRIBED IN THE ROCKY
C                        MOUNTAIN JOURNAL OF MATHEMATICS ARTICLE CITED
C                        BELOW, WAS OBTAINED FROM DR. AKIMA BY MICHAEL
C                        PERNICE OF NCAR'S SCIENTIFIC COMPUTING
C                        DIVISION, WHO EVALUATED IT AND MADE IT
C                        AVAILABLE IN FEBRUARY, 1985.
C
C PORTABILITY            FORTRAN 66
C
C ACCURACY               ACCURATE TO MACHINE PRECISION ON THE INPUT
C                        DATA POINTS.  ACCURACY AT OTHER POINTS
C                        GREATLY DEPENDS ON THE INPUT DATA.
C
C REFERENCES             THE ORIGINAL METHOD IS DESCRIBED IN
C
C                        AKIMA, HIROSHI, 1978:  A METHOD OF BIVARIATE
C                             INTERPOLATION AND SMOOTH SURFACE FITTING
C                             FOR VALUES GIVEN AT IRREGULARLY
C                             DISTRIBUTED POINTS,
C                             ACM-TOMS, VOL. 4, NO. 2, JUNE 1978.
C
C                        AN IMPROVEMENT TO THE ORIGINAL METHOD
C                        WAS PRESENTED IN
C
C                        AKIMA, HIROSHI, 1984:  ON ESTIMATING PARTIAL
C                             DERIVATIVES FOR BIVARIATE INTERPOLATION
C                             OF SCATTERED DATA,
C                             ROCKY MOUNTAIN JOURNAL OF MATHEMATICS,
C                             VOL. 14, NO. 1, WINTER 1984.
C
C METHOD                 THE X-Y PLANE IS DIVIDED INTO TRIANGULAR
C                        CELLS, EACH CELL HAVING PROJECTIONS OF THREE
C                        DATA POINTS IN THE PLANE AS ITS VERTICES, AND
C                        A BIVARIATE QUINTIC POLYNOMIAL IN X AND Y IS
C                        FITTED TO EACH TRIANGULAR CELL.
C
C                        THE COEFFICIENTS IN THE FITTED QUINTIC
C                        POLYNOMIALS ARE DETERMINED BY CONTINUITY
C                        REQUIREMENTS AND BY ESTIMATES OF PARTIAL
C                        DERIVATIVES AT THE VERTICES AND ALONG THE
C                        EDGES OF THE TRIANGLES.  THE METHOD DESCRIBED
C                        IN THE ROCKY MOUNTAIN JOURNAL REFERENCE
C                        GUARANTEES THAT THE GENERATED SURFACE
C                        DEPENDS CONTINUOUSLY ON THE TRIANGULATION.
C
C                        THE RESULTING INTERPOLATING FUNCTION IS
C                        INVARIANT UNDER THE FOLLOWING TYPES OF LINEAR
C                        COORDINATE TRANSFORMATIONS:
C                             1) A ROTATION OF X-Y COORDINATE SYSTEM
C                             2) LINEAR SCALE TRANSFORMATION OF Z-AXIS
C                             3) TILTING OF THE X-Y PLANE, I.E. NEW
C                                COORDINATES (U,V,W) GIVEN BY
C                                       U = X
C                                       V = Y
C                                       W = Z + A*X + B*Y
C                                WHERE A, B ARE ARBITRARY CONSTANTS.
C
C                         COMPLETE DETAILS OF THE METHOD ARE GIVEN
C                         IN THE REFERENCE PUBLICATIONS.
C
C ********************************************************************
C
C INDIVIDUAL USER ENTRY POINT DOCUMENTATION FOLLOWS.
C
C ********************************************************************
C
C     SUBROUTINE IDBVIP (MD,NDP,XD,YD,ZD,NIP,XI,YI,ZI,IWK,WK)
C
C DIMENSION OF            XD(NDP), YD(NDP), ZD(NDP), XI(NIP), YI(NIP)
C ARGUMENTS               ZI(NIP), IWK(31*NDP+NIP),  WK(8*NDP)
C
C PURPOSE                 TO PERFORM BIVARIATE INTERPOLATION WHEN THE
C                         PROJECTIONS OF THE DATA POINTS IN THE X-Y
C                         PLANE ARE IRREGULARLY DISTRIBUTED.
C
C USAGE                   CALL IDBVIP (MD,NDP,XD,YD,ZD,NIP,XI,YI,ZI,
C                                      IWK,WK)
C
C ARGUMENTS
C
C ON INPUT                MD
C                           MODE OF COMPUTATION (MUST BE 1, 2, OR 3,
C                           ELSE AN ERROR RETURN OCCURS.)
C                           = 1 IF THIS IS THE FIRST CALL TO THIS
C                               SUBROUTINE, OR IF THE VALUE OF NDP
C                               HAS BEEN CHANGED FROM THE PREVIOUS
C                               CALL, OR IF THE CONTENTS OF THE XD
C                               OR YD ARRAYS HAVE BEEN CHANGED FROM
C                               THE PREVIOUS CALL.
C                           = 2 IF THE VALUES OF NDP AND THE XD AND
C                               YD ARRAYS ARE UNCHANGED FROM THE
C                               PREVIOUS CALL, BUT NEW VALUES FOR
C                               XI, YI ARE BEING USED.  IF MD = 2
C                               AND NDP HAS BEEN CHANGED SINCE THE
C                               PREVIOUS CALL TO IDBVIP, AN ERROR
C                               RETURN OCCURS.
C                           = 3 IF THE VALUES OF  NDP, NIP, XD,
C                               YD, XI, YI ARE UNCHANGED FROM THE
C                               PREVIOUS CALL, I.E. IF THE ONLY
C                               CHANGE ON INPUT TO IDBVIP IS IN THE
C                               ZD ARRAY.  IF MD=3 AND NDP OR NIP HAS
C                               BEEN CHANGED SINCE THE PREVIOUS CALL
C                               TO IDBVIP, AN ERROR RETURN OCCURS.
C
C                           BETWEEN THE CALL WITH MD=2 OR MD=3 AND
C                           THE PRECEDING CALL, THE IWK AND WK WORK
C                           ARRAYS SHOULD NOT BE DISTURBED.
C
C                        NDP
C                          NUMBER OF DATA POINTS (MUST BE 4 OR
C                          GREATER, ELSE AN ERROR RETURN OCCURS).
C
C                        XD
C                          ARRAY OF DIMENSION  NDP  CONTAINING THE
C                          X COORDINATES OF THE DATA POINTS.
C
C                        YD
C                          ARRAY OF DIMENSION  NDP  CONTAINING THE
C                          Y COORDINATES OF THE DATA POINTS.
C
C                        ZD
C                          ARRAY OF DIMENSION  NDP  CONTAINING THE
C                          Z COORDINATES OF THE DATA POINTS.
C
C                        NIP
C                          THE NUMBER OF OUTPUT POINTS AT WHICH
C                          INTERPOLATION IS TO BE PERFORMED (MUST BE
C                          1 OR GREATER, ELSE AN ERROR RETURN OCCURS).
C
C                        XI
C                          ARRAY OF DIMENSION  NIP  CONTAINING THE X
C                          COORDINATES OF THE OUTPUT POINTS.
C
C                        YI
C                          ARRAY OF DIMENSION  NIP  CONTAINING THE Y
C                          COORDINATES OF THE OUTPUT POINTS.
C
C                        IWK
C                          INTEGER WORK ARRAY OF DIMENSION AT LEAST
C                          31*NDP + NIP
C
C                        WK
C                          REAL WORK ARRAY OF DIMENSION AT LEAST 8*NDP
C
C ON OUTPUT               ZI
C                           ARRAY OF DIMENSION NIP WHERE INTERPOLATED
C                           Z  VALUES ARE TO BE STORED.
C
C SPECIAL CONDITIONS     INADEQUATE WORK SPACE IWK AND WK MAY
C                        MAY CAUSE INCORRECT RESULTS.
C
C                        THE DATA POINTS MUST BE DISTINCT AND THEIR
C                        PROJECTIONS IN THE X-Y PLANE MUST NOT BE
C                        COLLINEAR, OTHERWISE AN ERROR RETURN OCCURS.
C ********************************************************************
C
C      SUBROUTINE IDSFFT (MD,NDP,XD,YD,ZD,NXI,NYI,NZI,XI,YI,ZI,IWK,WK)
C
C DIMENSION OF           XD(NDP), YD(NDP),     ZD(NDP),   XI(NXI),
C ARGUMENTS              YI(NYI), ZI(NZI,NYI), WK(6*NDP),
C                        IWK(31*NDP + NXI*NYI)
C
C PURPOSE                THIS SUBROUTINE PERFORMS SMOOTH SURFACE
C                        FITTING WHEN THE PROJECTIONS OF THE DATA
C                        POINTS IN THE X-Y PLANE ARE IRREGULARLY
C                        DISTRIBUTED IN THE PLANE.
C
C USAGE                  CALL IDSFFT (MD,NDP,XD,YD,ZD,NXI,NYI,NZI,
C                                    XI,YI,ZI,IWK,WK)
C
C ARGUMENTS
C
C ON INPUT               MD
C                          MODE OF COMPUTATION (MUST BE 1, 2, OR 3,
C                          ELSE AN ERROR RETURN WILL OCCUR).
C                           = 1 IF THIS IS THE FIRST CALL TO THIS
C                               SUBROUTINE, OR IF THE VALUE OF NDP
C                               HAS BEEN CHANGED FROM THE PREVIOUS
C                               CALL, OR IF THE CONTENTS OF THE XD
C                               OR YD ARRAYS HAVE BEEN CHANGED FROM
C                               THE PREVIOUS CALL.
C                           = 2 IF THE VALUES OF NDP AND THE XD,
C                               YD ARRAYS ARE UNCHANGED FROM THE
C                               PREVIOUS CALL, BUT NEW VALUES FOR
C                               XI, YI ARE BEING USED.  IF MD = 2
C                               AND NDP HAS BEEN CHANGED SINCE THE
C                               PREVIOUS CALL TO IDSFFT, AN ERROR
C                               RETURN OCCURS.
C                           = 3 IF THE VALUES OF NDP, NXI, NYI, XD,
C                               YD, XI, YI ARE UNCHANGED FROM THE
C                               PREVIOUS CALL, I.E. IF THE ONLY CHANGE
C                               ON INPUT TO IDSFFT IS IN THE ZD ARRAY.
C                               IF MD = 3 AND NDP, NXI OR NYI HAS BEEN
C                               CHANGED SINCE THE PREVIOUS CALL TO
C                               IDSFFT, AN ERROR RETURN OCCURS.
C
C                           BETWEEN THE CALL WITH MD=2 OR MD=3 AND
C                           THE PRECEDING CALL, THE IWK AND WK WORK
C                           ARRAYS SHOULD NOT BE DISTURBED.
C
C                        NDP
C                          NUMBER OF DATA POINTS (MUST BE 4 OR
C                          GREATER, ELSE AN ERROR RETURN WILL OCCUR).
C
C                        XD
C                          ARRAY OF DIMENSION  NDP  CONTAINING THE X
C                          COORDINATES OF THE DATA POINTS.
C
C                        YD
C                          ARRAY OF DIMENSION  NDP  CONTAINING THE Y
C                          COORDINATES OF THE DATA POINTS.
C
C                        ZD
C                          ARRAY OF DIMENSION  NDP  CONTAINING THE Z
C                          COORDINATES OF THE DATA POINTS.
C
C                        NXI
C                          NUMBER OF OUTPUT GRID POINTS IN THE X-
C                          DIRECTION (MUST BE 1 OR GREATER, ELSE
C                          AN ERROR RETURN WILL OCCUR).
C
C                        NYI
C                          NUMBER OF OUTPUT GRID POINTS IN THE Y-
C                          DIRECTION (MUST BE 1 OR GREATER, ELSE
C                          AN ERROR RETURN WILL OCCUR).
C
C                        NZI
C                          FIRST DIMENSION OF ZI AS DECLARED IN THE
C                          CALLING PROGRAM.  NZI MUST BE GREATER THAN
C                          OR EQUAL TO NXI, ELSE AN ERROR RETURN WILL
C                          OCCUR.
C
C                        XI
C                          ARRAY OF DIMENSION  NXI  CONTAINING THE
C                          X COORDINATES OF THE OUTPUT GRID POINTS.
C
C                        YI
C                         ARRAY OF DIMENSION  NYI  CONTAINING THE
C                         Y COORDINATES OF THE OUTPUT GRID POINTS.
C
C                        IWK
C                          INTEGER WORK ARRAY OF DIMENSION AT
C                          LEAST 31*NDP + NXI*NYI
C
C                        WK
C                          REAL WORK ARRAY OF DIMENSION AT LEAST 6*NDP
C
C ON OUTPUT              ZI
C                           REAL, TWO-DIMENSIONAL ARRAY OF DIMENSION
C                           (NZI,NYI), STORING THE INTERPOLATED Z
C                           VALUES AT THE OUTPUT GRID POINTS.
C
C SPECIAL CONDITIONS     INADEQUATE WORK SPACE IWK AND WK MAY
C                        MAY CAUSE INCORRECT RESULTS.
C
C                        THE DATA POINTS MUST BE DISTINCT AND THEIR
C                        PROJECTIONS IN THE X-Y PLANE MUST NOT BE
C                        COLLINEAR, OTHERWISE AN ERROR RETURN OCCURS.
C ********************************************************************
      SUBROUTINE  IDBVIP(MD,NDP,XD,YD,ZD,NIP,XI,YI,ZI,
     1                   IWK,WK)
C THIS SUBROUTINE CALLS THE IDLCTN, IDPDRV, IDPTIP, AND IDTANG
C SUBROUTINES.
C DECLARATION STATEMENTS
      DIMENSION XD(NDP), YD(NDP), ZD(NDP),           XI(NIP),
     1          YI(NIP), ZI(NIP), IWK(31*NDP + NIP), WK(8*NDP)
      COMMON/IDLC/ITIPV,DMMY1(13)
      COMMON/IDPT/ITPV,DMMY(27)
C
C  THE FOLLOWING CALL IS FOR GATHERING STATISTICS ON LIBRARY USE AT NCAR
C
C SETTING OF SOME INPUT PARAMETERS TO LOCAL VARIABLES.
C (FOR MD=1,2,3)
   10 MD0=MD
      NDP0=NDP
      NIP0=NIP
C ERROR CHECK.  (FOR MD=1,2,3)
   20 IF (MD0.LT.1.OR.MD0.GT.3) THEN
         CALL ULIBER (32,
     1' IDBVIP (BIVAR) - INPUT PARAMETER MD OUT OF RANGE',49)
         STOP 'ULIBER32'
      ENDIF
      IF (NDP0.LT.4) THEN
         CALL ULIBER (33,
     1' IDBVIP (BIVAR) - INPUT PARAMETER NDP OUT OF RANGE',50)
         STOP 'ULIBER33'
      ENDIF
      IF (NIP0.LT.1) THEN
         CALL ULIBER (34,
     1' IDBVIP (BIVAR) - INPUT PARAMETER NIP OUT OF RANGE',50)
         STOP 'ULIBER34'
      ENDIF
      IF(MD0.GT.1)        GO TO 21
      IWK(1)=NDP0
      GO TO 22
   21 NDPPV=IWK(1)
      IF (NDP0.NE.NDPPV) THEN
         CALL ULIBER (50,
     1' IDBVIP (BIVAR) - MD=2 OR 3 BUT NDP WAS CHANGED SINCE LAST CALL',
     2                63)
         STOP 'ULIBER50'
      ENDIF
   22 IF(MD0.GT.2)        GO TO 23
      IWK(3)=NIP
      GO TO 30
   23 NIPPV=IWK(3)
      IF (NIP0.LT.NIPPV) THEN
         CALL ULIBER (51,
     1' IDBVIP (BIVAR) - MD=3 BUT NIP WAS CHANGED SINCE LAST CALL',
     2                58)
         STOP 'ULIBER51'
      ENDIF
C ALLOCATION OF STORAGE AREAS IN THE IWK ARRAY.  (FOR MD=1,2,3)
   30 JWIPT=16
      JWIWL=6*NDP0+1
      JWIWK=JWIWL
      JWIPL=24*NDP0+1
      JWIWP=30*NDP0+1
      JWIT0=31*NDP0
      JWWPD=5*NDP0+1
C TRIANGULATES THE X-Y PLANE.  (FOR MD=1)
   40 IF(MD0.GT.1)   GO TO 41
      CALL IDTANG(NDP0,XD,YD,NT,IWK(JWIPT),NL,IWK(JWIPL),
     1            IWK(JWIWL),IWK(JWIWP),WK)
      IWK(5)=NT
      IWK(6)=NL
      IF(NT.EQ.0)    RETURN
      GO TO 50
   41 NT=IWK(5)
      NL=IWK(6)
C LOCATES ALL POINTS AT WHICH INTERPOLATION IS TO BE PERFORMED.
C (FOR MD=1,2)
   50 IF(MD0.GT.2)   GO TO 60
      ITIPV=0
      JWIT=JWIT0
      DO 51  IIP=1,NIP0
        JWIT=JWIT+1
        CALL IDLCTN(NDP0,XD,YD,NT,IWK(JWIPT),NL,IWK(JWIPL),
     1            XI(IIP),YI(IIP),IWK(JWIT),IWK(JWIWK),WK)
   51 CONTINUE
C ESTIMATES PARTIAL DERIVATIVES AT ALL DATA POINTS.
C (FOR MD=1,2,3)
   60 CALL IDPDRV(NDP0,XD,YD,ZD,NT,IWK(JWIPT),WK,WK(JWWPD))
C INTERPOLATES THE ZI VALUES.  (FOR MD=1,2,3)
   70 ITPV=0
      JWIT=JWIT0
      DO 71  IIP=1,NIP0
        JWIT=JWIT+1
        CALL IDPTIP(XD,YD,ZD,NT,IWK(JWIPT),NL,IWK(JWIPL),WK,
     1              IWK(JWIT),XI(IIP),YI(IIP),ZI(IIP))
   71 CONTINUE
      RETURN
      END
      SUBROUTINE  IDGRID(XD,YD,NT,IPT,NL,IPL,NXI,NYI,XI,YI,
     1                   NGP,IGP)
C THIS SUBROUTINE ORGANIZES GRID POINTS FOR SURFACE FITTING BY
C SORTING THEM IN ASCENDING ORDER OF TRIANGLE NUMBERS AND OF THE
C BORDER LINE SEGMENT NUMBER.
C THE INPUT PARAMETERS ARE
C     XD,YD = ARRAYS OF DIMENSION NDP CONTAINING THE X AND Y
C           COORDINATES OF THE DATA POINTS, WHERE NDP IS THE
C           NUMBER OF THE DATA POINTS,
C     NT  = NUMBER OF TRIANGLES,
C     IPT = INTEGER ARRAY OF DIMENSION 3*NT CONTAINING THE
C           POINT NUMBERS OF THE VERTEXES OF THE TRIANGLES,
C     NL  = NUMBER OF BORDER LINE SEGMENTS,
C     IPL = INTEGER ARRAY OF DIMENSION 3*NL CONTAINING THE
C           POINT NUMBERS OF THE END POINTS OF THE BORDER
C           LINE SEGMENTS AND THEIR RESPECTIVE TRIANGLE
C           NUMBERS,
C     NXI = NUMBER OF GRID POINTS IN THE X COORDINATE,
C     NYI = NUMBER OF GRID POINTS IN THE Y COORDINATE,
C     XI,YI = ARRAYS OF DIMENSION NXI AND NYI CONTAINING
C           THE X AND Y COORDINATES OF THE GRID POINTS,
C           RESPECTIVELY.
C THE OUTPUT PARAMETERS ARE
C     NGP = INTEGER ARRAY OF DIMENSION 2*(NT+2*NL) WHERE THE
C           NUMBER OF GRID POINTS THAT BELONG TO EACH OF THE
C           TRIANGLES OR OF THE BORDER LINE SEGMENTS ARE TO
C           BE STORED,
C     IGP = INTEGER ARRAY OF DIMENSION NXI*NYI WHERE THE
C           GRID POINT NUMBERS ARE TO BE STORED IN ASCENDING
C           ORDER OF THE TRIANGLE NUMBER AND THE BORDER LINE
C           SEGMENT NUMBER.
C DECLARATION STATEMENTS
      DIMENSION XD(1), YD(1), IPT(1), IPL(1), XI(1), YI(1), NGP(1),
     1          IGP(1)
C STATEMENT FUNCTIONS
      SPDT(U1,V1,U2,V2,U3,V3)=(U1-U2)*(U3-U2)+(V1-V2)*(V3-V2)
      VPDT(U1,V1,U2,V2,U3,V3)=(U1-U3)*(V2-V3)-(V1-V3)*(U2-U3)
C PRELIMINARY PROCESSING
   10 NT0=NT
      NL0=NL
      NXI0=NXI
      NYI0=NYI
      NXINYI=NXI0*NYI0
      XIMN=AMIN1(XI(1),XI(NXI0))
      XIMX=AMAX1(XI(1),XI(NXI0))
      YIMN=AMIN1(YI(1),YI(NYI0))
      YIMX=AMAX1(YI(1),YI(NYI0))
C DETERMINES GRID POINTS INSIDE THE DATA AREA.
   20 JNGP0=0
      JNGP1=2*(NT0+2*NL0)+1
      JIGP0=0
      JIGP1=NXINYI+1
      DO 39  IT0=1,NT0
        NGP0=0
        NGP1=0
        IT0T3=IT0*3
        IP1=IPT(IT0T3-2)
        IP2=IPT(IT0T3-1)
        IP3=IPT(IT0T3)
        X1=XD(IP1)
        Y1=YD(IP1)
        X2=XD(IP2)
        Y2=YD(IP2)
        X3=XD(IP3)
        Y3=YD(IP3)
        XMN=AMIN1(X1,X2,X3)
        XMX=AMAX1(X1,X2,X3)
        YMN=AMIN1(Y1,Y2,Y3)
        YMX=AMAX1(Y1,Y2,Y3)
        INSD=0
        DO 22  IXI=1,NXI0
          IF(XI(IXI).GE.XMN.AND.XI(IXI).LE.XMX)    GO TO 21
          IF(INSD.EQ.0)   GO TO 22
          IXIMX=IXI-1
          GO TO 23
   21     IF(INSD.EQ.1)   GO TO 22
          INSD=1
          IXIMN=IXI
   22   CONTINUE
        IF(INSD.EQ.0)     GO TO 38
        IXIMX=NXI0
   23   DO 37  IYI=1,NYI0
          YII=YI(IYI)
          IF(YII.LT.YMN.OR.YII.GT.YMX)        GO TO 37
          DO 36  IXI=IXIMN,IXIMX
            XII=XI(IXI)
            L=0
            IF(VPDT(X1,Y1,X2,Y2,XII,YII))     36,25,26
   25       L=1
   26       IF(VPDT(X2,Y2,X3,Y3,XII,YII))     36,27,28
   27       L=1
   28       IF(VPDT(X3,Y3,X1,Y1,XII,YII))     36,29,30
   29       L=1
   30       IZI=NXI0*(IYI-1)+IXI
            IF(L.EQ.1)    GO TO 31
            NGP0=NGP0+1
            JIGP0=JIGP0+1
            IGP(JIGP0)=IZI
            GO TO 36
   31       IF(JIGP1.GT.NXINYI)     GO TO 33
            DO 32  JIGP1I=JIGP1,NXINYI
              IF(IZI.EQ.IGP(JIGP1I))     GO TO 36
   32       CONTINUE
   33       NGP1=NGP1+1
            JIGP1=JIGP1-1
            IGP(JIGP1)=IZI
   36     CONTINUE
   37   CONTINUE
   38   JNGP0=JNGP0+1
        NGP(JNGP0)=NGP0
        JNGP1=JNGP1-1
        NGP(JNGP1)=NGP1
   39 CONTINUE
C DETERMINES GRID POINTS OUTSIDE THE DATA AREA.
C - IN SEMI-INFINITE RECTANGULAR AREA.
   40 DO 79  IL0=1,NL0
        NGP0=0
        NGP1=0
        IL0T3=IL0*3
        IP1=IPL(IL0T3-2)
        IP2=IPL(IL0T3-1)
        X1=XD(IP1)
        Y1=YD(IP1)
        X2=XD(IP2)
        Y2=YD(IP2)
        XMN=XIMN
        XMX=XIMX
        YMN=YIMN
        YMX=YIMX
        IF(Y2.GE.Y1)      XMN=AMIN1(X1,X2)
        IF(Y2.LE.Y1)      XMX=AMAX1(X1,X2)
        IF(X2.LE.X1)      YMN=AMIN1(Y1,Y2)
        IF(X2.GE.X1)      YMX=AMAX1(Y1,Y2)
        INSD=0
        DO 42  IXI=1,NXI0
          IF(XI(IXI).GE.XMN.AND.XI(IXI).LE.XMX)    GO TO 41
          IF(INSD.EQ.0)   GO TO 42
          IXIMX=IXI-1
          GO TO 43
   41     IF(INSD.EQ.1)   GO TO 42
          INSD=1
          IXIMN=IXI
   42   CONTINUE
        IF(INSD.EQ.0)     GO TO 58
        IXIMX=NXI0
   43   DO 57  IYI=1,NYI0
          YII=YI(IYI)
          IF(YII.LT.YMN.OR.YII.GT.YMX)        GO TO 57
          DO 56  IXI=IXIMN,IXIMX
            XII=XI(IXI)
            L=0
            IF(VPDT(X1,Y1,X2,Y2,XII,YII))     46,45,56
   45       L=1
   46       IF(SPDT(X2,Y2,X1,Y1,XII,YII))     56,47,48
   47       L=1
   48       IF(SPDT(X1,Y1,X2,Y2,XII,YII))     56,49,50
   49       L=1
   50       IZI=NXI0*(IYI-1)+IXI
            IF(L.EQ.1)    GO TO 51
            NGP0=NGP0+1
            JIGP0=JIGP0+1
            IGP(JIGP0)=IZI
            GO TO 56
   51       IF(JIGP1.GT.NXINYI)     GO TO 53
            DO 52  JIGP1I=JIGP1,NXINYI
              IF(IZI.EQ.IGP(JIGP1I))     GO TO 56
   52       CONTINUE
   53       NGP1=NGP1+1
            JIGP1=JIGP1-1
            IGP(JIGP1)=IZI
   56     CONTINUE
   57   CONTINUE
   58   JNGP0=JNGP0+1
        NGP(JNGP0)=NGP0
        JNGP1=JNGP1-1
        NGP(JNGP1)=NGP1
C - IN SEMI-INFINITE TRIANGULAR AREA.
   60   NGP0=0
        NGP1=0
        ILP1=MOD(IL0,NL0)+1
        ILP1T3=ILP1*3
        IP3=IPL(ILP1T3-1)
        X3=XD(IP3)
        Y3=YD(IP3)
        XMN=XIMN
        XMX=XIMX
        YMN=YIMN
        YMX=YIMX
        IF(Y3.GE.Y2.AND.Y2.GE.Y1)   XMN=X2
        IF(Y3.LE.Y2.AND.Y2.LE.Y1)   XMX=X2
        IF(X3.LE.X2.AND.X2.LE.X1)   YMN=Y2
        IF(X3.GE.X2.AND.X2.GE.X1)   YMX=Y2
        INSD=0
        DO 62  IXI=1,NXI0
          IF(XI(IXI).GE.XMN.AND.XI(IXI).LE.XMX)    GO TO 61
          IF(INSD.EQ.0)   GO TO 62
          IXIMX=IXI-1
          GO TO 63
   61     IF(INSD.EQ.1)   GO TO 62
          INSD=1
          IXIMN=IXI
   62   CONTINUE
        IF(INSD.EQ.0)     GO TO 78
        IXIMX=NXI0
   63   DO 77  IYI=1,NYI0
          YII=YI(IYI)
          IF(YII.LT.YMN.OR.YII.GT.YMX)        GO TO 77
          DO 76  IXI=IXIMN,IXIMX
            XII=XI(IXI)
            L=0
            IF(SPDT(X1,Y1,X2,Y2,XII,YII))     66,65,76
   65       L=1
   66       IF(SPDT(X3,Y3,X2,Y2,XII,YII))     70,67,76
   67       L=1
   70       IZI=NXI0*(IYI-1)+IXI
            IF(L.EQ.1)    GO TO 71
            NGP0=NGP0+1
            JIGP0=JIGP0+1
            IGP(JIGP0)=IZI
            GO TO 76
   71       IF(JIGP1.GT.NXINYI)     GO TO 73
            DO 72  JIGP1I=JIGP1,NXINYI
              IF(IZI.EQ.IGP(JIGP1I))     GO TO 76
   72       CONTINUE
   73       NGP1=NGP1+1
            JIGP1=JIGP1-1
            IGP(JIGP1)=IZI
   76     CONTINUE
   77   CONTINUE
   78   JNGP0=JNGP0+1
        NGP(JNGP0)=NGP0
        JNGP1=JNGP1-1
        NGP(JNGP1)=NGP1
   79 CONTINUE
      RETURN
      END
      SUBROUTINE  IDLCTN(NDP,XD,YD,NT,IPT,NL,IPL,XII,YII,ITI,
     1                   IWK,WK)
C THIS SUBROUTINE LOCATES A POINT, I.E., DETERMINES TO WHAT TRI-
C ANGLE A GIVEN POINT (XII,YII) BELONGS.  WHEN THE GIVEN POINT
C DOES NOT LIE INSIDE THE DATA AREA, THIS SUBROUTINE DETERMINES
C THE BORDER LINE SEGMENT WHEN THE POINT LIES IN AN OUTSIDE
C RECTANGULAR AREA, AND TWO BORDER LINE SEGMENTS WHEN THE POINT
C LIES IN AN OUTSIDE TRIANGULAR AREA.
C THE INPUT PARAMETERS ARE
C     NDP = NUMBER OF DATA POINTS,
C     XD,YD = ARRAYS OF DIMENSION NDP CONTAINING THE X AND Y
C           COORDINATES OF THE DATA POINTS,
C     NT  = NUMBER OF TRIANGLES,
C     IPT = INTEGER ARRAY OF DIMENSION 3*NT CONTAINING THE
C           POINT NUMBERS OF THE VERTEXES OF THE TRIANGLES,
C     NL  = NUMBER OF BORDER LINE SEGMENTS,
C     IPL = INTEGER ARRAY OF DIMENSION 3*NL CONTAINING THE
C           POINT NUMBERS OF THE END POINTS OF THE BORDER
C           LINE SEGMENTS AND THEIR RESPECTIVE TRIANGLE
C           NUMBERS,
C     XII,YII = X AND Y COORDINATES OF THE POINT TO BE
C           LOCATED.
C THE OUTPUT PARAMETER IS
C     ITI = TRIANGLE NUMBER, WHEN THE POINT IS INSIDE THE
C           DATA AREA, OR
C           TWO BORDER LINE SEGMENT NUMBERS, IL1 AND IL2,
C           CODED TO IL1*(NT+NL)+IL2, WHEN THE POINT IS
C           OUTSIDE THE DATA AREA.
C THE OTHER PARAMETERS ARE
C     IWK = INTEGER ARRAY OF DIMENSION 18*NDP USED INTER-
C           NALLY AS A WORK AREA,
C     WK  = ARRAY OF DIMENSION 8*NDP USED INTERNALLY AS A
C           WORK AREA.
C DECLARATION STATEMENTS
      DIMENSION XD(NDP), YD(NDP), IPT(3*NT), IPL(3*NL), IWK(18*NDP),
     1          WK(8*NDP)
      DIMENSION   IDSC(9)
      COMMON/IDLC/ITIPV,XS1,XS2,YS1,YS2,NTSC(9)
C STATEMENT FUNCTIONS
      SPDT(U1,V1,U2,V2,U3,V3)=(U1-U2)*(U3-U2)+(V1-V2)*(V3-V2)
      VPDT(U1,V1,U2,V2,U3,V3)=(U1-U3)*(V2-V3)-(V1-V3)*(U2-U3)
C PRELIMINARY PROCESSING
   10 NDP0=NDP
      NT0=NT
      NL0=NL
      NTL=NT0+NL0
      X0=XII
      Y0=YII
C PROCESSING FOR A NEW SET OF DATA POINTS
   20 IF(ITIPV.NE.0)      GO TO 30
C - DIVIDES THE X-Y PLANE INTO NINE RECTANGULAR SECTIONS.
      XMN=XD(1)
      XMX=XMN
      YMN=YD(1)
      YMX=YMN
      DO 21  IDP=2,NDP0
        XI=XD(IDP)
        YI=YD(IDP)
        XMN=AMIN1(XI,XMN)
        XMX=AMAX1(XI,XMX)
        YMN=AMIN1(YI,YMN)
        YMX=AMAX1(YI,YMX)
   21 CONTINUE
      XS1=(XMN+XMN+XMX)/3.0
      XS2=(XMN+XMX+XMX)/3.0
      YS1=(YMN+YMN+YMX)/3.0
      YS2=(YMN+YMX+YMX)/3.0
C - DETERMINES AND STORES IN THE IWK ARRAY TRIANGLE NUMBERS OF
C - THE TRIANGLES ASSOCIATED WITH EACH OF THE NINE SECTIONS.
      DO 22  ISC=1,9
        NTSC(ISC)=0
        IDSC(ISC)=0
   22 CONTINUE
      IT0T3=0
      JWK=0
      DO 27  IT0=1,NT0
        IT0T3=IT0T3+3
        I1=IPT(IT0T3-2)
        I2=IPT(IT0T3-1)
        I3=IPT(IT0T3)
        XMN=AMIN1(XD(I1),XD(I2),XD(I3))
        XMX=AMAX1(XD(I1),XD(I2),XD(I3))
        YMN=AMIN1(YD(I1),YD(I2),YD(I3))
        YMX=AMAX1(YD(I1),YD(I2),YD(I3))
        IF(YMN.GT.YS1)                   GO TO 23
        IF(XMN.LE.XS1)                   IDSC(1)=1
        IF(XMX.GE.XS1.AND.XMN.LE.XS2)    IDSC(2)=1
        IF(XMX.GE.XS2)                   IDSC(3)=1
   23   IF(YMX.LT.YS1.OR.YMN.GT.YS2)     GO TO 24
        IF(XMN.LE.XS1)                   IDSC(4)=1
        IF(XMX.GE.XS1.AND.XMN.LE.XS2)    IDSC(5)=1
        IF(XMX.GE.XS2)                   IDSC(6)=1
   24   IF(YMX.LT.YS2)                   GO TO 25
        IF(XMN.LE.XS1)                   IDSC(7)=1
        IF(XMX.GE.XS1.AND.XMN.LE.XS2)    IDSC(8)=1
        IF(XMX.GE.XS2)                   IDSC(9)=1
   25   DO 26  ISC=1,9
          IF(IDSC(ISC).EQ.0)   GO TO 26
          JIWK=9*NTSC(ISC)+ISC
          IWK(JIWK)=IT0
          NTSC(ISC)=NTSC(ISC)+1
          IDSC(ISC)=0
   26   CONTINUE
C - STORES IN THE WK ARRAY THE MINIMUM AND MAXIMUM OF THE X AND
C - Y COORDINATE VALUES FOR EACH OF THE TRIANGLE.
        JWK=JWK+4
        WK(JWK-3)=XMN
        WK(JWK-2)=XMX
        WK(JWK-1)=YMN
        WK(JWK)  =YMX
   27 CONTINUE
      GO TO 60
C CHECKS IF IN THE SAME TRIANGLE AS PREVIOUS.
   30 IT0=ITIPV
      IF(IT0.GT.NT0)      GO TO 40
      IT0T3=IT0*3
      IP1=IPT(IT0T3-2)
      X1=XD(IP1)
      Y1=YD(IP1)
      IP2=IPT(IT0T3-1)
      X2=XD(IP2)
      Y2=YD(IP2)
      IF(VPDT(X1,Y1,X2,Y2,X0,Y0).LT.0.0)      GO TO 60
      IP3=IPT(IT0T3)
      X3=XD(IP3)
      Y3=YD(IP3)
      IF(VPDT(X2,Y2,X3,Y3,X0,Y0).LT.0.0)      GO TO 60
      IF(VPDT(X3,Y3,X1,Y1,X0,Y0).LT.0.0)      GO TO 60
      GO TO 80
C CHECKS IF ON THE SAME BORDER LINE SEGMENT.
   40 IL1=IT0/NTL
      IL2=IT0-IL1*NTL
      IL1T3=IL1*3
      IP1=IPL(IL1T3-2)
      X1=XD(IP1)
      Y1=YD(IP1)
      IP2=IPL(IL1T3-1)
      X2=XD(IP2)
      Y2=YD(IP2)
      IF(IL2.NE.IL1)      GO TO 50
      IF(SPDT(X1,Y1,X2,Y2,X0,Y0).LT.0.0)      GO TO 60
      IF(SPDT(X2,Y2,X1,Y1,X0,Y0).LT.0.0)      GO TO 60
      IF(VPDT(X1,Y1,X2,Y2,X0,Y0).GT.0.0)      GO TO 60
      GO TO 80
C CHECKS IF BETWEEN THE SAME TWO BORDER LINE SEGMENTS.
   50 IF(SPDT(X1,Y1,X2,Y2,X0,Y0).GT.0.0)      GO TO 60
      IP3=IPL(3*IL2-1)
      X3=XD(IP3)
      Y3=YD(IP3)
      IF(SPDT(X3,Y3,X2,Y2,X0,Y0).LE.0.0)      GO TO 80
C LOCATES INSIDE THE DATA AREA.
C - DETERMINES THE SECTION IN WHICH THE POINT IN QUESTION LIES.
   60 ISC=1
      IF(X0.GE.XS1)       ISC=ISC+1
      IF(X0.GE.XS2)       ISC=ISC+1
      IF(Y0.GE.YS1)       ISC=ISC+3
      IF(Y0.GE.YS2)       ISC=ISC+3
C - SEARCHES THROUGH THE TRIANGLES ASSOCIATED WITH THE SECTION.
      NTSCI=NTSC(ISC)
      IF(NTSCI.LE.0)      GO TO 70
      JIWK=-9+ISC
      DO 61  ITSC=1,NTSCI
        JIWK=JIWK+9
        IT0=IWK(JIWK)
        JWK=IT0*4
        IF(X0.LT.WK(JWK-3))    GO TO 61
        IF(X0.GT.WK(JWK-2))    GO TO 61
        IF(Y0.LT.WK(JWK-1))    GO TO 61
        IF(Y0.GT.WK(JWK))      GO TO 61
        IT0T3=IT0*3
        IP1=IPT(IT0T3-2)
        X1=XD(IP1)
        Y1=YD(IP1)
        IP2=IPT(IT0T3-1)
        X2=XD(IP2)
        Y2=YD(IP2)
        IF(VPDT(X1,Y1,X2,Y2,X0,Y0).LT.0.0)    GO TO 61
        IP3=IPT(IT0T3)
        X3=XD(IP3)
        Y3=YD(IP3)
        IF(VPDT(X2,Y2,X3,Y3,X0,Y0).LT.0.0)    GO TO 61
        IF(VPDT(X3,Y3,X1,Y1,X0,Y0).LT.0.0)    GO TO 61
        GO TO 80
   61 CONTINUE
C LOCATES OUTSIDE THE DATA AREA.
   70 DO 72  IL1=1,NL0
        IL1T3=IL1*3
        IP1=IPL(IL1T3-2)
        X1=XD(IP1)
        Y1=YD(IP1)
        IP2=IPL(IL1T3-1)
        X2=XD(IP2)
        Y2=YD(IP2)
        IF(SPDT(X2,Y2,X1,Y1,X0,Y0).LT.0.0)    GO TO 72
        IF(SPDT(X1,Y1,X2,Y2,X0,Y0).LT.0.0)    GO TO 71
        IF(VPDT(X1,Y1,X2,Y2,X0,Y0).GT.0.0)    GO TO 72
        IL2=IL1
        GO TO 75
   71   IL2=MOD(IL1,NL0)+1
        IP3=IPL(3*IL2-1)
        X3=XD(IP3)
        Y3=YD(IP3)
        IF(SPDT(X3,Y3,X2,Y2,X0,Y0).LE.0.0)    GO TO 75
   72 CONTINUE
      IT0=1
      GO TO 80
   75 IT0=IL1*NTL+IL2
C NORMAL EXIT
   80 ITI=IT0
      ITIPV=IT0
      RETURN
      END
      SUBROUTINE  IDPDRV(NDP,XD,YD,ZD,NT,IPT,PD,WK)
C THIS SUBROUTINE ESTIMATES PARTIAL DERIVATIVES OF THE FIRST AND
C SECOND ORDER AT THE DATA POINTS.
C THE INPUT PARAMETERS ARE
C     NDP = NUMBER OF DATA POINTS,
C     XD,YD,ZD = ARRAYS OF DIMENSION NDP CONTAINING THE X,
C           Y, AND Z COORDINATES OF THE DATA POINTS,
C     NT  = NUMBER OF TRIANGLES,
C     IPT = INTEGER ARRAY OF DIMENSION 3*NT CONTAINING THE
C           POINT NUMBERS OF THE VERTEXES OF THE TRIANGLES.
C THE OUTPUT PARAMETER IS
C     PD  = ARRAY OF DIMENSION 5*NDP, WHERE THE ESTIMATED
C           ZX, ZY, ZXX, ZXY, AND ZYY VALUES AT THE ITH
C           DATA POINT ARE TO BE STORED AS  THE (5*I-4)TH,
C           (5*I-3)RD, (5*I-2)ND, (5*I-1)ST AND (5*I)TH
C           ELEMENTS, RESPECTIVELY, WHERE I = 1, 2, ...,
C           NDP.
C THE OTHER PARAMETER IS
C     WK  = ARRAY OF DIMENSION NDP USED INTERNALLY AS A
C           WORK AREA.
C DECLARATION STATEMENTS
      DIMENSION XD(NDP), YD(NDP), ZD(NDP), IPT(3*NT), PD(5*NDP), WK(NDP)
      DIMENSION   IPTI(3),XV(3),YV(3),ZV(3),ZXV(3),ZYV(3),
     1            W1(3),W2(3)
      DATA  EPSLN/1.0E-6/
C PRELIMINARY PROCESSING
   10 NDP0=NDP
      NT0=NT
C CLEARS THE PD ARRAY.
   20 JPDMX=5*NDP0
      DO 21  JPD=1,JPDMX
        PD(JPD)=0.0
   21 CONTINUE
      DO 22  IDP=1,NDP
        WK(IDP)=0.0
   22 CONTINUE
C ESTIMATES ZX AND ZY.
   30 DO 34  IT=1,NT0
        JPT0=3*(IT-1)
        DO 31  IV=1,3
          JPT=JPT0+IV
          IDP=IPT(JPT)
          IPTI(IV)=IDP
          XV(IV)=XD(IDP)
          YV(IV)=YD(IDP)
          ZV(IV)=ZD(IDP)
   31   CONTINUE
        DX1=XV(2)-XV(1)
        DY1=YV(2)-YV(1)
        DZ1=ZV(2)-ZV(1)
        DX2=XV(3)-XV(1)
        DY2=YV(3)-YV(1)
        DZ2=ZV(3)-ZV(1)
        VPX=DY1*DZ2-DZ1*DY2
        VPY=DZ1*DX2-DX1*DZ2
        VPZ=DX1*DY2-DY1*DX2
        VPZMN=ABS(DX1*DX2+DY1*DY2)*EPSLN
        IF(ABS(VPZ).LE.VPZMN)     GO TO 34
        D12=SQRT((XV(2)-XV(1))**2+(YV(2)-YV(1))**2)
        D23=SQRT((XV(3)-XV(2))**2+(YV(3)-YV(2))**2)
        D31=SQRT((XV(1)-XV(3))**2+(YV(1)-YV(3))**2)
        W1(1)=1.0/(D31*D12)
        W1(2)=1.0/(D12*D23)
        W1(3)=1.0/(D23*D31)
        W2(1)=VPZ*W1(1)
        W2(2)=VPZ*W1(2)
        W2(3)=VPZ*W1(3)
   32   DO 33  IV=1,3
          IDP=IPTI(IV)
          JPD0=5*(IDP-1)
          WI=(W1(IV)**2)*W2(IV)
          PD(JPD0+1)=PD(JPD0+1)+VPX*WI
          PD(JPD0+2)=PD(JPD0+2)+VPY*WI
          WK(IDP)=WK(IDP)+VPZ*WI
   33   CONTINUE
   34 CONTINUE
      DO 36  IDP=1,NDP0
        JPD0=5*(IDP-1)
        PD(JPD0+1)=-PD(JPD0+1)/WK(IDP)
        PD(JPD0+2)=-PD(JPD0+2)/WK(IDP)
   36 CONTINUE
C ESTIMATES ZXX, ZXY, AND ZYY.
   40 DO 44  IT=1,NT0
        JPT0=3*(IT-1)
        DO 41  IV=1,3
          JPT=JPT0+IV
          IDP=IPT(JPT)
          IPTI(IV)=IDP
          XV(IV)=XD(IDP)
          YV(IV)=YD(IDP)
          JPD0=5*(IDP-1)
          ZXV(IV)=PD(JPD0+1)
          ZYV(IV)=PD(JPD0+2)
   41   CONTINUE
        DX1=XV(2)-XV(1)
        DY1=YV(2)-YV(1)
        DZX1=ZXV(2)-ZXV(1)
        DZY1=ZYV(2)-ZYV(1)
        DX2=XV(3)-XV(1)
        DY2=YV(3)-YV(1)
        DZX2=ZXV(3)-ZXV(1)
        DZY2=ZYV(3)-ZYV(1)
        VPXX=DY1*DZX2-DZX1*DY2
        VPXY=DZX1*DX2-DX1*DZX2
        VPYX=DY1*DZY2-DZY1*DY2
        VPYY=DZY1*DX2-DX1*DZY2
        VPZ=DX1*DY2-DY1*DX2
        VPZMN=ABS(DX1*DX2+DY1*DY2)*EPSLN
        IF(ABS(VPZ).LE.VPZMN)     GO TO 44
        D12=SQRT((XV(2)-XV(1))**2+(YV(2)-YV(1))**2)
        D23=SQRT((XV(3)-XV(2))**2+(YV(3)-YV(2))**2)
        D31=SQRT((XV(1)-XV(3))**2+(YV(1)-YV(3))**2)
        W1(1)=1.0/(D31*D12)
        W1(2)=1.0/(D12*D23)
        W1(3)=1.0/(D23*D31)
        W2(1)=VPZ*W1(1)
        W2(2)=VPZ*W1(2)
        W2(3)=VPZ*W1(3)
   42   DO 43  IV=1,3
          IDP=IPTI(IV)
          JPD0=5*(IDP-1)
          WI=(W1(IV)**2)*W2(IV)
          PD(JPD0+3)=PD(JPD0+3)+VPXX*WI
          PD(JPD0+4)=PD(JPD0+4)+(VPXY+VPYX)*WI
          PD(JPD0+5)=PD(JPD0+5)+VPYY*WI
   43   CONTINUE
   44 CONTINUE
      DO 46  IDP=1,NDP0
        JPD0=5*(IDP-1)
        PD(JPD0+3)=-PD(JPD0+3)/WK(IDP)
        PD(JPD0+4)=-PD(JPD0+4)/(2.0*WK(IDP))
        PD(JPD0+5)=-PD(JPD0+5)/WK(IDP)
   46 CONTINUE
      RETURN
      END
      SUBROUTINE  IDPTIP(XD,YD,ZD,NT,IPT,NL,IPL,PDD,ITI,XII,YII,
     1                   ZII)
C THIS SUBROUTINE PERFORMS PUNCTUAL INTERPOLATION OR EXTRAPOLA-
C TION, I.E., DETERMINES THE Z VALUE AT A POINT.
C THE INPUT PARAMETERS ARE
C     XD,YD,ZD = ARRAYS OF DIMENSION NDP CONTAINING THE X,
C           Y, AND Z COORDINATES OF THE DATA POINTS, WHERE
C           NDP IS THE NUMBER OF THE DATA POINTS,
C     NT  = NUMBER OF TRIANGLES,
C     IPT = INTEGER ARRAY OF DIMENSION 3*NT CONTAINING THE
C           POINT NUMBERS OF THE VERTEXES OF THE TRIANGLES,
C     NL  = NUMBER OF BORDER LINE SEGMENTS,
C     IPL = INTEGER ARRAY OF DIMENSION 3*NL CONTAINING THE
C           POINT NUMBERS OF THE END POINTS OF THE BORDER
C           LINE SEGMENTS AND THEIR RESPECTIVE TRIANGLE
C           NUMBERS,
C     PDD = ARRAY OF DIMENSION 5*NDP CONTAINING THE PARTIAL
C           DERIVATIVES AT THE DATA POINTS,
C     ITI = TRIANGLE NUMBER OF THE TRIANGLE IN WHICH LIES
C           THE POINT FOR WHICH INTERPOLATION IS TO BE
C           PERFORMED,
C     XII,YII = X AND Y COORDINATES OF THE POINT FOR WHICH
C           INTERPOLATION IS TO BE PERFORMED.
C THE OUTPUT PARAMETER IS
C     ZII = INTERPOLATED Z VALUE.
C DECLARATION STATEMENTS
      DIMENSION XD(1), YD(1), ZD(1), IPT(1), IPL(1), PDD(1)
      COMMON/IDPT/ITPV,X0,Y0,AP,BP,CP,DP,
     1            P00,P10,P20,P30,P40,P50,P01,P11,P21,P31,P41,
     2            P02,P12,P22,P32,P03,P13,P23,P04,P14,P05
      DIMENSION   X(3),Y(3),Z(3),PD(15),
     1            ZU(3),ZV(3),ZUU(3),ZUV(3),ZVV(3)
      REAL        LU,LV
      EQUIVALENCE (P5,P50)
C PRELIMINARY PROCESSING
   10 IT0=ITI
      NTL=NT+NL
      IF(IT0.LE.NTL)      GO TO 20
      IL1=IT0/NTL
      IL2=IT0-IL1*NTL
      IF(IL1.EQ.IL2)      GO TO 40
      GO TO 60
C CALCULATION OF ZII BY INTERPOLATION.
C CHECKS IF THE NECESSARY COEFFICIENTS HAVE BEEN CALCULATED.
   20 IF(IT0.EQ.ITPV)     GO TO 30
C LOADS COORDINATE AND PARTIAL DERIVATIVE VALUES AT THE
C VERTEXES.
   21 JIPT=3*(IT0-1)
      JPD=0
      DO 23  I=1,3
        JIPT=JIPT+1
        IDP=IPT(JIPT)
        X(I)=XD(IDP)
        Y(I)=YD(IDP)
        Z(I)=ZD(IDP)
        JPDD=5*(IDP-1)
        DO 22  KPD=1,5
          JPD=JPD+1
          JPDD=JPDD+1
          PD(JPD)=PDD(JPDD)
   22   CONTINUE
   23 CONTINUE
C DETERMINES THE COEFFICIENTS FOR THE COORDINATE SYSTEM
C TRANSFORMATION FROM THE X-Y SYSTEM TO THE U-V SYSTEM
C AND VICE VERSA.
   24 X0=X(1)
      Y0=Y(1)
      A=X(2)-X0
      B=X(3)-X0
      C=Y(2)-Y0
      D=Y(3)-Y0
      AD=A*D
      BC=B*C
      DLT=AD-BC
      AP= D/DLT
      BP=-B/DLT
      CP=-C/DLT
      DP= A/DLT
C CONVERTS THE PARTIAL DERIVATIVES AT THE VERTEXES OF THE
C TRIANGLE FOR THE U-V COORDINATE SYSTEM.
   25 AA=A*A
      ACT2=2.0*A*C
      CC=C*C
      AB=A*B
      ADBC=AD+BC
      CD=C*D
      BB=B*B
      BDT2=2.0*B*D
      DD=D*D
      DO 26  I=1,3
        JPD=5*I
        ZU(I)=A*PD(JPD-4)+C*PD(JPD-3)
        ZV(I)=B*PD(JPD-4)+D*PD(JPD-3)
        ZUU(I)=AA*PD(JPD-2)+ACT2*PD(JPD-1)+CC*PD(JPD)
        ZUV(I)=AB*PD(JPD-2)+ADBC*PD(JPD-1)+CD*PD(JPD)
        ZVV(I)=BB*PD(JPD-2)+BDT2*PD(JPD-1)+DD*PD(JPD)
   26 CONTINUE
C CALCULATES THE COEFFICIENTS OF THE POLYNOMIAL.
   27 P00=Z(1)
      P10=ZU(1)
      P01=ZV(1)
      P20=0.5*ZUU(1)
      P11=ZUV(1)
      P02=0.5*ZVV(1)
      H1=Z(2)-P00-P10-P20
      H2=ZU(2)-P10-ZUU(1)
      H3=ZUU(2)-ZUU(1)
      P30= 10.0*H1-4.0*H2+0.5*H3
      P40=-15.0*H1+7.0*H2    -H3
      P50=  6.0*H1-3.0*H2+0.5*H3
      H1=Z(3)-P00-P01-P02
      H2=ZV(3)-P01-ZVV(1)
      H3=ZVV(3)-ZVV(1)
      P03= 10.0*H1-4.0*H2+0.5*H3
      P04=-15.0*H1+7.0*H2    -H3
      P05=  6.0*H1-3.0*H2+0.5*H3
      LU=SQRT(AA+CC)
      LV=SQRT(BB+DD)
      THXU=ATAN2(C,A)
      THUV=ATAN2(D,B)-THXU
      CSUV=COS(THUV)
      P41=5.0*LV*CSUV/LU*P50
      P14=5.0*LU*CSUV/LV*P05
      H1=ZV(2)-P01-P11-P41
      H2=ZUV(2)-P11-4.0*P41
      P21= 3.0*H1-H2
      P31=-2.0*H1+H2
      H1=ZU(3)-P10-P11-P14
      H2=ZUV(3)-P11-4.0*P14
      P12= 3.0*H1-H2
      P13=-2.0*H1+H2
      THUS=ATAN2(D-C,B-A)-THXU
      THSV=THUV-THUS
      AA= SIN(THSV)/LU
      BB=-COS(THSV)/LU
      CC= SIN(THUS)/LV
      DD= COS(THUS)/LV
      AC=AA*CC
      AD=AA*DD
      BC=BB*CC
      G1=AA*AC*(3.0*BC+2.0*AD)
      G2=CC*AC*(3.0*AD+2.0*BC)
      H1=-AA*AA*AA*(5.0*AA*BB*P50+(4.0*BC+AD)*P41)
     1   -CC*CC*CC*(5.0*CC*DD*P05+(4.0*AD+BC)*P14)
      H2=0.5*ZVV(2)-P02-P12
      H3=0.5*ZUU(3)-P20-P21
      P22=(G1*H2+G2*H3-H1)/(G1+G2)
      P32=H2-P22
      P23=H3-P22
      ITPV=IT0
C CONVERTS XII AND YII TO U-V SYSTEM.
   30 DX=XII-X0
      DY=YII-Y0
      U=AP*DX+BP*DY
      V=CP*DX+DP*DY
C EVALUATES THE POLYNOMIAL.
   31 P0=P00+V*(P01+V*(P02+V*(P03+V*(P04+V*P05))))
      P1=P10+V*(P11+V*(P12+V*(P13+V*P14)))
      P2=P20+V*(P21+V*(P22+V*P23))
      P3=P30+V*(P31+V*P32)
      P4=P40+V*P41
      ZII=P0+U*(P1+U*(P2+U*(P3+U*(P4+U*P5))))
      RETURN
C CALCULATION OF ZII BY EXTRAPOLATION IN THE RECTANGLE.
C CHECKS IF THE NECESSARY COEFFICIENTS HAVE BEEN CALCULATED.
   40 IF(IT0.EQ.ITPV)     GO TO 50
C LOADS COORDINATE AND PARTIAL DERIVATIVE VALUES AT THE END
C POINTS OF THE BORDER LINE SEGMENT.
   41 JIPL=3*(IL1-1)
      JPD=0
      DO 43  I=1,2
        JIPL=JIPL+1
        IDP=IPL(JIPL)
        X(I)=XD(IDP)
        Y(I)=YD(IDP)
        Z(I)=ZD(IDP)
        JPDD=5*(IDP-1)
        DO 42  KPD=1,5
          JPD=JPD+1
          JPDD=JPDD+1
          PD(JPD)=PDD(JPDD)
   42   CONTINUE
   43 CONTINUE
C DETERMINES THE COEFFICIENTS FOR THE COORDINATE SYSTEM
C TRANSFORMATION FROM THE X-Y SYSTEM TO THE U-V SYSTEM
C AND VICE VERSA.
   44 X0=X(1)
      Y0=Y(1)
      A=Y(2)-Y(1)
      B=X(2)-X(1)
      C=-B
      D=A
      AD=A*D
      BC=B*C
      DLT=AD-BC
      AP= D/DLT
      BP=-B/DLT
      CP=-BP
      DP= AP
C CONVERTS THE PARTIAL DERIVATIVES AT THE END POINTS OF THE
C BORDER LINE SEGMENT FOR THE U-V COORDINATE SYSTEM.
   45 AA=A*A
      ACT2=2.0*A*C
      CC=C*C
      AB=A*B
      ADBC=AD+BC
      CD=C*D
      BB=B*B
      BDT2=2.0*B*D
      DD=D*D
      DO 46  I=1,2
        JPD=5*I
        ZU(I)=A*PD(JPD-4)+C*PD(JPD-3)
        ZV(I)=B*PD(JPD-4)+D*PD(JPD-3)
        ZUU(I)=AA*PD(JPD-2)+ACT2*PD(JPD-1)+CC*PD(JPD)
        ZUV(I)=AB*PD(JPD-2)+ADBC*PD(JPD-1)+CD*PD(JPD)
        ZVV(I)=BB*PD(JPD-2)+BDT2*PD(JPD-1)+DD*PD(JPD)
   46 CONTINUE
C CALCULATES THE COEFFICIENTS OF THE POLYNOMIAL.
   47 P00=Z(1)
      P10=ZU(1)
      P01=ZV(1)
      P20=0.5*ZUU(1)
      P11=ZUV(1)
      P02=0.5*ZVV(1)
      H1=Z(2)-P00-P01-P02
      H2=ZV(2)-P01-ZVV(1)
      H3=ZVV(2)-ZVV(1)
      P03= 10.0*H1-4.0*H2+0.5*H3
      P04=-15.0*H1+7.0*H2    -H3
      P05=  6.0*H1-3.0*H2+0.5*H3
      H1=ZU(2)-P10-P11
      H2=ZUV(2)-P11
      P12= 3.0*H1-H2
      P13=-2.0*H1+H2
      P21=0.0
      P23=-ZUU(2)+ZUU(1)
      P22=-1.5*P23
      ITPV=IT0
C CONVERTS XII AND YII TO U-V SYSTEM.
   50 DX=XII-X0
      DY=YII-Y0
      U=AP*DX+BP*DY
      V=CP*DX+DP*DY
C EVALUATES THE POLYNOMIAL.
   51 P0=P00+V*(P01+V*(P02+V*(P03+V*(P04+V*P05))))
      P1=P10+V*(P11+V*(P12+V*P13))
      P2=P20+V*(P21+V*(P22+V*P23))
      ZII=P0+U*(P1+U*P2)
      RETURN
C CALCULATION OF ZII BY EXTRAPOLATION IN THE TRIANGLE.
C CHECKS IF THE NECESSARY COEFFICIENTS HAVE BEEN CALCULATED.
   60 IF(IT0.EQ.ITPV)     GO TO 70
C LOADS COORDINATE AND PARTIAL DERIVATIVE VALUES AT THE VERTEX
C OF THE TRIANGLE.
   61 JIPL=3*IL2-2
      IDP=IPL(JIPL)
      X0=XD(IDP)
      Y0=YD(IDP)
      Z0=ZD(IDP)
      JPDD=5*(IDP-1)
      DO 62  KPD=1,5
        JPDD=JPDD+1
        PD(KPD)=PDD(JPDD)
   62 CONTINUE
C CALCULATES THE COEFFICIENTS OF THE POLYNOMIAL.
   67 P00=Z0
      P10=PD(1)
      P01=PD(2)
      P20=0.5*PD(3)
      P11=PD(4)
      P02=0.5*PD(5)
      ITPV=IT0
C CONVERTS XII AND YII TO U-V SYSTEM.
   70 U=XII-X0
      V=YII-Y0
C EVALUATES THE POLYNOMIAL.
   71 P0=P00+V*(P01+V*P02)
      P1=P10+V*P11
      ZII=P0+U*(P1+U*P20)
      RETURN
      END
      SUBROUTINE IDSFFT (MD,NDP,XD,YD,ZD,NXI,NYI,NZI,XI,YI,ZI,
     1                   IWK,WK)
C THIS SUBROUTINE CALLS THE IDGRID, IDPDRV, IDPTIP, AND IDTANG
C SUBROUTINES.
C DECLARATION STATEMENTS
      DIMENSION XD(NDP), YD(NDP),     ZD(NDP),               XI(NXI),
     1          YI(NYI), ZI(NZI,NYI), IWK(31*NDP + NXI*NYI), WK(6*NDP)
      COMMON/IDPT/ITPV,DMMY(27)
C
C  THE FOLLOWING CALL IS FOR GATHERING STATISTICS ON LIBRARY USE AT NCAR
C
C SETTING OF SOME INPUT PARAMETERS TO LOCAL VARIABLES.
C (FOR MD=1,2,3)
   10 MD0=MD
      NDP0=NDP
      NXI0=NXI
      NYI0=NYI
C ERROR CHECK.  (FOR MD=1,2,3)
   20 IF (MD0.LT.1.OR.MD0.GT.3) THEN
         CALL ULIBER (39,
     1' IDSFFT (BIVAR) - INPUT PARAMETER MD OUT OF RANGE',49)
         STOP 'ULIBER39'
      ENDIF
      IF (NDP0.LT.4) THEN
         CALL ULIBER (40,
     1' IDSFFT (BIVAR) - INPUT PARAMETER NDP OUT OF RANGE',50)
         STOP 'ULIBER40'
      ENDIF
      IF (NXI0.LT.1.OR.NYI0.LT.1) THEN
         CALL ULIBER (41,
     1' IDSFFT (BIVAR) - INPUT PARAMETER NXI OR NYI OUT OF RANGE',57)
         STOP 'ULIBER41'
      ENDIF
      IF (NXI0.GT.NZI) THEN
         CALL ULIBER (42,
     1' IDSFFT (BIVAR) - INPUT PARAMETER NZI IS LESS THAN NXI',54)
         STOP 'ULIBER42'
      ENDIF
      IF(MD0.GT.1)        GO TO 21
      IWK(1)=NDP0
      GO TO 22
   21 NDPPV=IWK(1)
      IF (NDP0.NE.NDPPV) THEN
         CALL ULIBER (43,
     1' IDSFFT (BIVAR) - MD=2 OR 3 BUT NDP WAS CHANGED SINCE LAST CALL',
     2                63)
         STOP 'ULIBER43'
      ENDIF
   22 IF(MD0.GT.2)        GO TO 23
      IWK(3)=NXI0
      IWK(4)=NYI0
      GO TO 30
   23 NXIPV=IWK(3)
      NYIPV=IWK(4)
      IF (NXI0.NE.NXIPV) THEN
         CALL ULIBER (45,
     1' IDSFFT (BIVAR) - MD=3 BUT NXI WAS CHANGED SINCE LAST CALL',
     2                58)
         STOP 'ULIBER45'
      ENDIF
      IF (NYI0.NE.NYIPV) THEN
         CALL ULIBER (46,
     1' IDSFFT (BIVAR) - MD=3 BUT NYI WAS CHANGED SINCE LAST CALL',
     2                58)
         STOP 'ULIBER46'
      ENDIF
C ALLOCATION OF STORAGE AREAS IN THE IWK ARRAY.  (FOR MD=1,2,3)
   30 JWIPT=16
      JWIWL=6*NDP0+1
      JWNGP0=JWIWL-1
      JWIPL=24*NDP0+1
      JWIWP=30*NDP0+1
      JWIGP0=31*NDP0
      JWWPD=5*NDP0+1
C TRIANGULATES THE X-Y PLANE.  (FOR MD=1)
   40 IF(MD0.GT.1)   GO TO 41
      CALL IDTANG(NDP0,XD,YD,NT,IWK(JWIPT),NL,IWK(JWIPL),
     1            IWK(JWIWL),IWK(JWIWP),WK)
      IWK(5)=NT
      IWK(6)=NL
      IF(NT.EQ.0)    RETURN
      GO TO 50
   41 NT=IWK(5)
      NL=IWK(6)
C SORTS OUTPUT GRID POINTS IN ASCENDING ORDER OF THE TRIANGLE
C NUMBER AND THE BORDER LINE SEGMENT NUMBER.  (FOR MD=1,2)
   50 IF(MD0.GT.2)   GO TO 60
      CALL IDGRID(XD,YD,NT,IWK(JWIPT),NL,IWK(JWIPL),NXI0,NYI0,
     1            XI,YI,IWK(JWNGP0+1),IWK(JWIGP0+1))
C ESTIMATES PARTIAL DERIVATIVES AT ALL DATA POINTS.
C (FOR MD=1,2,3)
   60 CALL IDPDRV(NDP0,XD,YD,ZD,NT,IWK(JWIPT),WK,WK(JWWPD))
C INTERPOLATES THE ZI VALUES.  (FOR MD=1,2,3)
   70 ITPV=0
      JIG0MX=0
      JIG1MN=NXI0*NYI0+1
      NNGP=NT+2*NL
      DO 79  JNGP=1,NNGP
        ITI=JNGP
        IF(JNGP.LE.NT)    GO TO 71
        IL1=(JNGP-NT+1)/2
        IL2=(JNGP-NT+2)/2
        IF(IL2.GT.NL)     IL2=1
        ITI=IL1*(NT+NL)+IL2
   71   JWNGP=JWNGP0+JNGP
        NGP0=IWK(JWNGP)
        IF(NGP0.EQ.0)     GO TO 76
        JIG0MN=JIG0MX+1
        JIG0MX=JIG0MX+NGP0
        DO 72  JIGP=JIG0MN,JIG0MX
          JWIGP=JWIGP0+JIGP
          IZI=IWK(JWIGP)
          IYI=(IZI-1)/NXI0+1
          IXI=IZI-NXI0*(IYI-1)
          CALL IDPTIP(XD,YD,ZD,NT,IWK(JWIPT),NL,IWK(JWIPL),WK,
     1               ITI,XI(IXI),YI(IYI),ZI(IXI,IYI))
   72   CONTINUE
   76   JWNGP=JWNGP0+2*NNGP+1-JNGP
        NGP1=IWK(JWNGP)
        IF(NGP1.EQ.0)     GO TO 79
        JIG1MX=JIG1MN-1
        JIG1MN=JIG1MN-NGP1
        DO 77  JIGP=JIG1MN,JIG1MX
          JWIGP=JWIGP0+JIGP
          IZI=IWK(JWIGP)
          IYI=(IZI-1)/NXI0+1
          IXI=IZI-NXI0*(IYI-1)
          CALL IDPTIP(XD,YD,ZD,NT,IWK(JWIPT),NL,IWK(JWIPL),WK,
     1               ITI,XI(IXI),YI(IYI),ZI(IXI,IYI))
   77   CONTINUE
   79 CONTINUE
      RETURN
      END
      SUBROUTINE  IDTANG(NDP,XD,YD,NT,IPT,NL,IPL,IWL,IWP,WK)
C THIS SUBROUTINE PERFORMS TRIANGULATION.  IT DIVIDES THE X-Y
C PLANE INTO A NUMBER OF TRIANGLES ACCORDING TO GIVEN DATA
C POINTS IN THE PLANE, DETERMINES LINE SEGMENTS THAT FORM THE
C BORDER OF DATA AREA, AND DETERMINES THE TRIANGLE NUMBERS
C CORRESPONDING TO THE BORDER LINE SEGMENTS.
C AT COMPLETION, POINT NUMBERS OF THE VERTEXES OF EACH TRIANGLE
C ARE LISTED COUNTER-CLOCKWISE.  POINT NUMBERS OF THE END POINTS
C OF EACH BORDER LINE SEGMENT ARE LISTED COUNTER-CLOCKWISE,
C LISTING ORDER OF THE LINE SEGMENTS BEING COUNTER-CLOCKWISE.
C THIS SUBROUTINE CALLS THE IDXCHG FUNCTION.
C THE INPUT PARAMETERS ARE
C     NDP = NUMBER OF DATA POINTS,
C     XD  = ARRAY OF DIMENSION NDP CONTAINING THE
C           X COORDINATES OF THE DATA POINTS,
C     YD  = ARRAY OF DIMENSION NDP CONTAINING THE
C           Y COORDINATES OF THE DATA POINTS.
C THE OUTPUT PARAMETERS ARE
C     NT  = NUMBER OF TRIANGLES,
C     IPT = INTEGER ARRAY OF DIMENSION 6*NDP-15, WHERE THE
C           POINT NUMBERS OF THE VERTEXES OF THE (IT)TH
C           TRIANGLE ARE TO BE STORED AS THE (3*IT-2)ND,
C           (3*IT-1)ST, AND (3*IT)TH ELEMENTS,
C           IT=1,2,...,NT,
C     NL  = NUMBER OF BORDER LINE SEGMENTS,
C     IPL = INTEGER ARRAY OF DIMENSION 6*NDP, WHERE THE
C           POINT NUMBERS OF THE END POINTS OF THE (IL)TH
C           BORDER LINE SEGMENT AND ITS RESPECTIVE TRIANGLE
C           NUMBER ARE TO BE STORED AS THE (3*IL-2)ND,
C           (3*IL-1)ST, AND (3*IL)TH ELEMENTS,
C           IL=1,2,..., NL.
C THE OTHER PARAMETERS ARE
C     IWL = INTEGER ARRAY OF DIMENSION 18*NDP USED
C           INTERNALLY AS A WORK AREA,
C     IWP = INTEGER ARRAY OF DIMENSION NDP USED
C           INTERNALLY AS A WORK AREA,
C     WK  = ARRAY OF DIMENSION NDP USED INTERNALLY AS A
C           WORK AREA.
C DECLARATION STATEMENTS
      DIMENSION XD(NDP),     YD(NDP),  IPT(6*NDP - 15), IPL(6*NDP),
     1          IWL(18*NDP), IWP(NDP), WK(NDP)
      DIMENSION   ITF(2)
      DATA  EPSLN/1.0E-6/, NREP/100/
C STATEMENT FUNCTIONS
      DSQF(U1,V1,U2,V2)=(U2-U1)**2+(V2-V1)**2
      SPDT(U1,V1,U2,V2,U3,V3)=(U2-U1)*(U3-U1)+(V2-V1)*(V3-V1)
      VPDT(U1,V1,U2,V2,U3,V3)=(V3-V1)*(U2-U1)-(U3-U1)*(V2-V1)
C PRELIMINARY PROCESSING
   10 NDP0=NDP
      NDPM1=NDP0-1
      IF (NDP0.LT.4) THEN
         CALL ULIBER (47,
     1' IDTANG (BIVAR) - INPUT PARAMETER NDP OUT OF RANGE',50)
         STOP 'ULIBER47'
      ENDIF
C DETERMINES THE CLOSEST PAIR OF DATA POINTS AND THEIR MIDPOINT.
   20 DSQMN=DSQF(XD(1),YD(1),XD(2),YD(2))
      IPMN1=1
      IPMN2=2
      DO 22  IP1=1,NDPM1
        X1=XD(IP1)
        Y1=YD(IP1)
        IP1P1=IP1+1
        DO 21  IP2=IP1P1,NDP0
          DSQI=DSQF(X1,Y1,XD(IP2),YD(IP2))
      IF (DSQI.EQ.0.) THEN
         CALL ULIBER (48,
     1' IDTANG (BIVAR) - TWO OF THE INPUT DATA POINTS ARE IDENTICAL',60)
         STOP 'ULIBER48'
      ENDIF
          IF(DSQI.GE.DSQMN)    GO TO 21
          DSQMN=DSQI
          IPMN1=IP1
          IPMN2=IP2
   21   CONTINUE
   22 CONTINUE
      XDMP=(XD(IPMN1)+XD(IPMN2))/2.0
      YDMP=(YD(IPMN1)+YD(IPMN2))/2.0
C SORTS THE OTHER (NDP-2) DATA POINTS IN ASCENDING ORDER OF
C DISTANCE FROM THE MIDPOINT AND STORES THE SORTED DATA POINT
C NUMBERS IN THE IWP ARRAY.
   30 JP1=2
      DO 31  IP1=1,NDP0
        IF(IP1.EQ.IPMN1.OR.IP1.EQ.IPMN2)      GO TO 31
        JP1=JP1+1
        IWP(JP1)=IP1
        WK(JP1)=DSQF(XDMP,YDMP,XD(IP1),YD(IP1))
   31 CONTINUE
      DO 33  JP1=3,NDPM1
        DSQMN=WK(JP1)
        JPMN=JP1
        DO 32  JP2=JP1,NDP0
          IF(WK(JP2).GE.DSQMN)      GO TO 32
          DSQMN=WK(JP2)
          JPMN=JP2
   32   CONTINUE
        ITS=IWP(JP1)
        IWP(JP1)=IWP(JPMN)
        IWP(JPMN)=ITS
        WK(JPMN)=WK(JP1)
   33 CONTINUE
C IF NECESSARY, MODIFIES THE ORDERING IN SUCH A WAY THAT THE
C FIRST THREE DATA POINTS ARE NOT COLLINEAR.
   35 X1=XD(IPMN1)
      Y1=YD(IPMN1)
      X2=XD(IPMN2)
      Y2=YD(IPMN2)
      DO 36  JP=3,NDP0
        IP=IWP(JP)
        SP=SPDT(XD(IP),YD(IP),X1,Y1,X2,Y2)
        VP=VPDT(XD(IP),YD(IP),X1,Y1,X2,Y2)
        IF(ABS(VP).GT.(ABS(SP)*EPSLN))   GO TO 37
   36 CONTINUE
      CALL ULIBER (49,' IDTANG (BIVAR) - ALL COLLINEAR DATA POINTS',43)
      STOP 'ULIBER49'
   37 IF(JP.EQ.3)    GO TO 40
      JPMX=JP
      DO 38  JPC=4,JPMX
        JP=JPMX+4-JPC
        IWP(JP)=IWP(JP-1)
   38 CONTINUE
      IWP(3)=IP
C FORMS THE FIRST TRIANGLE.  STORES POINT NUMBERS OF THE VER-
C TEXES OF THE TRIANGLE IN THE IPT ARRAY, AND STORES POINT NUM-
C BERS OF THE BORDER LINE SEGMENTS AND THE TRIANGLE NUMBER IN
C THE IPL ARRAY.
   40 IP1=IPMN1
      IP2=IPMN2
      IP3=IWP(3)
      IF(VPDT(XD(IP1),YD(IP1),XD(IP2),YD(IP2),XD(IP3),YD(IP3))
     1     .GE.0.0)       GO TO 41
      IP1=IPMN2
      IP2=IPMN1
   41 NT0=1
      NTT3=3
      IPT(1)=IP1
      IPT(2)=IP2
      IPT(3)=IP3
      NL0=3
      NLT3=9
      IPL(1)=IP1
      IPL(2)=IP2
      IPL(3)=1
      IPL(4)=IP2
      IPL(5)=IP3
      IPL(6)=1
      IPL(7)=IP3
      IPL(8)=IP1
      IPL(9)=1
C ADDS THE REMAINING (NDP-3) DATA POINTS, ONE BY ONE.
   50 DO 79  JP1=4,NDP0
        IP1=IWP(JP1)
        X1=XD(IP1)
        Y1=YD(IP1)
C - DETERMINES THE FIRST INVISIBLE AND VISIBLE BORDER LINE SEG-
C - MENTS, ILIV AND ILVS.
        DO 53  IL=1,NL0
          IP2=IPL(3*IL-2)
          IP3=IPL(3*IL-1)
          X2=XD(IP2)
          Y2=YD(IP2)
          X3=XD(IP3)
          Y3=YD(IP3)
          SP=SPDT(X1,Y1,X2,Y2,X3,Y3)
          VP=VPDT(X1,Y1,X2,Y2,X3,Y3)
          IF(IL.NE.1)     GO TO 51
          IXVS=0
          IF(VP.LE.(ABS(SP)*(-EPSLN)))   IXVS=1
          ILIV=1
          ILVS=1
          GO TO 53
   51     IXVSPV=IXVS
          IF(VP.GT.(ABS(SP)*(-EPSLN)))   GO TO 52
          IXVS=1
          IF(IXVSPV.EQ.1)      GO TO 53
          ILVS=IL
          IF(ILIV.NE.1)        GO TO 54
          GO TO 53
   52     IXVS=0
          IF(IXVSPV.EQ.0)      GO TO 53
          ILIV=IL
          IF(ILVS.NE.1)        GO TO 54
   53   CONTINUE
        IF(ILIV.EQ.1.AND.ILVS.EQ.1)  ILVS=NL0
   54   IF(ILVS.LT.ILIV)  ILVS=ILVS+NL0
C - SHIFTS (ROTATES) THE IPL ARRAY TO HAVE THE INVISIBLE BORDER
C - LINE SEGMENTS CONTAINED IN THE FIRST PART OF THE IPL ARRAY.
   55   IF(ILIV.EQ.1)     GO TO 60
        NLSH=ILIV-1
        NLSHT3=NLSH*3
        DO 56  JL1=1,NLSHT3
          JL2=JL1+NLT3
          IPL(JL2)=IPL(JL1)
   56   CONTINUE
        DO 57  JL1=1,NLT3
          JL2=JL1+NLSHT3
          IPL(JL1)=IPL(JL2)
   57   CONTINUE
        ILVS=ILVS-NLSH
C - ADDS TRIANGLES TO THE IPT ARRAY, UPDATES BORDER LINE
C - SEGMENTS IN THE IPL ARRAY, AND SETS FLAGS FOR THE BORDER
C - LINE SEGMENTS TO BE REEXAMINED IN THE IWL ARRAY.
   60   JWL=0
        DO 64  IL=ILVS,NL0
          ILT3=IL*3
          IPL1=IPL(ILT3-2)
          IPL2=IPL(ILT3-1)
          IT  =IPL(ILT3)
C - - ADDS A TRIANGLE TO THE IPT ARRAY.
          NT0=NT0+1
          NTT3=NTT3+3
          IPT(NTT3-2)=IPL2
          IPT(NTT3-1)=IPL1
          IPT(NTT3)  =IP1
C - - UPDATES BORDER LINE SEGMENTS IN THE IPL ARRAY.
          IF(IL.NE.ILVS)  GO TO 61
          IPL(ILT3-1)=IP1
          IPL(ILT3)  =NT0
   61     IF(IL.NE.NL0)   GO TO 62
          NLN=ILVS+1
          NLNT3=NLN*3
          IPL(NLNT3-2)=IP1
          IPL(NLNT3-1)=IPL(1)
          IPL(NLNT3)  =NT0
C - - DETERMINES THE VERTEX THAT DOES NOT LIE ON THE BORDER
C - - LINE SEGMENTS.
   62     ITT3=IT*3
          IPTI=IPT(ITT3-2)
          IF(IPTI.NE.IPL1.AND.IPTI.NE.IPL2)   GO TO 63
          IPTI=IPT(ITT3-1)
          IF(IPTI.NE.IPL1.AND.IPTI.NE.IPL2)   GO TO 63
          IPTI=IPT(ITT3)
C - - CHECKS IF THE EXCHANGE IS NECESSARY.
   63     IF(IDXCHG(XD,YD,IP1,IPTI,IPL1,IPL2).EQ.0)     GO TO 64
C - - MODIFIES THE IPT ARRAY WHEN NECESSARY.
          IPT(ITT3-2)=IPTI
          IPT(ITT3-1)=IPL1
          IPT(ITT3)  =IP1
          IPT(NTT3-1)=IPTI
          IF(IL.EQ.ILVS)  IPL(ILT3)=IT
          IF(IL.EQ.NL0.AND.IPL(3).EQ.IT)      IPL(3)=NT0
C - - SETS FLAGS IN THE IWL ARRAY.
          JWL=JWL+4
          IWL(JWL-3)=IPL1
          IWL(JWL-2)=IPTI
          IWL(JWL-1)=IPTI
          IWL(JWL)  =IPL2
   64   CONTINUE
        NL0=NLN
        NLT3=NLNT3
        NLF=JWL/2
        IF(NLF.EQ.0)      GO TO 79
C - IMPROVES TRIANGULATION.
   70   NTT3P3=NTT3+3
        DO 78  IREP=1,NREP
          DO 76  ILF=1,NLF
            IPL1=IWL(2*ILF-1)
            IPL2=IWL(2*ILF)
C - - LOCATES IN THE IPT ARRAY TWO TRIANGLES ON BOTH SIDES OF
C - - THE FLAGGED LINE SEGMENT.
            NTF=0
            DO 71  ITT3R=3,NTT3,3
              ITT3=NTT3P3-ITT3R
              IPT1=IPT(ITT3-2)
              IPT2=IPT(ITT3-1)
              IPT3=IPT(ITT3)
              IF(IPL1.NE.IPT1.AND.IPL1.NE.IPT2.AND.
     1           IPL1.NE.IPT3)      GO TO 71
              IF(IPL2.NE.IPT1.AND.IPL2.NE.IPT2.AND.
     1           IPL2.NE.IPT3)      GO TO 71
              NTF=NTF+1
              ITF(NTF)=ITT3/3
              IF(NTF.EQ.2)     GO TO 72
   71       CONTINUE
            IF(NTF.LT.2)       GO TO 76
C - - DETERMINES THE VERTEXES OF THE TRIANGLES THAT DO NOT LIE
C - - ON THE LINE SEGMENT.
   72       IT1T3=ITF(1)*3
            IPTI1=IPT(IT1T3-2)
            IF(IPTI1.NE.IPL1.AND.IPTI1.NE.IPL2)    GO TO 73
            IPTI1=IPT(IT1T3-1)
            IF(IPTI1.NE.IPL1.AND.IPTI1.NE.IPL2)    GO TO 73
            IPTI1=IPT(IT1T3)
   73       IT2T3=ITF(2)*3
            IPTI2=IPT(IT2T3-2)
            IF(IPTI2.NE.IPL1.AND.IPTI2.NE.IPL2)    GO TO 74
            IPTI2=IPT(IT2T3-1)
            IF(IPTI2.NE.IPL1.AND.IPTI2.NE.IPL2)    GO TO 74
            IPTI2=IPT(IT2T3)
C - - CHECKS IF THE EXCHANGE IS NECESSARY.
   74       IF(IDXCHG(XD,YD,IPTI1,IPTI2,IPL1,IPL2).EQ.0)
     1         GO TO 76
C - - MODIFIES THE IPT ARRAY WHEN NECESSARY.
            IPT(IT1T3-2)=IPTI1
            IPT(IT1T3-1)=IPTI2
            IPT(IT1T3)  =IPL1
            IPT(IT2T3-2)=IPTI2
            IPT(IT2T3-1)=IPTI1
            IPT(IT2T3)  =IPL2
C - - SETS NEW FLAGS.
            JWL=JWL+8
            IWL(JWL-7)=IPL1
            IWL(JWL-6)=IPTI1
            IWL(JWL-5)=IPTI1
            IWL(JWL-4)=IPL2
            IWL(JWL-3)=IPL2
            IWL(JWL-2)=IPTI2
            IWL(JWL-1)=IPTI2
            IWL(JWL)  =IPL1
            DO 75  JLT3=3,NLT3,3
              IPLJ1=IPL(JLT3-2)
              IPLJ2=IPL(JLT3-1)
              IF((IPLJ1.EQ.IPL1.AND.IPLJ2.EQ.IPTI2).OR.
     1           (IPLJ2.EQ.IPL1.AND.IPLJ1.EQ.IPTI2))
     2                         IPL(JLT3)=ITF(1)
              IF((IPLJ1.EQ.IPL2.AND.IPLJ2.EQ.IPTI1).OR.
     1           (IPLJ2.EQ.IPL2.AND.IPLJ1.EQ.IPTI1))
     2                         IPL(JLT3)=ITF(2)
   75       CONTINUE
   76     CONTINUE
          NLFC=NLF
          NLF=JWL/2
          IF(NLF.EQ.NLFC)      GO TO 79
C - - RESETS THE IWL ARRAY FOR THE NEXT ROUND.
          JWL1MN=2*NLFC+1
          NLFT2=NLF*2
          DO 77  JWL1=JWL1MN,NLFT2
            JWL=JWL1+1-JWL1MN
            IWL(JWL)=IWL(JWL1)
   77     CONTINUE
          NLF=JWL/2
   78   CONTINUE
   79 CONTINUE
C REARRANGES THE IPT ARRAY SO THAT THE VERTEXES OF EACH TRIANGLE
C ARE LISTED COUNTER-CLOCKWISE.
   80 DO 81  ITT3=3,NTT3,3
        IP1=IPT(ITT3-2)
        IP2=IPT(ITT3-1)
        IP3=IPT(ITT3)
        IF(VPDT(XD(IP1),YD(IP1),XD(IP2),YD(IP2),XD(IP3),YD(IP3))
     1       .GE.0.0)     GO TO 81
        IPT(ITT3-2)=IP2
        IPT(ITT3-1)=IP1
   81 CONTINUE
      NT=NT0
      NL=NL0
      RETURN
      END
      FUNCTION  IDXCHG(X,Y,I1,I2,I3,I4)
C THIS FUNCTION DETERMINES WHETHER OR NOT THE EXCHANGE OF TWO
C TRIANGLES IS NECESSARY ON THE BASIS OF MAX-MIN-ANGLE CRITERION
C BY C. L. LAWSON.
C THE INPUT PARAMETERS ARE
C     X,Y = ARRAYS CONTAINING THE COORDINATES OF THE DATA
C           POINTS,
C     I1,I2,I3,I4 = POINT NUMBERS OF FOUR POINTS P1, P2,
C           P3, AND P4 THAT FORM A QUADRILATERAL WITH P3
C           AND P4 CONNECTED DIAGONALLY.
C THIS FUNCTION RETURNS AN INTEGER VALUE 1 (ONE) WHEN AN EX-
C CHANGE IS NECESSARY, AND 0 (ZERO) OTHERWISE.
C DECLARATION STATEMENTS
      DIMENSION X(1), Y(1)
      EQUIVALENCE (C2SQ,C1SQ),(A3SQ,B2SQ),(B3SQ,A1SQ),
     1            (A4SQ,B1SQ),(B4SQ,A2SQ),(C4SQ,C3SQ)
      DATA  EPSLN/1.0E-6/
C PRELIMINARY PROCESSING
   10 X1=X(I1)
      Y1=Y(I1)
      X2=X(I2)
      Y2=Y(I2)
      X3=X(I3)
      Y3=Y(I3)
      X4=X(I4)
      Y4=Y(I4)
C CALCULATION
   20 IDX=0
      U3=(Y2-Y3)*(X1-X3)-(X2-X3)*(Y1-Y3)
      U4=(Y1-Y4)*(X2-X4)-(X1-X4)*(Y2-Y4)
      IF(U3*U4.LE.0.0)    GO TO 30
      U1=(Y3-Y1)*(X4-X1)-(X3-X1)*(Y4-Y1)
      U2=(Y4-Y2)*(X3-X2)-(X4-X2)*(Y3-Y2)
      A1SQ=(X1-X3)**2+(Y1-Y3)**2
      B1SQ=(X4-X1)**2+(Y4-Y1)**2
      C1SQ=(X3-X4)**2+(Y3-Y4)**2
      A2SQ=(X2-X4)**2+(Y2-Y4)**2
      B2SQ=(X3-X2)**2+(Y3-Y2)**2
      C3SQ=(X2-X1)**2+(Y2-Y1)**2
      S1SQ=U1*U1/(C1SQ*AMAX1(A1SQ,B1SQ))
      S2SQ=U2*U2/(C2SQ*AMAX1(A2SQ,B2SQ))
      S3SQ=U3*U3/(C3SQ*AMAX1(A3SQ,B3SQ))
      S4SQ=U4*U4/(C4SQ*AMAX1(A4SQ,B4SQ))
      IF((AMIN1(S3SQ,S4SQ)-AMIN1(S1SQ,S2SQ)).GT.EPSLN)
     1  IDX=1
   30 IDXCHG=IDX
      RETURN
      END
      SUBROUTINE ULIBER (IERR,MESS,LMESS)
C SUBROUTINE ULIBER (IERR,MESS,LMESS)
C
C PURPOSE                TO PRINT AN ERROR NUMBER AND AN ERROR MESSAGE
C                        OR JUST AN ERROR MESSAGE.
C
C USAGE                  CALL ULIBER (IERR,MESS,LMESS)
C
C ARGUMENTS
C ON INPUT               IERR
C                          THE ERROR NUMBER (PRINTED ONLY IF NON-ZERO).
C
C                        MESS
C                          MESSAGE TO BE PRINTED.
C
C                        LMESS
C                          NUMBER OF CHARACTERS IN MESS (.LE. 130).
C
C ARGUMENTS
C ON OUTPUT              NONE
C
C I/O                    THE MESSAGE IS WRITEN TO UNIT 101.
C ******************************************************************
C
      REAL MESS(1)
C
      IF (IERR.NE.0) WRITE (101,1001) IERR
      NWORDS=(LMESS+7)/8
      WRITE (101,1002) (MESS(I),I=1,NWORDS)
      RETURN
C
 1001 FORMAT (6H0IERR=,I5)
 1002 FORMAT (16A8,A2)
C
      END