1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
|
c ------------------------------------------------------------------
c
c driver for interpolation program
c
c anselmo@thermsa.eng.sunysb.edu
c
c modified to produce plotmtv-compatible data
c
program test
parameter(nmax=3000)
parameter(nmax_out=200)
dimension xd(nmax),yd(nmax),zd(nmax)
dimension xi(nmax_out),yi(nmax_out)
dimension zi(nmax_out,nmax_out)
dimension iwk(31*nmax+nmax*nmax)
dimension wk(6*nmax)
character *80 infile
character *80 outfile
write(*,*)'conversion program - random to uniform grid for CONTOUR'
write(*,*)'input file:'
read(*,999) infile
write(*,*)'output file:'
read(*,999) outfile
999 format(a80)
c open files
open(unit=8,file=infile)
open(unit=9,file=outfile)
c read data, calculate maximum and minimum
i=1
xmax=-1e10
xmin=1e10
ymax=xmax
ymin=xmin
100 continue
read(8,*,end=200) xd(i),yd(i),zd(i)
if(xd(i).gt.xmax) xmax=xd(i)
if(xd(i).lt.xmin) xmin=xd(i)
if(yd(i).gt.ymax) ymax=yd(i)
if(yd(i).lt.ymin) ymin=yd(i)
i=i+1
goto 100
200 continue
close(unit=8)
npts=i-1
c spit out data
c do 300 i=1,npts
c write(*,*) i,xd(i),yd(i),zd(i)
c300 continue
write(*,*) ' '
write(*,*) 'npts = ',npts
write(*,*) 'xmax = ',xmax
write(*,*) 'xmin = ',xmin
write(*,*) 'ymax = ',ymax
write(*,*) 'ymin = ',ymin
dx=xmax-xmin
dy=ymax-ymin
write(*,*)'number of uniform grids in the x direction:'
read(*,*) nxi
write(*,*)'number of uniform grids in the y direction:'
read(*,*) nyi
c number of uniform grids in the x and y
c nxi=10
c nyi=15
c create the grid values
do 400 i=1,nxi
frac=float(i-1)/float(nxi-1)
xi(i)=xmin+frac*dx
400 continue
do 500 i=1,nyi
frac=float(i-1)/float(nyi-1)
yi(i)=ymin+frac*dy
500 continue
call IDSFFT (1,NPTS,XD,YD,ZD,NXI,NYI,NMAX_OUT,XI,YI,ZI,IWK,WK)
c for simple x-y-z dump
c do 600 i=1,nxi
c do 600 j=1,nyi
c write(9,*) xi(i),yi(j),zi(i,j)
c600 continue
c for CONTOUR-MTV format
write(9,*) '$ DATA=CONTOUR'
write(9,*) '% xmin=',xmin,' xmax=',xmax
write(9,*) '% ymin=',ymin,' ymax=',ymax
write(9,*) '% nx=',nxi,' ny=',nyi
do 600 j=1,nyi
write(9,*) (zi(i,j),i=1,nxi)
600 continue
write(9,*) '$END'
close(unit=9)
stop
end
c ------------------------------------------------------------------
C
C PACKAGE BIVAR NOTE: DOCUMENTATION FOR INDIVIDUAL ROUTINES
C FOLLOWS THE GENERAL PACKAGE INFORMATION.
C
C LATEST REVISION JANUARY, 1985
C
C PURPOSE TO PROVIDE BIVARIATE INTERPOLATION AND SMOOTH
C SURFACE FITTING FOR VALUES GIVEN AT IRREGULARLY
C DISTRIBUTED POINTS.
C
C THE RESULTING INTERPOLATING FUNCTION AND
C ITS FIRST-ORDER PARTIAL DERIVATIVES ARE
C CONTINUOUS.
C
C THE METHOD EMPLOYED IS LOCAL, I.E. A CHANGE
C IN THE DATA IN ONE AREA OF THE PLANE DOES NOT
C AFFECT THE INTERPOLATING FUNCTION EXCEPT IN
C THAT LOCAL AREA. THIS IS ADVANTAGEOUS OVER
C GLOBAL INTERPOLATION METHODS.
C
C ALSO, THE METHOD GIVES EXACT RESULTS WHEN ALL
C POINTS LIE IN A PLANE. THIS IS ADVANTAGEOUS
C OVER OTHER METHODS SUCH AS TWO-DIMENSIONAL
C FOURIER SERIES INTERPOLATION.
C
C USAGE THIS PACKAGE CONTAINS TWO USER ENTRIES,
C IDBVIP AND IDSFFT, BOTH REQUIRING INPUT
C DATA TO BE GIVEN AT POINTS
C ( X(I) , Y(I) ), I=1,...,N.
C
C IF THE USER DESIRES THE INTERPOLATED DATA
C TO BE OUTPUT AT GRID POINTS, I.E. AT POINTS
C ( XI(I) , YI(J) ), I=1,...,NX, J=1,...,NYI,
C ROUTINE IDSFFT SHOULD BE USED. THIS IS
C USEFUL FOR GENERATING AN INTERPOLATING
C SURFACE.
C
C THE OTHER USER ENTRY POINT, IDBVIP, WILL
C PRODUCE INTERPOLATED VALUES AT POINTS
C ( XI(I) , YI(I) ), I=1,...,NIP. THIS IS
C USEFUL FOR FILLING IN MISSING DATA POINTS
C ON A GRID.
C
C I/O NONE, EXCEPT ERROR MESSAGES PRINTED VIA
C ROUTINE ULIBER.
C
C PRECISION SINGLE
C
C REQUIRED LIBRARY ULIBER ON ULIB, WHICH IS AUTOMATICALLY
C FILES LOADED ON NCAR'S CRAY MACHINES.
C
C LANGUAGE FORTRAN
C
C HISTORY THE ORIGINAL VERSION OF BIVAR WAS WRITTEN BY
C HIROSHI AKIMA IN AUGUST 1975 AND REWRITTEN BY
C HIM IN LATE 1976. IT WAS INCORPORATED INTO
C NCAR'S PUBLIC SOFTWARE LIBRARIES IN JANUARY
C 1977. IN AUGUST 1984 A NEW VERSION OF BIVAR,
C INCORPORATING CHANGES DESCRIBED IN THE ROCKY
C MOUNTAIN JOURNAL OF MATHEMATICS ARTICLE CITED
C BELOW, WAS OBTAINED FROM DR. AKIMA BY MICHAEL
C PERNICE OF NCAR'S SCIENTIFIC COMPUTING
C DIVISION, WHO EVALUATED IT AND MADE IT
C AVAILABLE IN FEBRUARY, 1985.
C
C PORTABILITY FORTRAN 66
C
C ACCURACY ACCURATE TO MACHINE PRECISION ON THE INPUT
C DATA POINTS. ACCURACY AT OTHER POINTS
C GREATLY DEPENDS ON THE INPUT DATA.
C
C REFERENCES THE ORIGINAL METHOD IS DESCRIBED IN
C
C AKIMA, HIROSHI, 1978: A METHOD OF BIVARIATE
C INTERPOLATION AND SMOOTH SURFACE FITTING
C FOR VALUES GIVEN AT IRREGULARLY
C DISTRIBUTED POINTS,
C ACM-TOMS, VOL. 4, NO. 2, JUNE 1978.
C
C AN IMPROVEMENT TO THE ORIGINAL METHOD
C WAS PRESENTED IN
C
C AKIMA, HIROSHI, 1984: ON ESTIMATING PARTIAL
C DERIVATIVES FOR BIVARIATE INTERPOLATION
C OF SCATTERED DATA,
C ROCKY MOUNTAIN JOURNAL OF MATHEMATICS,
C VOL. 14, NO. 1, WINTER 1984.
C
C METHOD THE X-Y PLANE IS DIVIDED INTO TRIANGULAR
C CELLS, EACH CELL HAVING PROJECTIONS OF THREE
C DATA POINTS IN THE PLANE AS ITS VERTICES, AND
C A BIVARIATE QUINTIC POLYNOMIAL IN X AND Y IS
C FITTED TO EACH TRIANGULAR CELL.
C
C THE COEFFICIENTS IN THE FITTED QUINTIC
C POLYNOMIALS ARE DETERMINED BY CONTINUITY
C REQUIREMENTS AND BY ESTIMATES OF PARTIAL
C DERIVATIVES AT THE VERTICES AND ALONG THE
C EDGES OF THE TRIANGLES. THE METHOD DESCRIBED
C IN THE ROCKY MOUNTAIN JOURNAL REFERENCE
C GUARANTEES THAT THE GENERATED SURFACE
C DEPENDS CONTINUOUSLY ON THE TRIANGULATION.
C
C THE RESULTING INTERPOLATING FUNCTION IS
C INVARIANT UNDER THE FOLLOWING TYPES OF LINEAR
C COORDINATE TRANSFORMATIONS:
C 1) A ROTATION OF X-Y COORDINATE SYSTEM
C 2) LINEAR SCALE TRANSFORMATION OF Z-AXIS
C 3) TILTING OF THE X-Y PLANE, I.E. NEW
C COORDINATES (U,V,W) GIVEN BY
C U = X
C V = Y
C W = Z + A*X + B*Y
C WHERE A, B ARE ARBITRARY CONSTANTS.
C
C COMPLETE DETAILS OF THE METHOD ARE GIVEN
C IN THE REFERENCE PUBLICATIONS.
C
C ********************************************************************
C
C INDIVIDUAL USER ENTRY POINT DOCUMENTATION FOLLOWS.
C
C ********************************************************************
C
C SUBROUTINE IDBVIP (MD,NDP,XD,YD,ZD,NIP,XI,YI,ZI,IWK,WK)
C
C DIMENSION OF XD(NDP), YD(NDP), ZD(NDP), XI(NIP), YI(NIP)
C ARGUMENTS ZI(NIP), IWK(31*NDP+NIP), WK(8*NDP)
C
C PURPOSE TO PERFORM BIVARIATE INTERPOLATION WHEN THE
C PROJECTIONS OF THE DATA POINTS IN THE X-Y
C PLANE ARE IRREGULARLY DISTRIBUTED.
C
C USAGE CALL IDBVIP (MD,NDP,XD,YD,ZD,NIP,XI,YI,ZI,
C IWK,WK)
C
C ARGUMENTS
C
C ON INPUT MD
C MODE OF COMPUTATION (MUST BE 1, 2, OR 3,
C ELSE AN ERROR RETURN OCCURS.)
C = 1 IF THIS IS THE FIRST CALL TO THIS
C SUBROUTINE, OR IF THE VALUE OF NDP
C HAS BEEN CHANGED FROM THE PREVIOUS
C CALL, OR IF THE CONTENTS OF THE XD
C OR YD ARRAYS HAVE BEEN CHANGED FROM
C THE PREVIOUS CALL.
C = 2 IF THE VALUES OF NDP AND THE XD AND
C YD ARRAYS ARE UNCHANGED FROM THE
C PREVIOUS CALL, BUT NEW VALUES FOR
C XI, YI ARE BEING USED. IF MD = 2
C AND NDP HAS BEEN CHANGED SINCE THE
C PREVIOUS CALL TO IDBVIP, AN ERROR
C RETURN OCCURS.
C = 3 IF THE VALUES OF NDP, NIP, XD,
C YD, XI, YI ARE UNCHANGED FROM THE
C PREVIOUS CALL, I.E. IF THE ONLY
C CHANGE ON INPUT TO IDBVIP IS IN THE
C ZD ARRAY. IF MD=3 AND NDP OR NIP HAS
C BEEN CHANGED SINCE THE PREVIOUS CALL
C TO IDBVIP, AN ERROR RETURN OCCURS.
C
C BETWEEN THE CALL WITH MD=2 OR MD=3 AND
C THE PRECEDING CALL, THE IWK AND WK WORK
C ARRAYS SHOULD NOT BE DISTURBED.
C
C NDP
C NUMBER OF DATA POINTS (MUST BE 4 OR
C GREATER, ELSE AN ERROR RETURN OCCURS).
C
C XD
C ARRAY OF DIMENSION NDP CONTAINING THE
C X COORDINATES OF THE DATA POINTS.
C
C YD
C ARRAY OF DIMENSION NDP CONTAINING THE
C Y COORDINATES OF THE DATA POINTS.
C
C ZD
C ARRAY OF DIMENSION NDP CONTAINING THE
C Z COORDINATES OF THE DATA POINTS.
C
C NIP
C THE NUMBER OF OUTPUT POINTS AT WHICH
C INTERPOLATION IS TO BE PERFORMED (MUST BE
C 1 OR GREATER, ELSE AN ERROR RETURN OCCURS).
C
C XI
C ARRAY OF DIMENSION NIP CONTAINING THE X
C COORDINATES OF THE OUTPUT POINTS.
C
C YI
C ARRAY OF DIMENSION NIP CONTAINING THE Y
C COORDINATES OF THE OUTPUT POINTS.
C
C IWK
C INTEGER WORK ARRAY OF DIMENSION AT LEAST
C 31*NDP + NIP
C
C WK
C REAL WORK ARRAY OF DIMENSION AT LEAST 8*NDP
C
C ON OUTPUT ZI
C ARRAY OF DIMENSION NIP WHERE INTERPOLATED
C Z VALUES ARE TO BE STORED.
C
C SPECIAL CONDITIONS INADEQUATE WORK SPACE IWK AND WK MAY
C MAY CAUSE INCORRECT RESULTS.
C
C THE DATA POINTS MUST BE DISTINCT AND THEIR
C PROJECTIONS IN THE X-Y PLANE MUST NOT BE
C COLLINEAR, OTHERWISE AN ERROR RETURN OCCURS.
C ********************************************************************
C
C SUBROUTINE IDSFFT (MD,NDP,XD,YD,ZD,NXI,NYI,NZI,XI,YI,ZI,IWK,WK)
C
C DIMENSION OF XD(NDP), YD(NDP), ZD(NDP), XI(NXI),
C ARGUMENTS YI(NYI), ZI(NZI,NYI), WK(6*NDP),
C IWK(31*NDP + NXI*NYI)
C
C PURPOSE THIS SUBROUTINE PERFORMS SMOOTH SURFACE
C FITTING WHEN THE PROJECTIONS OF THE DATA
C POINTS IN THE X-Y PLANE ARE IRREGULARLY
C DISTRIBUTED IN THE PLANE.
C
C USAGE CALL IDSFFT (MD,NDP,XD,YD,ZD,NXI,NYI,NZI,
C XI,YI,ZI,IWK,WK)
C
C ARGUMENTS
C
C ON INPUT MD
C MODE OF COMPUTATION (MUST BE 1, 2, OR 3,
C ELSE AN ERROR RETURN WILL OCCUR).
C = 1 IF THIS IS THE FIRST CALL TO THIS
C SUBROUTINE, OR IF THE VALUE OF NDP
C HAS BEEN CHANGED FROM THE PREVIOUS
C CALL, OR IF THE CONTENTS OF THE XD
C OR YD ARRAYS HAVE BEEN CHANGED FROM
C THE PREVIOUS CALL.
C = 2 IF THE VALUES OF NDP AND THE XD,
C YD ARRAYS ARE UNCHANGED FROM THE
C PREVIOUS CALL, BUT NEW VALUES FOR
C XI, YI ARE BEING USED. IF MD = 2
C AND NDP HAS BEEN CHANGED SINCE THE
C PREVIOUS CALL TO IDSFFT, AN ERROR
C RETURN OCCURS.
C = 3 IF THE VALUES OF NDP, NXI, NYI, XD,
C YD, XI, YI ARE UNCHANGED FROM THE
C PREVIOUS CALL, I.E. IF THE ONLY CHANGE
C ON INPUT TO IDSFFT IS IN THE ZD ARRAY.
C IF MD = 3 AND NDP, NXI OR NYI HAS BEEN
C CHANGED SINCE THE PREVIOUS CALL TO
C IDSFFT, AN ERROR RETURN OCCURS.
C
C BETWEEN THE CALL WITH MD=2 OR MD=3 AND
C THE PRECEDING CALL, THE IWK AND WK WORK
C ARRAYS SHOULD NOT BE DISTURBED.
C
C NDP
C NUMBER OF DATA POINTS (MUST BE 4 OR
C GREATER, ELSE AN ERROR RETURN WILL OCCUR).
C
C XD
C ARRAY OF DIMENSION NDP CONTAINING THE X
C COORDINATES OF THE DATA POINTS.
C
C YD
C ARRAY OF DIMENSION NDP CONTAINING THE Y
C COORDINATES OF THE DATA POINTS.
C
C ZD
C ARRAY OF DIMENSION NDP CONTAINING THE Z
C COORDINATES OF THE DATA POINTS.
C
C NXI
C NUMBER OF OUTPUT GRID POINTS IN THE X-
C DIRECTION (MUST BE 1 OR GREATER, ELSE
C AN ERROR RETURN WILL OCCUR).
C
C NYI
C NUMBER OF OUTPUT GRID POINTS IN THE Y-
C DIRECTION (MUST BE 1 OR GREATER, ELSE
C AN ERROR RETURN WILL OCCUR).
C
C NZI
C FIRST DIMENSION OF ZI AS DECLARED IN THE
C CALLING PROGRAM. NZI MUST BE GREATER THAN
C OR EQUAL TO NXI, ELSE AN ERROR RETURN WILL
C OCCUR.
C
C XI
C ARRAY OF DIMENSION NXI CONTAINING THE
C X COORDINATES OF THE OUTPUT GRID POINTS.
C
C YI
C ARRAY OF DIMENSION NYI CONTAINING THE
C Y COORDINATES OF THE OUTPUT GRID POINTS.
C
C IWK
C INTEGER WORK ARRAY OF DIMENSION AT
C LEAST 31*NDP + NXI*NYI
C
C WK
C REAL WORK ARRAY OF DIMENSION AT LEAST 6*NDP
C
C ON OUTPUT ZI
C REAL, TWO-DIMENSIONAL ARRAY OF DIMENSION
C (NZI,NYI), STORING THE INTERPOLATED Z
C VALUES AT THE OUTPUT GRID POINTS.
C
C SPECIAL CONDITIONS INADEQUATE WORK SPACE IWK AND WK MAY
C MAY CAUSE INCORRECT RESULTS.
C
C THE DATA POINTS MUST BE DISTINCT AND THEIR
C PROJECTIONS IN THE X-Y PLANE MUST NOT BE
C COLLINEAR, OTHERWISE AN ERROR RETURN OCCURS.
C ********************************************************************
SUBROUTINE IDBVIP(MD,NDP,XD,YD,ZD,NIP,XI,YI,ZI,
1 IWK,WK)
C THIS SUBROUTINE CALLS THE IDLCTN, IDPDRV, IDPTIP, AND IDTANG
C SUBROUTINES.
C DECLARATION STATEMENTS
DIMENSION XD(NDP), YD(NDP), ZD(NDP), XI(NIP),
1 YI(NIP), ZI(NIP), IWK(31*NDP + NIP), WK(8*NDP)
COMMON/IDLC/ITIPV,DMMY1(13)
COMMON/IDPT/ITPV,DMMY(27)
C
C THE FOLLOWING CALL IS FOR GATHERING STATISTICS ON LIBRARY USE AT NCAR
C
C SETTING OF SOME INPUT PARAMETERS TO LOCAL VARIABLES.
C (FOR MD=1,2,3)
10 MD0=MD
NDP0=NDP
NIP0=NIP
C ERROR CHECK. (FOR MD=1,2,3)
20 IF (MD0.LT.1.OR.MD0.GT.3) THEN
CALL ULIBER (32,
1' IDBVIP (BIVAR) - INPUT PARAMETER MD OUT OF RANGE',49)
STOP 'ULIBER32'
ENDIF
IF (NDP0.LT.4) THEN
CALL ULIBER (33,
1' IDBVIP (BIVAR) - INPUT PARAMETER NDP OUT OF RANGE',50)
STOP 'ULIBER33'
ENDIF
IF (NIP0.LT.1) THEN
CALL ULIBER (34,
1' IDBVIP (BIVAR) - INPUT PARAMETER NIP OUT OF RANGE',50)
STOP 'ULIBER34'
ENDIF
IF(MD0.GT.1) GO TO 21
IWK(1)=NDP0
GO TO 22
21 NDPPV=IWK(1)
IF (NDP0.NE.NDPPV) THEN
CALL ULIBER (50,
1' IDBVIP (BIVAR) - MD=2 OR 3 BUT NDP WAS CHANGED SINCE LAST CALL',
2 63)
STOP 'ULIBER50'
ENDIF
22 IF(MD0.GT.2) GO TO 23
IWK(3)=NIP
GO TO 30
23 NIPPV=IWK(3)
IF (NIP0.LT.NIPPV) THEN
CALL ULIBER (51,
1' IDBVIP (BIVAR) - MD=3 BUT NIP WAS CHANGED SINCE LAST CALL',
2 58)
STOP 'ULIBER51'
ENDIF
C ALLOCATION OF STORAGE AREAS IN THE IWK ARRAY. (FOR MD=1,2,3)
30 JWIPT=16
JWIWL=6*NDP0+1
JWIWK=JWIWL
JWIPL=24*NDP0+1
JWIWP=30*NDP0+1
JWIT0=31*NDP0
JWWPD=5*NDP0+1
C TRIANGULATES THE X-Y PLANE. (FOR MD=1)
40 IF(MD0.GT.1) GO TO 41
CALL IDTANG(NDP0,XD,YD,NT,IWK(JWIPT),NL,IWK(JWIPL),
1 IWK(JWIWL),IWK(JWIWP),WK)
IWK(5)=NT
IWK(6)=NL
IF(NT.EQ.0) RETURN
GO TO 50
41 NT=IWK(5)
NL=IWK(6)
C LOCATES ALL POINTS AT WHICH INTERPOLATION IS TO BE PERFORMED.
C (FOR MD=1,2)
50 IF(MD0.GT.2) GO TO 60
ITIPV=0
JWIT=JWIT0
DO 51 IIP=1,NIP0
JWIT=JWIT+1
CALL IDLCTN(NDP0,XD,YD,NT,IWK(JWIPT),NL,IWK(JWIPL),
1 XI(IIP),YI(IIP),IWK(JWIT),IWK(JWIWK),WK)
51 CONTINUE
C ESTIMATES PARTIAL DERIVATIVES AT ALL DATA POINTS.
C (FOR MD=1,2,3)
60 CALL IDPDRV(NDP0,XD,YD,ZD,NT,IWK(JWIPT),WK,WK(JWWPD))
C INTERPOLATES THE ZI VALUES. (FOR MD=1,2,3)
70 ITPV=0
JWIT=JWIT0
DO 71 IIP=1,NIP0
JWIT=JWIT+1
CALL IDPTIP(XD,YD,ZD,NT,IWK(JWIPT),NL,IWK(JWIPL),WK,
1 IWK(JWIT),XI(IIP),YI(IIP),ZI(IIP))
71 CONTINUE
RETURN
END
SUBROUTINE IDGRID(XD,YD,NT,IPT,NL,IPL,NXI,NYI,XI,YI,
1 NGP,IGP)
C THIS SUBROUTINE ORGANIZES GRID POINTS FOR SURFACE FITTING BY
C SORTING THEM IN ASCENDING ORDER OF TRIANGLE NUMBERS AND OF THE
C BORDER LINE SEGMENT NUMBER.
C THE INPUT PARAMETERS ARE
C XD,YD = ARRAYS OF DIMENSION NDP CONTAINING THE X AND Y
C COORDINATES OF THE DATA POINTS, WHERE NDP IS THE
C NUMBER OF THE DATA POINTS,
C NT = NUMBER OF TRIANGLES,
C IPT = INTEGER ARRAY OF DIMENSION 3*NT CONTAINING THE
C POINT NUMBERS OF THE VERTEXES OF THE TRIANGLES,
C NL = NUMBER OF BORDER LINE SEGMENTS,
C IPL = INTEGER ARRAY OF DIMENSION 3*NL CONTAINING THE
C POINT NUMBERS OF THE END POINTS OF THE BORDER
C LINE SEGMENTS AND THEIR RESPECTIVE TRIANGLE
C NUMBERS,
C NXI = NUMBER OF GRID POINTS IN THE X COORDINATE,
C NYI = NUMBER OF GRID POINTS IN THE Y COORDINATE,
C XI,YI = ARRAYS OF DIMENSION NXI AND NYI CONTAINING
C THE X AND Y COORDINATES OF THE GRID POINTS,
C RESPECTIVELY.
C THE OUTPUT PARAMETERS ARE
C NGP = INTEGER ARRAY OF DIMENSION 2*(NT+2*NL) WHERE THE
C NUMBER OF GRID POINTS THAT BELONG TO EACH OF THE
C TRIANGLES OR OF THE BORDER LINE SEGMENTS ARE TO
C BE STORED,
C IGP = INTEGER ARRAY OF DIMENSION NXI*NYI WHERE THE
C GRID POINT NUMBERS ARE TO BE STORED IN ASCENDING
C ORDER OF THE TRIANGLE NUMBER AND THE BORDER LINE
C SEGMENT NUMBER.
C DECLARATION STATEMENTS
DIMENSION XD(1), YD(1), IPT(1), IPL(1), XI(1), YI(1), NGP(1),
1 IGP(1)
C STATEMENT FUNCTIONS
SPDT(U1,V1,U2,V2,U3,V3)=(U1-U2)*(U3-U2)+(V1-V2)*(V3-V2)
VPDT(U1,V1,U2,V2,U3,V3)=(U1-U3)*(V2-V3)-(V1-V3)*(U2-U3)
C PRELIMINARY PROCESSING
10 NT0=NT
NL0=NL
NXI0=NXI
NYI0=NYI
NXINYI=NXI0*NYI0
XIMN=AMIN1(XI(1),XI(NXI0))
XIMX=AMAX1(XI(1),XI(NXI0))
YIMN=AMIN1(YI(1),YI(NYI0))
YIMX=AMAX1(YI(1),YI(NYI0))
C DETERMINES GRID POINTS INSIDE THE DATA AREA.
20 JNGP0=0
JNGP1=2*(NT0+2*NL0)+1
JIGP0=0
JIGP1=NXINYI+1
DO 39 IT0=1,NT0
NGP0=0
NGP1=0
IT0T3=IT0*3
IP1=IPT(IT0T3-2)
IP2=IPT(IT0T3-1)
IP3=IPT(IT0T3)
X1=XD(IP1)
Y1=YD(IP1)
X2=XD(IP2)
Y2=YD(IP2)
X3=XD(IP3)
Y3=YD(IP3)
XMN=AMIN1(X1,X2,X3)
XMX=AMAX1(X1,X2,X3)
YMN=AMIN1(Y1,Y2,Y3)
YMX=AMAX1(Y1,Y2,Y3)
INSD=0
DO 22 IXI=1,NXI0
IF(XI(IXI).GE.XMN.AND.XI(IXI).LE.XMX) GO TO 21
IF(INSD.EQ.0) GO TO 22
IXIMX=IXI-1
GO TO 23
21 IF(INSD.EQ.1) GO TO 22
INSD=1
IXIMN=IXI
22 CONTINUE
IF(INSD.EQ.0) GO TO 38
IXIMX=NXI0
23 DO 37 IYI=1,NYI0
YII=YI(IYI)
IF(YII.LT.YMN.OR.YII.GT.YMX) GO TO 37
DO 36 IXI=IXIMN,IXIMX
XII=XI(IXI)
L=0
IF(VPDT(X1,Y1,X2,Y2,XII,YII)) 36,25,26
25 L=1
26 IF(VPDT(X2,Y2,X3,Y3,XII,YII)) 36,27,28
27 L=1
28 IF(VPDT(X3,Y3,X1,Y1,XII,YII)) 36,29,30
29 L=1
30 IZI=NXI0*(IYI-1)+IXI
IF(L.EQ.1) GO TO 31
NGP0=NGP0+1
JIGP0=JIGP0+1
IGP(JIGP0)=IZI
GO TO 36
31 IF(JIGP1.GT.NXINYI) GO TO 33
DO 32 JIGP1I=JIGP1,NXINYI
IF(IZI.EQ.IGP(JIGP1I)) GO TO 36
32 CONTINUE
33 NGP1=NGP1+1
JIGP1=JIGP1-1
IGP(JIGP1)=IZI
36 CONTINUE
37 CONTINUE
38 JNGP0=JNGP0+1
NGP(JNGP0)=NGP0
JNGP1=JNGP1-1
NGP(JNGP1)=NGP1
39 CONTINUE
C DETERMINES GRID POINTS OUTSIDE THE DATA AREA.
C - IN SEMI-INFINITE RECTANGULAR AREA.
40 DO 79 IL0=1,NL0
NGP0=0
NGP1=0
IL0T3=IL0*3
IP1=IPL(IL0T3-2)
IP2=IPL(IL0T3-1)
X1=XD(IP1)
Y1=YD(IP1)
X2=XD(IP2)
Y2=YD(IP2)
XMN=XIMN
XMX=XIMX
YMN=YIMN
YMX=YIMX
IF(Y2.GE.Y1) XMN=AMIN1(X1,X2)
IF(Y2.LE.Y1) XMX=AMAX1(X1,X2)
IF(X2.LE.X1) YMN=AMIN1(Y1,Y2)
IF(X2.GE.X1) YMX=AMAX1(Y1,Y2)
INSD=0
DO 42 IXI=1,NXI0
IF(XI(IXI).GE.XMN.AND.XI(IXI).LE.XMX) GO TO 41
IF(INSD.EQ.0) GO TO 42
IXIMX=IXI-1
GO TO 43
41 IF(INSD.EQ.1) GO TO 42
INSD=1
IXIMN=IXI
42 CONTINUE
IF(INSD.EQ.0) GO TO 58
IXIMX=NXI0
43 DO 57 IYI=1,NYI0
YII=YI(IYI)
IF(YII.LT.YMN.OR.YII.GT.YMX) GO TO 57
DO 56 IXI=IXIMN,IXIMX
XII=XI(IXI)
L=0
IF(VPDT(X1,Y1,X2,Y2,XII,YII)) 46,45,56
45 L=1
46 IF(SPDT(X2,Y2,X1,Y1,XII,YII)) 56,47,48
47 L=1
48 IF(SPDT(X1,Y1,X2,Y2,XII,YII)) 56,49,50
49 L=1
50 IZI=NXI0*(IYI-1)+IXI
IF(L.EQ.1) GO TO 51
NGP0=NGP0+1
JIGP0=JIGP0+1
IGP(JIGP0)=IZI
GO TO 56
51 IF(JIGP1.GT.NXINYI) GO TO 53
DO 52 JIGP1I=JIGP1,NXINYI
IF(IZI.EQ.IGP(JIGP1I)) GO TO 56
52 CONTINUE
53 NGP1=NGP1+1
JIGP1=JIGP1-1
IGP(JIGP1)=IZI
56 CONTINUE
57 CONTINUE
58 JNGP0=JNGP0+1
NGP(JNGP0)=NGP0
JNGP1=JNGP1-1
NGP(JNGP1)=NGP1
C - IN SEMI-INFINITE TRIANGULAR AREA.
60 NGP0=0
NGP1=0
ILP1=MOD(IL0,NL0)+1
ILP1T3=ILP1*3
IP3=IPL(ILP1T3-1)
X3=XD(IP3)
Y3=YD(IP3)
XMN=XIMN
XMX=XIMX
YMN=YIMN
YMX=YIMX
IF(Y3.GE.Y2.AND.Y2.GE.Y1) XMN=X2
IF(Y3.LE.Y2.AND.Y2.LE.Y1) XMX=X2
IF(X3.LE.X2.AND.X2.LE.X1) YMN=Y2
IF(X3.GE.X2.AND.X2.GE.X1) YMX=Y2
INSD=0
DO 62 IXI=1,NXI0
IF(XI(IXI).GE.XMN.AND.XI(IXI).LE.XMX) GO TO 61
IF(INSD.EQ.0) GO TO 62
IXIMX=IXI-1
GO TO 63
61 IF(INSD.EQ.1) GO TO 62
INSD=1
IXIMN=IXI
62 CONTINUE
IF(INSD.EQ.0) GO TO 78
IXIMX=NXI0
63 DO 77 IYI=1,NYI0
YII=YI(IYI)
IF(YII.LT.YMN.OR.YII.GT.YMX) GO TO 77
DO 76 IXI=IXIMN,IXIMX
XII=XI(IXI)
L=0
IF(SPDT(X1,Y1,X2,Y2,XII,YII)) 66,65,76
65 L=1
66 IF(SPDT(X3,Y3,X2,Y2,XII,YII)) 70,67,76
67 L=1
70 IZI=NXI0*(IYI-1)+IXI
IF(L.EQ.1) GO TO 71
NGP0=NGP0+1
JIGP0=JIGP0+1
IGP(JIGP0)=IZI
GO TO 76
71 IF(JIGP1.GT.NXINYI) GO TO 73
DO 72 JIGP1I=JIGP1,NXINYI
IF(IZI.EQ.IGP(JIGP1I)) GO TO 76
72 CONTINUE
73 NGP1=NGP1+1
JIGP1=JIGP1-1
IGP(JIGP1)=IZI
76 CONTINUE
77 CONTINUE
78 JNGP0=JNGP0+1
NGP(JNGP0)=NGP0
JNGP1=JNGP1-1
NGP(JNGP1)=NGP1
79 CONTINUE
RETURN
END
SUBROUTINE IDLCTN(NDP,XD,YD,NT,IPT,NL,IPL,XII,YII,ITI,
1 IWK,WK)
C THIS SUBROUTINE LOCATES A POINT, I.E., DETERMINES TO WHAT TRI-
C ANGLE A GIVEN POINT (XII,YII) BELONGS. WHEN THE GIVEN POINT
C DOES NOT LIE INSIDE THE DATA AREA, THIS SUBROUTINE DETERMINES
C THE BORDER LINE SEGMENT WHEN THE POINT LIES IN AN OUTSIDE
C RECTANGULAR AREA, AND TWO BORDER LINE SEGMENTS WHEN THE POINT
C LIES IN AN OUTSIDE TRIANGULAR AREA.
C THE INPUT PARAMETERS ARE
C NDP = NUMBER OF DATA POINTS,
C XD,YD = ARRAYS OF DIMENSION NDP CONTAINING THE X AND Y
C COORDINATES OF THE DATA POINTS,
C NT = NUMBER OF TRIANGLES,
C IPT = INTEGER ARRAY OF DIMENSION 3*NT CONTAINING THE
C POINT NUMBERS OF THE VERTEXES OF THE TRIANGLES,
C NL = NUMBER OF BORDER LINE SEGMENTS,
C IPL = INTEGER ARRAY OF DIMENSION 3*NL CONTAINING THE
C POINT NUMBERS OF THE END POINTS OF THE BORDER
C LINE SEGMENTS AND THEIR RESPECTIVE TRIANGLE
C NUMBERS,
C XII,YII = X AND Y COORDINATES OF THE POINT TO BE
C LOCATED.
C THE OUTPUT PARAMETER IS
C ITI = TRIANGLE NUMBER, WHEN THE POINT IS INSIDE THE
C DATA AREA, OR
C TWO BORDER LINE SEGMENT NUMBERS, IL1 AND IL2,
C CODED TO IL1*(NT+NL)+IL2, WHEN THE POINT IS
C OUTSIDE THE DATA AREA.
C THE OTHER PARAMETERS ARE
C IWK = INTEGER ARRAY OF DIMENSION 18*NDP USED INTER-
C NALLY AS A WORK AREA,
C WK = ARRAY OF DIMENSION 8*NDP USED INTERNALLY AS A
C WORK AREA.
C DECLARATION STATEMENTS
DIMENSION XD(NDP), YD(NDP), IPT(3*NT), IPL(3*NL), IWK(18*NDP),
1 WK(8*NDP)
DIMENSION IDSC(9)
COMMON/IDLC/ITIPV,XS1,XS2,YS1,YS2,NTSC(9)
C STATEMENT FUNCTIONS
SPDT(U1,V1,U2,V2,U3,V3)=(U1-U2)*(U3-U2)+(V1-V2)*(V3-V2)
VPDT(U1,V1,U2,V2,U3,V3)=(U1-U3)*(V2-V3)-(V1-V3)*(U2-U3)
C PRELIMINARY PROCESSING
10 NDP0=NDP
NT0=NT
NL0=NL
NTL=NT0+NL0
X0=XII
Y0=YII
C PROCESSING FOR A NEW SET OF DATA POINTS
20 IF(ITIPV.NE.0) GO TO 30
C - DIVIDES THE X-Y PLANE INTO NINE RECTANGULAR SECTIONS.
XMN=XD(1)
XMX=XMN
YMN=YD(1)
YMX=YMN
DO 21 IDP=2,NDP0
XI=XD(IDP)
YI=YD(IDP)
XMN=AMIN1(XI,XMN)
XMX=AMAX1(XI,XMX)
YMN=AMIN1(YI,YMN)
YMX=AMAX1(YI,YMX)
21 CONTINUE
XS1=(XMN+XMN+XMX)/3.0
XS2=(XMN+XMX+XMX)/3.0
YS1=(YMN+YMN+YMX)/3.0
YS2=(YMN+YMX+YMX)/3.0
C - DETERMINES AND STORES IN THE IWK ARRAY TRIANGLE NUMBERS OF
C - THE TRIANGLES ASSOCIATED WITH EACH OF THE NINE SECTIONS.
DO 22 ISC=1,9
NTSC(ISC)=0
IDSC(ISC)=0
22 CONTINUE
IT0T3=0
JWK=0
DO 27 IT0=1,NT0
IT0T3=IT0T3+3
I1=IPT(IT0T3-2)
I2=IPT(IT0T3-1)
I3=IPT(IT0T3)
XMN=AMIN1(XD(I1),XD(I2),XD(I3))
XMX=AMAX1(XD(I1),XD(I2),XD(I3))
YMN=AMIN1(YD(I1),YD(I2),YD(I3))
YMX=AMAX1(YD(I1),YD(I2),YD(I3))
IF(YMN.GT.YS1) GO TO 23
IF(XMN.LE.XS1) IDSC(1)=1
IF(XMX.GE.XS1.AND.XMN.LE.XS2) IDSC(2)=1
IF(XMX.GE.XS2) IDSC(3)=1
23 IF(YMX.LT.YS1.OR.YMN.GT.YS2) GO TO 24
IF(XMN.LE.XS1) IDSC(4)=1
IF(XMX.GE.XS1.AND.XMN.LE.XS2) IDSC(5)=1
IF(XMX.GE.XS2) IDSC(6)=1
24 IF(YMX.LT.YS2) GO TO 25
IF(XMN.LE.XS1) IDSC(7)=1
IF(XMX.GE.XS1.AND.XMN.LE.XS2) IDSC(8)=1
IF(XMX.GE.XS2) IDSC(9)=1
25 DO 26 ISC=1,9
IF(IDSC(ISC).EQ.0) GO TO 26
JIWK=9*NTSC(ISC)+ISC
IWK(JIWK)=IT0
NTSC(ISC)=NTSC(ISC)+1
IDSC(ISC)=0
26 CONTINUE
C - STORES IN THE WK ARRAY THE MINIMUM AND MAXIMUM OF THE X AND
C - Y COORDINATE VALUES FOR EACH OF THE TRIANGLE.
JWK=JWK+4
WK(JWK-3)=XMN
WK(JWK-2)=XMX
WK(JWK-1)=YMN
WK(JWK) =YMX
27 CONTINUE
GO TO 60
C CHECKS IF IN THE SAME TRIANGLE AS PREVIOUS.
30 IT0=ITIPV
IF(IT0.GT.NT0) GO TO 40
IT0T3=IT0*3
IP1=IPT(IT0T3-2)
X1=XD(IP1)
Y1=YD(IP1)
IP2=IPT(IT0T3-1)
X2=XD(IP2)
Y2=YD(IP2)
IF(VPDT(X1,Y1,X2,Y2,X0,Y0).LT.0.0) GO TO 60
IP3=IPT(IT0T3)
X3=XD(IP3)
Y3=YD(IP3)
IF(VPDT(X2,Y2,X3,Y3,X0,Y0).LT.0.0) GO TO 60
IF(VPDT(X3,Y3,X1,Y1,X0,Y0).LT.0.0) GO TO 60
GO TO 80
C CHECKS IF ON THE SAME BORDER LINE SEGMENT.
40 IL1=IT0/NTL
IL2=IT0-IL1*NTL
IL1T3=IL1*3
IP1=IPL(IL1T3-2)
X1=XD(IP1)
Y1=YD(IP1)
IP2=IPL(IL1T3-1)
X2=XD(IP2)
Y2=YD(IP2)
IF(IL2.NE.IL1) GO TO 50
IF(SPDT(X1,Y1,X2,Y2,X0,Y0).LT.0.0) GO TO 60
IF(SPDT(X2,Y2,X1,Y1,X0,Y0).LT.0.0) GO TO 60
IF(VPDT(X1,Y1,X2,Y2,X0,Y0).GT.0.0) GO TO 60
GO TO 80
C CHECKS IF BETWEEN THE SAME TWO BORDER LINE SEGMENTS.
50 IF(SPDT(X1,Y1,X2,Y2,X0,Y0).GT.0.0) GO TO 60
IP3=IPL(3*IL2-1)
X3=XD(IP3)
Y3=YD(IP3)
IF(SPDT(X3,Y3,X2,Y2,X0,Y0).LE.0.0) GO TO 80
C LOCATES INSIDE THE DATA AREA.
C - DETERMINES THE SECTION IN WHICH THE POINT IN QUESTION LIES.
60 ISC=1
IF(X0.GE.XS1) ISC=ISC+1
IF(X0.GE.XS2) ISC=ISC+1
IF(Y0.GE.YS1) ISC=ISC+3
IF(Y0.GE.YS2) ISC=ISC+3
C - SEARCHES THROUGH THE TRIANGLES ASSOCIATED WITH THE SECTION.
NTSCI=NTSC(ISC)
IF(NTSCI.LE.0) GO TO 70
JIWK=-9+ISC
DO 61 ITSC=1,NTSCI
JIWK=JIWK+9
IT0=IWK(JIWK)
JWK=IT0*4
IF(X0.LT.WK(JWK-3)) GO TO 61
IF(X0.GT.WK(JWK-2)) GO TO 61
IF(Y0.LT.WK(JWK-1)) GO TO 61
IF(Y0.GT.WK(JWK)) GO TO 61
IT0T3=IT0*3
IP1=IPT(IT0T3-2)
X1=XD(IP1)
Y1=YD(IP1)
IP2=IPT(IT0T3-1)
X2=XD(IP2)
Y2=YD(IP2)
IF(VPDT(X1,Y1,X2,Y2,X0,Y0).LT.0.0) GO TO 61
IP3=IPT(IT0T3)
X3=XD(IP3)
Y3=YD(IP3)
IF(VPDT(X2,Y2,X3,Y3,X0,Y0).LT.0.0) GO TO 61
IF(VPDT(X3,Y3,X1,Y1,X0,Y0).LT.0.0) GO TO 61
GO TO 80
61 CONTINUE
C LOCATES OUTSIDE THE DATA AREA.
70 DO 72 IL1=1,NL0
IL1T3=IL1*3
IP1=IPL(IL1T3-2)
X1=XD(IP1)
Y1=YD(IP1)
IP2=IPL(IL1T3-1)
X2=XD(IP2)
Y2=YD(IP2)
IF(SPDT(X2,Y2,X1,Y1,X0,Y0).LT.0.0) GO TO 72
IF(SPDT(X1,Y1,X2,Y2,X0,Y0).LT.0.0) GO TO 71
IF(VPDT(X1,Y1,X2,Y2,X0,Y0).GT.0.0) GO TO 72
IL2=IL1
GO TO 75
71 IL2=MOD(IL1,NL0)+1
IP3=IPL(3*IL2-1)
X3=XD(IP3)
Y3=YD(IP3)
IF(SPDT(X3,Y3,X2,Y2,X0,Y0).LE.0.0) GO TO 75
72 CONTINUE
IT0=1
GO TO 80
75 IT0=IL1*NTL+IL2
C NORMAL EXIT
80 ITI=IT0
ITIPV=IT0
RETURN
END
SUBROUTINE IDPDRV(NDP,XD,YD,ZD,NT,IPT,PD,WK)
C THIS SUBROUTINE ESTIMATES PARTIAL DERIVATIVES OF THE FIRST AND
C SECOND ORDER AT THE DATA POINTS.
C THE INPUT PARAMETERS ARE
C NDP = NUMBER OF DATA POINTS,
C XD,YD,ZD = ARRAYS OF DIMENSION NDP CONTAINING THE X,
C Y, AND Z COORDINATES OF THE DATA POINTS,
C NT = NUMBER OF TRIANGLES,
C IPT = INTEGER ARRAY OF DIMENSION 3*NT CONTAINING THE
C POINT NUMBERS OF THE VERTEXES OF THE TRIANGLES.
C THE OUTPUT PARAMETER IS
C PD = ARRAY OF DIMENSION 5*NDP, WHERE THE ESTIMATED
C ZX, ZY, ZXX, ZXY, AND ZYY VALUES AT THE ITH
C DATA POINT ARE TO BE STORED AS THE (5*I-4)TH,
C (5*I-3)RD, (5*I-2)ND, (5*I-1)ST AND (5*I)TH
C ELEMENTS, RESPECTIVELY, WHERE I = 1, 2, ...,
C NDP.
C THE OTHER PARAMETER IS
C WK = ARRAY OF DIMENSION NDP USED INTERNALLY AS A
C WORK AREA.
C DECLARATION STATEMENTS
DIMENSION XD(NDP), YD(NDP), ZD(NDP), IPT(3*NT), PD(5*NDP), WK(NDP)
DIMENSION IPTI(3),XV(3),YV(3),ZV(3),ZXV(3),ZYV(3),
1 W1(3),W2(3)
DATA EPSLN/1.0E-6/
C PRELIMINARY PROCESSING
10 NDP0=NDP
NT0=NT
C CLEARS THE PD ARRAY.
20 JPDMX=5*NDP0
DO 21 JPD=1,JPDMX
PD(JPD)=0.0
21 CONTINUE
DO 22 IDP=1,NDP
WK(IDP)=0.0
22 CONTINUE
C ESTIMATES ZX AND ZY.
30 DO 34 IT=1,NT0
JPT0=3*(IT-1)
DO 31 IV=1,3
JPT=JPT0+IV
IDP=IPT(JPT)
IPTI(IV)=IDP
XV(IV)=XD(IDP)
YV(IV)=YD(IDP)
ZV(IV)=ZD(IDP)
31 CONTINUE
DX1=XV(2)-XV(1)
DY1=YV(2)-YV(1)
DZ1=ZV(2)-ZV(1)
DX2=XV(3)-XV(1)
DY2=YV(3)-YV(1)
DZ2=ZV(3)-ZV(1)
VPX=DY1*DZ2-DZ1*DY2
VPY=DZ1*DX2-DX1*DZ2
VPZ=DX1*DY2-DY1*DX2
VPZMN=ABS(DX1*DX2+DY1*DY2)*EPSLN
IF(ABS(VPZ).LE.VPZMN) GO TO 34
D12=SQRT((XV(2)-XV(1))**2+(YV(2)-YV(1))**2)
D23=SQRT((XV(3)-XV(2))**2+(YV(3)-YV(2))**2)
D31=SQRT((XV(1)-XV(3))**2+(YV(1)-YV(3))**2)
W1(1)=1.0/(D31*D12)
W1(2)=1.0/(D12*D23)
W1(3)=1.0/(D23*D31)
W2(1)=VPZ*W1(1)
W2(2)=VPZ*W1(2)
W2(3)=VPZ*W1(3)
32 DO 33 IV=1,3
IDP=IPTI(IV)
JPD0=5*(IDP-1)
WI=(W1(IV)**2)*W2(IV)
PD(JPD0+1)=PD(JPD0+1)+VPX*WI
PD(JPD0+2)=PD(JPD0+2)+VPY*WI
WK(IDP)=WK(IDP)+VPZ*WI
33 CONTINUE
34 CONTINUE
DO 36 IDP=1,NDP0
JPD0=5*(IDP-1)
PD(JPD0+1)=-PD(JPD0+1)/WK(IDP)
PD(JPD0+2)=-PD(JPD0+2)/WK(IDP)
36 CONTINUE
C ESTIMATES ZXX, ZXY, AND ZYY.
40 DO 44 IT=1,NT0
JPT0=3*(IT-1)
DO 41 IV=1,3
JPT=JPT0+IV
IDP=IPT(JPT)
IPTI(IV)=IDP
XV(IV)=XD(IDP)
YV(IV)=YD(IDP)
JPD0=5*(IDP-1)
ZXV(IV)=PD(JPD0+1)
ZYV(IV)=PD(JPD0+2)
41 CONTINUE
DX1=XV(2)-XV(1)
DY1=YV(2)-YV(1)
DZX1=ZXV(2)-ZXV(1)
DZY1=ZYV(2)-ZYV(1)
DX2=XV(3)-XV(1)
DY2=YV(3)-YV(1)
DZX2=ZXV(3)-ZXV(1)
DZY2=ZYV(3)-ZYV(1)
VPXX=DY1*DZX2-DZX1*DY2
VPXY=DZX1*DX2-DX1*DZX2
VPYX=DY1*DZY2-DZY1*DY2
VPYY=DZY1*DX2-DX1*DZY2
VPZ=DX1*DY2-DY1*DX2
VPZMN=ABS(DX1*DX2+DY1*DY2)*EPSLN
IF(ABS(VPZ).LE.VPZMN) GO TO 44
D12=SQRT((XV(2)-XV(1))**2+(YV(2)-YV(1))**2)
D23=SQRT((XV(3)-XV(2))**2+(YV(3)-YV(2))**2)
D31=SQRT((XV(1)-XV(3))**2+(YV(1)-YV(3))**2)
W1(1)=1.0/(D31*D12)
W1(2)=1.0/(D12*D23)
W1(3)=1.0/(D23*D31)
W2(1)=VPZ*W1(1)
W2(2)=VPZ*W1(2)
W2(3)=VPZ*W1(3)
42 DO 43 IV=1,3
IDP=IPTI(IV)
JPD0=5*(IDP-1)
WI=(W1(IV)**2)*W2(IV)
PD(JPD0+3)=PD(JPD0+3)+VPXX*WI
PD(JPD0+4)=PD(JPD0+4)+(VPXY+VPYX)*WI
PD(JPD0+5)=PD(JPD0+5)+VPYY*WI
43 CONTINUE
44 CONTINUE
DO 46 IDP=1,NDP0
JPD0=5*(IDP-1)
PD(JPD0+3)=-PD(JPD0+3)/WK(IDP)
PD(JPD0+4)=-PD(JPD0+4)/(2.0*WK(IDP))
PD(JPD0+5)=-PD(JPD0+5)/WK(IDP)
46 CONTINUE
RETURN
END
SUBROUTINE IDPTIP(XD,YD,ZD,NT,IPT,NL,IPL,PDD,ITI,XII,YII,
1 ZII)
C THIS SUBROUTINE PERFORMS PUNCTUAL INTERPOLATION OR EXTRAPOLA-
C TION, I.E., DETERMINES THE Z VALUE AT A POINT.
C THE INPUT PARAMETERS ARE
C XD,YD,ZD = ARRAYS OF DIMENSION NDP CONTAINING THE X,
C Y, AND Z COORDINATES OF THE DATA POINTS, WHERE
C NDP IS THE NUMBER OF THE DATA POINTS,
C NT = NUMBER OF TRIANGLES,
C IPT = INTEGER ARRAY OF DIMENSION 3*NT CONTAINING THE
C POINT NUMBERS OF THE VERTEXES OF THE TRIANGLES,
C NL = NUMBER OF BORDER LINE SEGMENTS,
C IPL = INTEGER ARRAY OF DIMENSION 3*NL CONTAINING THE
C POINT NUMBERS OF THE END POINTS OF THE BORDER
C LINE SEGMENTS AND THEIR RESPECTIVE TRIANGLE
C NUMBERS,
C PDD = ARRAY OF DIMENSION 5*NDP CONTAINING THE PARTIAL
C DERIVATIVES AT THE DATA POINTS,
C ITI = TRIANGLE NUMBER OF THE TRIANGLE IN WHICH LIES
C THE POINT FOR WHICH INTERPOLATION IS TO BE
C PERFORMED,
C XII,YII = X AND Y COORDINATES OF THE POINT FOR WHICH
C INTERPOLATION IS TO BE PERFORMED.
C THE OUTPUT PARAMETER IS
C ZII = INTERPOLATED Z VALUE.
C DECLARATION STATEMENTS
DIMENSION XD(1), YD(1), ZD(1), IPT(1), IPL(1), PDD(1)
COMMON/IDPT/ITPV,X0,Y0,AP,BP,CP,DP,
1 P00,P10,P20,P30,P40,P50,P01,P11,P21,P31,P41,
2 P02,P12,P22,P32,P03,P13,P23,P04,P14,P05
DIMENSION X(3),Y(3),Z(3),PD(15),
1 ZU(3),ZV(3),ZUU(3),ZUV(3),ZVV(3)
REAL LU,LV
EQUIVALENCE (P5,P50)
C PRELIMINARY PROCESSING
10 IT0=ITI
NTL=NT+NL
IF(IT0.LE.NTL) GO TO 20
IL1=IT0/NTL
IL2=IT0-IL1*NTL
IF(IL1.EQ.IL2) GO TO 40
GO TO 60
C CALCULATION OF ZII BY INTERPOLATION.
C CHECKS IF THE NECESSARY COEFFICIENTS HAVE BEEN CALCULATED.
20 IF(IT0.EQ.ITPV) GO TO 30
C LOADS COORDINATE AND PARTIAL DERIVATIVE VALUES AT THE
C VERTEXES.
21 JIPT=3*(IT0-1)
JPD=0
DO 23 I=1,3
JIPT=JIPT+1
IDP=IPT(JIPT)
X(I)=XD(IDP)
Y(I)=YD(IDP)
Z(I)=ZD(IDP)
JPDD=5*(IDP-1)
DO 22 KPD=1,5
JPD=JPD+1
JPDD=JPDD+1
PD(JPD)=PDD(JPDD)
22 CONTINUE
23 CONTINUE
C DETERMINES THE COEFFICIENTS FOR THE COORDINATE SYSTEM
C TRANSFORMATION FROM THE X-Y SYSTEM TO THE U-V SYSTEM
C AND VICE VERSA.
24 X0=X(1)
Y0=Y(1)
A=X(2)-X0
B=X(3)-X0
C=Y(2)-Y0
D=Y(3)-Y0
AD=A*D
BC=B*C
DLT=AD-BC
AP= D/DLT
BP=-B/DLT
CP=-C/DLT
DP= A/DLT
C CONVERTS THE PARTIAL DERIVATIVES AT THE VERTEXES OF THE
C TRIANGLE FOR THE U-V COORDINATE SYSTEM.
25 AA=A*A
ACT2=2.0*A*C
CC=C*C
AB=A*B
ADBC=AD+BC
CD=C*D
BB=B*B
BDT2=2.0*B*D
DD=D*D
DO 26 I=1,3
JPD=5*I
ZU(I)=A*PD(JPD-4)+C*PD(JPD-3)
ZV(I)=B*PD(JPD-4)+D*PD(JPD-3)
ZUU(I)=AA*PD(JPD-2)+ACT2*PD(JPD-1)+CC*PD(JPD)
ZUV(I)=AB*PD(JPD-2)+ADBC*PD(JPD-1)+CD*PD(JPD)
ZVV(I)=BB*PD(JPD-2)+BDT2*PD(JPD-1)+DD*PD(JPD)
26 CONTINUE
C CALCULATES THE COEFFICIENTS OF THE POLYNOMIAL.
27 P00=Z(1)
P10=ZU(1)
P01=ZV(1)
P20=0.5*ZUU(1)
P11=ZUV(1)
P02=0.5*ZVV(1)
H1=Z(2)-P00-P10-P20
H2=ZU(2)-P10-ZUU(1)
H3=ZUU(2)-ZUU(1)
P30= 10.0*H1-4.0*H2+0.5*H3
P40=-15.0*H1+7.0*H2 -H3
P50= 6.0*H1-3.0*H2+0.5*H3
H1=Z(3)-P00-P01-P02
H2=ZV(3)-P01-ZVV(1)
H3=ZVV(3)-ZVV(1)
P03= 10.0*H1-4.0*H2+0.5*H3
P04=-15.0*H1+7.0*H2 -H3
P05= 6.0*H1-3.0*H2+0.5*H3
LU=SQRT(AA+CC)
LV=SQRT(BB+DD)
THXU=ATAN2(C,A)
THUV=ATAN2(D,B)-THXU
CSUV=COS(THUV)
P41=5.0*LV*CSUV/LU*P50
P14=5.0*LU*CSUV/LV*P05
H1=ZV(2)-P01-P11-P41
H2=ZUV(2)-P11-4.0*P41
P21= 3.0*H1-H2
P31=-2.0*H1+H2
H1=ZU(3)-P10-P11-P14
H2=ZUV(3)-P11-4.0*P14
P12= 3.0*H1-H2
P13=-2.0*H1+H2
THUS=ATAN2(D-C,B-A)-THXU
THSV=THUV-THUS
AA= SIN(THSV)/LU
BB=-COS(THSV)/LU
CC= SIN(THUS)/LV
DD= COS(THUS)/LV
AC=AA*CC
AD=AA*DD
BC=BB*CC
G1=AA*AC*(3.0*BC+2.0*AD)
G2=CC*AC*(3.0*AD+2.0*BC)
H1=-AA*AA*AA*(5.0*AA*BB*P50+(4.0*BC+AD)*P41)
1 -CC*CC*CC*(5.0*CC*DD*P05+(4.0*AD+BC)*P14)
H2=0.5*ZVV(2)-P02-P12
H3=0.5*ZUU(3)-P20-P21
P22=(G1*H2+G2*H3-H1)/(G1+G2)
P32=H2-P22
P23=H3-P22
ITPV=IT0
C CONVERTS XII AND YII TO U-V SYSTEM.
30 DX=XII-X0
DY=YII-Y0
U=AP*DX+BP*DY
V=CP*DX+DP*DY
C EVALUATES THE POLYNOMIAL.
31 P0=P00+V*(P01+V*(P02+V*(P03+V*(P04+V*P05))))
P1=P10+V*(P11+V*(P12+V*(P13+V*P14)))
P2=P20+V*(P21+V*(P22+V*P23))
P3=P30+V*(P31+V*P32)
P4=P40+V*P41
ZII=P0+U*(P1+U*(P2+U*(P3+U*(P4+U*P5))))
RETURN
C CALCULATION OF ZII BY EXTRAPOLATION IN THE RECTANGLE.
C CHECKS IF THE NECESSARY COEFFICIENTS HAVE BEEN CALCULATED.
40 IF(IT0.EQ.ITPV) GO TO 50
C LOADS COORDINATE AND PARTIAL DERIVATIVE VALUES AT THE END
C POINTS OF THE BORDER LINE SEGMENT.
41 JIPL=3*(IL1-1)
JPD=0
DO 43 I=1,2
JIPL=JIPL+1
IDP=IPL(JIPL)
X(I)=XD(IDP)
Y(I)=YD(IDP)
Z(I)=ZD(IDP)
JPDD=5*(IDP-1)
DO 42 KPD=1,5
JPD=JPD+1
JPDD=JPDD+1
PD(JPD)=PDD(JPDD)
42 CONTINUE
43 CONTINUE
C DETERMINES THE COEFFICIENTS FOR THE COORDINATE SYSTEM
C TRANSFORMATION FROM THE X-Y SYSTEM TO THE U-V SYSTEM
C AND VICE VERSA.
44 X0=X(1)
Y0=Y(1)
A=Y(2)-Y(1)
B=X(2)-X(1)
C=-B
D=A
AD=A*D
BC=B*C
DLT=AD-BC
AP= D/DLT
BP=-B/DLT
CP=-BP
DP= AP
C CONVERTS THE PARTIAL DERIVATIVES AT THE END POINTS OF THE
C BORDER LINE SEGMENT FOR THE U-V COORDINATE SYSTEM.
45 AA=A*A
ACT2=2.0*A*C
CC=C*C
AB=A*B
ADBC=AD+BC
CD=C*D
BB=B*B
BDT2=2.0*B*D
DD=D*D
DO 46 I=1,2
JPD=5*I
ZU(I)=A*PD(JPD-4)+C*PD(JPD-3)
ZV(I)=B*PD(JPD-4)+D*PD(JPD-3)
ZUU(I)=AA*PD(JPD-2)+ACT2*PD(JPD-1)+CC*PD(JPD)
ZUV(I)=AB*PD(JPD-2)+ADBC*PD(JPD-1)+CD*PD(JPD)
ZVV(I)=BB*PD(JPD-2)+BDT2*PD(JPD-1)+DD*PD(JPD)
46 CONTINUE
C CALCULATES THE COEFFICIENTS OF THE POLYNOMIAL.
47 P00=Z(1)
P10=ZU(1)
P01=ZV(1)
P20=0.5*ZUU(1)
P11=ZUV(1)
P02=0.5*ZVV(1)
H1=Z(2)-P00-P01-P02
H2=ZV(2)-P01-ZVV(1)
H3=ZVV(2)-ZVV(1)
P03= 10.0*H1-4.0*H2+0.5*H3
P04=-15.0*H1+7.0*H2 -H3
P05= 6.0*H1-3.0*H2+0.5*H3
H1=ZU(2)-P10-P11
H2=ZUV(2)-P11
P12= 3.0*H1-H2
P13=-2.0*H1+H2
P21=0.0
P23=-ZUU(2)+ZUU(1)
P22=-1.5*P23
ITPV=IT0
C CONVERTS XII AND YII TO U-V SYSTEM.
50 DX=XII-X0
DY=YII-Y0
U=AP*DX+BP*DY
V=CP*DX+DP*DY
C EVALUATES THE POLYNOMIAL.
51 P0=P00+V*(P01+V*(P02+V*(P03+V*(P04+V*P05))))
P1=P10+V*(P11+V*(P12+V*P13))
P2=P20+V*(P21+V*(P22+V*P23))
ZII=P0+U*(P1+U*P2)
RETURN
C CALCULATION OF ZII BY EXTRAPOLATION IN THE TRIANGLE.
C CHECKS IF THE NECESSARY COEFFICIENTS HAVE BEEN CALCULATED.
60 IF(IT0.EQ.ITPV) GO TO 70
C LOADS COORDINATE AND PARTIAL DERIVATIVE VALUES AT THE VERTEX
C OF THE TRIANGLE.
61 JIPL=3*IL2-2
IDP=IPL(JIPL)
X0=XD(IDP)
Y0=YD(IDP)
Z0=ZD(IDP)
JPDD=5*(IDP-1)
DO 62 KPD=1,5
JPDD=JPDD+1
PD(KPD)=PDD(JPDD)
62 CONTINUE
C CALCULATES THE COEFFICIENTS OF THE POLYNOMIAL.
67 P00=Z0
P10=PD(1)
P01=PD(2)
P20=0.5*PD(3)
P11=PD(4)
P02=0.5*PD(5)
ITPV=IT0
C CONVERTS XII AND YII TO U-V SYSTEM.
70 U=XII-X0
V=YII-Y0
C EVALUATES THE POLYNOMIAL.
71 P0=P00+V*(P01+V*P02)
P1=P10+V*P11
ZII=P0+U*(P1+U*P20)
RETURN
END
SUBROUTINE IDSFFT (MD,NDP,XD,YD,ZD,NXI,NYI,NZI,XI,YI,ZI,
1 IWK,WK)
C THIS SUBROUTINE CALLS THE IDGRID, IDPDRV, IDPTIP, AND IDTANG
C SUBROUTINES.
C DECLARATION STATEMENTS
DIMENSION XD(NDP), YD(NDP), ZD(NDP), XI(NXI),
1 YI(NYI), ZI(NZI,NYI), IWK(31*NDP + NXI*NYI), WK(6*NDP)
COMMON/IDPT/ITPV,DMMY(27)
C
C THE FOLLOWING CALL IS FOR GATHERING STATISTICS ON LIBRARY USE AT NCAR
C
C SETTING OF SOME INPUT PARAMETERS TO LOCAL VARIABLES.
C (FOR MD=1,2,3)
10 MD0=MD
NDP0=NDP
NXI0=NXI
NYI0=NYI
C ERROR CHECK. (FOR MD=1,2,3)
20 IF (MD0.LT.1.OR.MD0.GT.3) THEN
CALL ULIBER (39,
1' IDSFFT (BIVAR) - INPUT PARAMETER MD OUT OF RANGE',49)
STOP 'ULIBER39'
ENDIF
IF (NDP0.LT.4) THEN
CALL ULIBER (40,
1' IDSFFT (BIVAR) - INPUT PARAMETER NDP OUT OF RANGE',50)
STOP 'ULIBER40'
ENDIF
IF (NXI0.LT.1.OR.NYI0.LT.1) THEN
CALL ULIBER (41,
1' IDSFFT (BIVAR) - INPUT PARAMETER NXI OR NYI OUT OF RANGE',57)
STOP 'ULIBER41'
ENDIF
IF (NXI0.GT.NZI) THEN
CALL ULIBER (42,
1' IDSFFT (BIVAR) - INPUT PARAMETER NZI IS LESS THAN NXI',54)
STOP 'ULIBER42'
ENDIF
IF(MD0.GT.1) GO TO 21
IWK(1)=NDP0
GO TO 22
21 NDPPV=IWK(1)
IF (NDP0.NE.NDPPV) THEN
CALL ULIBER (43,
1' IDSFFT (BIVAR) - MD=2 OR 3 BUT NDP WAS CHANGED SINCE LAST CALL',
2 63)
STOP 'ULIBER43'
ENDIF
22 IF(MD0.GT.2) GO TO 23
IWK(3)=NXI0
IWK(4)=NYI0
GO TO 30
23 NXIPV=IWK(3)
NYIPV=IWK(4)
IF (NXI0.NE.NXIPV) THEN
CALL ULIBER (45,
1' IDSFFT (BIVAR) - MD=3 BUT NXI WAS CHANGED SINCE LAST CALL',
2 58)
STOP 'ULIBER45'
ENDIF
IF (NYI0.NE.NYIPV) THEN
CALL ULIBER (46,
1' IDSFFT (BIVAR) - MD=3 BUT NYI WAS CHANGED SINCE LAST CALL',
2 58)
STOP 'ULIBER46'
ENDIF
C ALLOCATION OF STORAGE AREAS IN THE IWK ARRAY. (FOR MD=1,2,3)
30 JWIPT=16
JWIWL=6*NDP0+1
JWNGP0=JWIWL-1
JWIPL=24*NDP0+1
JWIWP=30*NDP0+1
JWIGP0=31*NDP0
JWWPD=5*NDP0+1
C TRIANGULATES THE X-Y PLANE. (FOR MD=1)
40 IF(MD0.GT.1) GO TO 41
CALL IDTANG(NDP0,XD,YD,NT,IWK(JWIPT),NL,IWK(JWIPL),
1 IWK(JWIWL),IWK(JWIWP),WK)
IWK(5)=NT
IWK(6)=NL
IF(NT.EQ.0) RETURN
GO TO 50
41 NT=IWK(5)
NL=IWK(6)
C SORTS OUTPUT GRID POINTS IN ASCENDING ORDER OF THE TRIANGLE
C NUMBER AND THE BORDER LINE SEGMENT NUMBER. (FOR MD=1,2)
50 IF(MD0.GT.2) GO TO 60
CALL IDGRID(XD,YD,NT,IWK(JWIPT),NL,IWK(JWIPL),NXI0,NYI0,
1 XI,YI,IWK(JWNGP0+1),IWK(JWIGP0+1))
C ESTIMATES PARTIAL DERIVATIVES AT ALL DATA POINTS.
C (FOR MD=1,2,3)
60 CALL IDPDRV(NDP0,XD,YD,ZD,NT,IWK(JWIPT),WK,WK(JWWPD))
C INTERPOLATES THE ZI VALUES. (FOR MD=1,2,3)
70 ITPV=0
JIG0MX=0
JIG1MN=NXI0*NYI0+1
NNGP=NT+2*NL
DO 79 JNGP=1,NNGP
ITI=JNGP
IF(JNGP.LE.NT) GO TO 71
IL1=(JNGP-NT+1)/2
IL2=(JNGP-NT+2)/2
IF(IL2.GT.NL) IL2=1
ITI=IL1*(NT+NL)+IL2
71 JWNGP=JWNGP0+JNGP
NGP0=IWK(JWNGP)
IF(NGP0.EQ.0) GO TO 76
JIG0MN=JIG0MX+1
JIG0MX=JIG0MX+NGP0
DO 72 JIGP=JIG0MN,JIG0MX
JWIGP=JWIGP0+JIGP
IZI=IWK(JWIGP)
IYI=(IZI-1)/NXI0+1
IXI=IZI-NXI0*(IYI-1)
CALL IDPTIP(XD,YD,ZD,NT,IWK(JWIPT),NL,IWK(JWIPL),WK,
1 ITI,XI(IXI),YI(IYI),ZI(IXI,IYI))
72 CONTINUE
76 JWNGP=JWNGP0+2*NNGP+1-JNGP
NGP1=IWK(JWNGP)
IF(NGP1.EQ.0) GO TO 79
JIG1MX=JIG1MN-1
JIG1MN=JIG1MN-NGP1
DO 77 JIGP=JIG1MN,JIG1MX
JWIGP=JWIGP0+JIGP
IZI=IWK(JWIGP)
IYI=(IZI-1)/NXI0+1
IXI=IZI-NXI0*(IYI-1)
CALL IDPTIP(XD,YD,ZD,NT,IWK(JWIPT),NL,IWK(JWIPL),WK,
1 ITI,XI(IXI),YI(IYI),ZI(IXI,IYI))
77 CONTINUE
79 CONTINUE
RETURN
END
SUBROUTINE IDTANG(NDP,XD,YD,NT,IPT,NL,IPL,IWL,IWP,WK)
C THIS SUBROUTINE PERFORMS TRIANGULATION. IT DIVIDES THE X-Y
C PLANE INTO A NUMBER OF TRIANGLES ACCORDING TO GIVEN DATA
C POINTS IN THE PLANE, DETERMINES LINE SEGMENTS THAT FORM THE
C BORDER OF DATA AREA, AND DETERMINES THE TRIANGLE NUMBERS
C CORRESPONDING TO THE BORDER LINE SEGMENTS.
C AT COMPLETION, POINT NUMBERS OF THE VERTEXES OF EACH TRIANGLE
C ARE LISTED COUNTER-CLOCKWISE. POINT NUMBERS OF THE END POINTS
C OF EACH BORDER LINE SEGMENT ARE LISTED COUNTER-CLOCKWISE,
C LISTING ORDER OF THE LINE SEGMENTS BEING COUNTER-CLOCKWISE.
C THIS SUBROUTINE CALLS THE IDXCHG FUNCTION.
C THE INPUT PARAMETERS ARE
C NDP = NUMBER OF DATA POINTS,
C XD = ARRAY OF DIMENSION NDP CONTAINING THE
C X COORDINATES OF THE DATA POINTS,
C YD = ARRAY OF DIMENSION NDP CONTAINING THE
C Y COORDINATES OF THE DATA POINTS.
C THE OUTPUT PARAMETERS ARE
C NT = NUMBER OF TRIANGLES,
C IPT = INTEGER ARRAY OF DIMENSION 6*NDP-15, WHERE THE
C POINT NUMBERS OF THE VERTEXES OF THE (IT)TH
C TRIANGLE ARE TO BE STORED AS THE (3*IT-2)ND,
C (3*IT-1)ST, AND (3*IT)TH ELEMENTS,
C IT=1,2,...,NT,
C NL = NUMBER OF BORDER LINE SEGMENTS,
C IPL = INTEGER ARRAY OF DIMENSION 6*NDP, WHERE THE
C POINT NUMBERS OF THE END POINTS OF THE (IL)TH
C BORDER LINE SEGMENT AND ITS RESPECTIVE TRIANGLE
C NUMBER ARE TO BE STORED AS THE (3*IL-2)ND,
C (3*IL-1)ST, AND (3*IL)TH ELEMENTS,
C IL=1,2,..., NL.
C THE OTHER PARAMETERS ARE
C IWL = INTEGER ARRAY OF DIMENSION 18*NDP USED
C INTERNALLY AS A WORK AREA,
C IWP = INTEGER ARRAY OF DIMENSION NDP USED
C INTERNALLY AS A WORK AREA,
C WK = ARRAY OF DIMENSION NDP USED INTERNALLY AS A
C WORK AREA.
C DECLARATION STATEMENTS
DIMENSION XD(NDP), YD(NDP), IPT(6*NDP - 15), IPL(6*NDP),
1 IWL(18*NDP), IWP(NDP), WK(NDP)
DIMENSION ITF(2)
DATA EPSLN/1.0E-6/, NREP/100/
C STATEMENT FUNCTIONS
DSQF(U1,V1,U2,V2)=(U2-U1)**2+(V2-V1)**2
SPDT(U1,V1,U2,V2,U3,V3)=(U2-U1)*(U3-U1)+(V2-V1)*(V3-V1)
VPDT(U1,V1,U2,V2,U3,V3)=(V3-V1)*(U2-U1)-(U3-U1)*(V2-V1)
C PRELIMINARY PROCESSING
10 NDP0=NDP
NDPM1=NDP0-1
IF (NDP0.LT.4) THEN
CALL ULIBER (47,
1' IDTANG (BIVAR) - INPUT PARAMETER NDP OUT OF RANGE',50)
STOP 'ULIBER47'
ENDIF
C DETERMINES THE CLOSEST PAIR OF DATA POINTS AND THEIR MIDPOINT.
20 DSQMN=DSQF(XD(1),YD(1),XD(2),YD(2))
IPMN1=1
IPMN2=2
DO 22 IP1=1,NDPM1
X1=XD(IP1)
Y1=YD(IP1)
IP1P1=IP1+1
DO 21 IP2=IP1P1,NDP0
DSQI=DSQF(X1,Y1,XD(IP2),YD(IP2))
IF (DSQI.EQ.0.) THEN
CALL ULIBER (48,
1' IDTANG (BIVAR) - TWO OF THE INPUT DATA POINTS ARE IDENTICAL',60)
STOP 'ULIBER48'
ENDIF
IF(DSQI.GE.DSQMN) GO TO 21
DSQMN=DSQI
IPMN1=IP1
IPMN2=IP2
21 CONTINUE
22 CONTINUE
XDMP=(XD(IPMN1)+XD(IPMN2))/2.0
YDMP=(YD(IPMN1)+YD(IPMN2))/2.0
C SORTS THE OTHER (NDP-2) DATA POINTS IN ASCENDING ORDER OF
C DISTANCE FROM THE MIDPOINT AND STORES THE SORTED DATA POINT
C NUMBERS IN THE IWP ARRAY.
30 JP1=2
DO 31 IP1=1,NDP0
IF(IP1.EQ.IPMN1.OR.IP1.EQ.IPMN2) GO TO 31
JP1=JP1+1
IWP(JP1)=IP1
WK(JP1)=DSQF(XDMP,YDMP,XD(IP1),YD(IP1))
31 CONTINUE
DO 33 JP1=3,NDPM1
DSQMN=WK(JP1)
JPMN=JP1
DO 32 JP2=JP1,NDP0
IF(WK(JP2).GE.DSQMN) GO TO 32
DSQMN=WK(JP2)
JPMN=JP2
32 CONTINUE
ITS=IWP(JP1)
IWP(JP1)=IWP(JPMN)
IWP(JPMN)=ITS
WK(JPMN)=WK(JP1)
33 CONTINUE
C IF NECESSARY, MODIFIES THE ORDERING IN SUCH A WAY THAT THE
C FIRST THREE DATA POINTS ARE NOT COLLINEAR.
35 X1=XD(IPMN1)
Y1=YD(IPMN1)
X2=XD(IPMN2)
Y2=YD(IPMN2)
DO 36 JP=3,NDP0
IP=IWP(JP)
SP=SPDT(XD(IP),YD(IP),X1,Y1,X2,Y2)
VP=VPDT(XD(IP),YD(IP),X1,Y1,X2,Y2)
IF(ABS(VP).GT.(ABS(SP)*EPSLN)) GO TO 37
36 CONTINUE
CALL ULIBER (49,' IDTANG (BIVAR) - ALL COLLINEAR DATA POINTS',43)
STOP 'ULIBER49'
37 IF(JP.EQ.3) GO TO 40
JPMX=JP
DO 38 JPC=4,JPMX
JP=JPMX+4-JPC
IWP(JP)=IWP(JP-1)
38 CONTINUE
IWP(3)=IP
C FORMS THE FIRST TRIANGLE. STORES POINT NUMBERS OF THE VER-
C TEXES OF THE TRIANGLE IN THE IPT ARRAY, AND STORES POINT NUM-
C BERS OF THE BORDER LINE SEGMENTS AND THE TRIANGLE NUMBER IN
C THE IPL ARRAY.
40 IP1=IPMN1
IP2=IPMN2
IP3=IWP(3)
IF(VPDT(XD(IP1),YD(IP1),XD(IP2),YD(IP2),XD(IP3),YD(IP3))
1 .GE.0.0) GO TO 41
IP1=IPMN2
IP2=IPMN1
41 NT0=1
NTT3=3
IPT(1)=IP1
IPT(2)=IP2
IPT(3)=IP3
NL0=3
NLT3=9
IPL(1)=IP1
IPL(2)=IP2
IPL(3)=1
IPL(4)=IP2
IPL(5)=IP3
IPL(6)=1
IPL(7)=IP3
IPL(8)=IP1
IPL(9)=1
C ADDS THE REMAINING (NDP-3) DATA POINTS, ONE BY ONE.
50 DO 79 JP1=4,NDP0
IP1=IWP(JP1)
X1=XD(IP1)
Y1=YD(IP1)
C - DETERMINES THE FIRST INVISIBLE AND VISIBLE BORDER LINE SEG-
C - MENTS, ILIV AND ILVS.
DO 53 IL=1,NL0
IP2=IPL(3*IL-2)
IP3=IPL(3*IL-1)
X2=XD(IP2)
Y2=YD(IP2)
X3=XD(IP3)
Y3=YD(IP3)
SP=SPDT(X1,Y1,X2,Y2,X3,Y3)
VP=VPDT(X1,Y1,X2,Y2,X3,Y3)
IF(IL.NE.1) GO TO 51
IXVS=0
IF(VP.LE.(ABS(SP)*(-EPSLN))) IXVS=1
ILIV=1
ILVS=1
GO TO 53
51 IXVSPV=IXVS
IF(VP.GT.(ABS(SP)*(-EPSLN))) GO TO 52
IXVS=1
IF(IXVSPV.EQ.1) GO TO 53
ILVS=IL
IF(ILIV.NE.1) GO TO 54
GO TO 53
52 IXVS=0
IF(IXVSPV.EQ.0) GO TO 53
ILIV=IL
IF(ILVS.NE.1) GO TO 54
53 CONTINUE
IF(ILIV.EQ.1.AND.ILVS.EQ.1) ILVS=NL0
54 IF(ILVS.LT.ILIV) ILVS=ILVS+NL0
C - SHIFTS (ROTATES) THE IPL ARRAY TO HAVE THE INVISIBLE BORDER
C - LINE SEGMENTS CONTAINED IN THE FIRST PART OF THE IPL ARRAY.
55 IF(ILIV.EQ.1) GO TO 60
NLSH=ILIV-1
NLSHT3=NLSH*3
DO 56 JL1=1,NLSHT3
JL2=JL1+NLT3
IPL(JL2)=IPL(JL1)
56 CONTINUE
DO 57 JL1=1,NLT3
JL2=JL1+NLSHT3
IPL(JL1)=IPL(JL2)
57 CONTINUE
ILVS=ILVS-NLSH
C - ADDS TRIANGLES TO THE IPT ARRAY, UPDATES BORDER LINE
C - SEGMENTS IN THE IPL ARRAY, AND SETS FLAGS FOR THE BORDER
C - LINE SEGMENTS TO BE REEXAMINED IN THE IWL ARRAY.
60 JWL=0
DO 64 IL=ILVS,NL0
ILT3=IL*3
IPL1=IPL(ILT3-2)
IPL2=IPL(ILT3-1)
IT =IPL(ILT3)
C - - ADDS A TRIANGLE TO THE IPT ARRAY.
NT0=NT0+1
NTT3=NTT3+3
IPT(NTT3-2)=IPL2
IPT(NTT3-1)=IPL1
IPT(NTT3) =IP1
C - - UPDATES BORDER LINE SEGMENTS IN THE IPL ARRAY.
IF(IL.NE.ILVS) GO TO 61
IPL(ILT3-1)=IP1
IPL(ILT3) =NT0
61 IF(IL.NE.NL0) GO TO 62
NLN=ILVS+1
NLNT3=NLN*3
IPL(NLNT3-2)=IP1
IPL(NLNT3-1)=IPL(1)
IPL(NLNT3) =NT0
C - - DETERMINES THE VERTEX THAT DOES NOT LIE ON THE BORDER
C - - LINE SEGMENTS.
62 ITT3=IT*3
IPTI=IPT(ITT3-2)
IF(IPTI.NE.IPL1.AND.IPTI.NE.IPL2) GO TO 63
IPTI=IPT(ITT3-1)
IF(IPTI.NE.IPL1.AND.IPTI.NE.IPL2) GO TO 63
IPTI=IPT(ITT3)
C - - CHECKS IF THE EXCHANGE IS NECESSARY.
63 IF(IDXCHG(XD,YD,IP1,IPTI,IPL1,IPL2).EQ.0) GO TO 64
C - - MODIFIES THE IPT ARRAY WHEN NECESSARY.
IPT(ITT3-2)=IPTI
IPT(ITT3-1)=IPL1
IPT(ITT3) =IP1
IPT(NTT3-1)=IPTI
IF(IL.EQ.ILVS) IPL(ILT3)=IT
IF(IL.EQ.NL0.AND.IPL(3).EQ.IT) IPL(3)=NT0
C - - SETS FLAGS IN THE IWL ARRAY.
JWL=JWL+4
IWL(JWL-3)=IPL1
IWL(JWL-2)=IPTI
IWL(JWL-1)=IPTI
IWL(JWL) =IPL2
64 CONTINUE
NL0=NLN
NLT3=NLNT3
NLF=JWL/2
IF(NLF.EQ.0) GO TO 79
C - IMPROVES TRIANGULATION.
70 NTT3P3=NTT3+3
DO 78 IREP=1,NREP
DO 76 ILF=1,NLF
IPL1=IWL(2*ILF-1)
IPL2=IWL(2*ILF)
C - - LOCATES IN THE IPT ARRAY TWO TRIANGLES ON BOTH SIDES OF
C - - THE FLAGGED LINE SEGMENT.
NTF=0
DO 71 ITT3R=3,NTT3,3
ITT3=NTT3P3-ITT3R
IPT1=IPT(ITT3-2)
IPT2=IPT(ITT3-1)
IPT3=IPT(ITT3)
IF(IPL1.NE.IPT1.AND.IPL1.NE.IPT2.AND.
1 IPL1.NE.IPT3) GO TO 71
IF(IPL2.NE.IPT1.AND.IPL2.NE.IPT2.AND.
1 IPL2.NE.IPT3) GO TO 71
NTF=NTF+1
ITF(NTF)=ITT3/3
IF(NTF.EQ.2) GO TO 72
71 CONTINUE
IF(NTF.LT.2) GO TO 76
C - - DETERMINES THE VERTEXES OF THE TRIANGLES THAT DO NOT LIE
C - - ON THE LINE SEGMENT.
72 IT1T3=ITF(1)*3
IPTI1=IPT(IT1T3-2)
IF(IPTI1.NE.IPL1.AND.IPTI1.NE.IPL2) GO TO 73
IPTI1=IPT(IT1T3-1)
IF(IPTI1.NE.IPL1.AND.IPTI1.NE.IPL2) GO TO 73
IPTI1=IPT(IT1T3)
73 IT2T3=ITF(2)*3
IPTI2=IPT(IT2T3-2)
IF(IPTI2.NE.IPL1.AND.IPTI2.NE.IPL2) GO TO 74
IPTI2=IPT(IT2T3-1)
IF(IPTI2.NE.IPL1.AND.IPTI2.NE.IPL2) GO TO 74
IPTI2=IPT(IT2T3)
C - - CHECKS IF THE EXCHANGE IS NECESSARY.
74 IF(IDXCHG(XD,YD,IPTI1,IPTI2,IPL1,IPL2).EQ.0)
1 GO TO 76
C - - MODIFIES THE IPT ARRAY WHEN NECESSARY.
IPT(IT1T3-2)=IPTI1
IPT(IT1T3-1)=IPTI2
IPT(IT1T3) =IPL1
IPT(IT2T3-2)=IPTI2
IPT(IT2T3-1)=IPTI1
IPT(IT2T3) =IPL2
C - - SETS NEW FLAGS.
JWL=JWL+8
IWL(JWL-7)=IPL1
IWL(JWL-6)=IPTI1
IWL(JWL-5)=IPTI1
IWL(JWL-4)=IPL2
IWL(JWL-3)=IPL2
IWL(JWL-2)=IPTI2
IWL(JWL-1)=IPTI2
IWL(JWL) =IPL1
DO 75 JLT3=3,NLT3,3
IPLJ1=IPL(JLT3-2)
IPLJ2=IPL(JLT3-1)
IF((IPLJ1.EQ.IPL1.AND.IPLJ2.EQ.IPTI2).OR.
1 (IPLJ2.EQ.IPL1.AND.IPLJ1.EQ.IPTI2))
2 IPL(JLT3)=ITF(1)
IF((IPLJ1.EQ.IPL2.AND.IPLJ2.EQ.IPTI1).OR.
1 (IPLJ2.EQ.IPL2.AND.IPLJ1.EQ.IPTI1))
2 IPL(JLT3)=ITF(2)
75 CONTINUE
76 CONTINUE
NLFC=NLF
NLF=JWL/2
IF(NLF.EQ.NLFC) GO TO 79
C - - RESETS THE IWL ARRAY FOR THE NEXT ROUND.
JWL1MN=2*NLFC+1
NLFT2=NLF*2
DO 77 JWL1=JWL1MN,NLFT2
JWL=JWL1+1-JWL1MN
IWL(JWL)=IWL(JWL1)
77 CONTINUE
NLF=JWL/2
78 CONTINUE
79 CONTINUE
C REARRANGES THE IPT ARRAY SO THAT THE VERTEXES OF EACH TRIANGLE
C ARE LISTED COUNTER-CLOCKWISE.
80 DO 81 ITT3=3,NTT3,3
IP1=IPT(ITT3-2)
IP2=IPT(ITT3-1)
IP3=IPT(ITT3)
IF(VPDT(XD(IP1),YD(IP1),XD(IP2),YD(IP2),XD(IP3),YD(IP3))
1 .GE.0.0) GO TO 81
IPT(ITT3-2)=IP2
IPT(ITT3-1)=IP1
81 CONTINUE
NT=NT0
NL=NL0
RETURN
END
FUNCTION IDXCHG(X,Y,I1,I2,I3,I4)
C THIS FUNCTION DETERMINES WHETHER OR NOT THE EXCHANGE OF TWO
C TRIANGLES IS NECESSARY ON THE BASIS OF MAX-MIN-ANGLE CRITERION
C BY C. L. LAWSON.
C THE INPUT PARAMETERS ARE
C X,Y = ARRAYS CONTAINING THE COORDINATES OF THE DATA
C POINTS,
C I1,I2,I3,I4 = POINT NUMBERS OF FOUR POINTS P1, P2,
C P3, AND P4 THAT FORM A QUADRILATERAL WITH P3
C AND P4 CONNECTED DIAGONALLY.
C THIS FUNCTION RETURNS AN INTEGER VALUE 1 (ONE) WHEN AN EX-
C CHANGE IS NECESSARY, AND 0 (ZERO) OTHERWISE.
C DECLARATION STATEMENTS
DIMENSION X(1), Y(1)
EQUIVALENCE (C2SQ,C1SQ),(A3SQ,B2SQ),(B3SQ,A1SQ),
1 (A4SQ,B1SQ),(B4SQ,A2SQ),(C4SQ,C3SQ)
DATA EPSLN/1.0E-6/
C PRELIMINARY PROCESSING
10 X1=X(I1)
Y1=Y(I1)
X2=X(I2)
Y2=Y(I2)
X3=X(I3)
Y3=Y(I3)
X4=X(I4)
Y4=Y(I4)
C CALCULATION
20 IDX=0
U3=(Y2-Y3)*(X1-X3)-(X2-X3)*(Y1-Y3)
U4=(Y1-Y4)*(X2-X4)-(X1-X4)*(Y2-Y4)
IF(U3*U4.LE.0.0) GO TO 30
U1=(Y3-Y1)*(X4-X1)-(X3-X1)*(Y4-Y1)
U2=(Y4-Y2)*(X3-X2)-(X4-X2)*(Y3-Y2)
A1SQ=(X1-X3)**2+(Y1-Y3)**2
B1SQ=(X4-X1)**2+(Y4-Y1)**2
C1SQ=(X3-X4)**2+(Y3-Y4)**2
A2SQ=(X2-X4)**2+(Y2-Y4)**2
B2SQ=(X3-X2)**2+(Y3-Y2)**2
C3SQ=(X2-X1)**2+(Y2-Y1)**2
S1SQ=U1*U1/(C1SQ*AMAX1(A1SQ,B1SQ))
S2SQ=U2*U2/(C2SQ*AMAX1(A2SQ,B2SQ))
S3SQ=U3*U3/(C3SQ*AMAX1(A3SQ,B3SQ))
S4SQ=U4*U4/(C4SQ*AMAX1(A4SQ,B4SQ))
IF((AMIN1(S3SQ,S4SQ)-AMIN1(S1SQ,S2SQ)).GT.EPSLN)
1 IDX=1
30 IDXCHG=IDX
RETURN
END
SUBROUTINE ULIBER (IERR,MESS,LMESS)
C SUBROUTINE ULIBER (IERR,MESS,LMESS)
C
C PURPOSE TO PRINT AN ERROR NUMBER AND AN ERROR MESSAGE
C OR JUST AN ERROR MESSAGE.
C
C USAGE CALL ULIBER (IERR,MESS,LMESS)
C
C ARGUMENTS
C ON INPUT IERR
C THE ERROR NUMBER (PRINTED ONLY IF NON-ZERO).
C
C MESS
C MESSAGE TO BE PRINTED.
C
C LMESS
C NUMBER OF CHARACTERS IN MESS (.LE. 130).
C
C ARGUMENTS
C ON OUTPUT NONE
C
C I/O THE MESSAGE IS WRITEN TO UNIT 101.
C ******************************************************************
C
REAL MESS(1)
C
IF (IERR.NE.0) WRITE (101,1001) IERR
NWORDS=(LMESS+7)/8
WRITE (101,1002) (MESS(I),I=1,NWORDS)
RETURN
C
1001 FORMAT (6H0IERR=,I5)
1002 FORMAT (16A8,A2)
C
END
|